
Instantaneous Bethe-Salpeter kernel for the lightest pseudoscalar mesons

Wolfgang Lucha*

Institute for High Energy Physics, Austrian Academy of Sciences,
Nikolsdorfergasse 18, A-1050 Vienna, Austria

Franz F. Schöberl†

Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
(Received 29 March 2016; published 5 May 2016)

Starting from a phenomenologically successful, numerical solution of the Dyson-Schwinger equation
that governs the quark propagator, we reconstruct in detail the interaction kernel that has to enter the
instantaneous approximation to the Bethe-Salpeter equation to allow us to describe the lightest
pseudoscalar mesons as quark-antiquark bound states exhibiting the (almost) masslessness necessary
for them to be interpretable as the (pseudo) Goldstone bosons related to the spontaneous chiral symmetry
breaking of quantum chromodynamics.
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I. INTRODUCTION

As part of the generally accepted basis (for purely
historical reasons frequently still dubbed as the standard
“model”) of theoretical elementary particle physics, quan-
tum chromodynamics (QCD), the relativistic quantum field
theory that describes all strong interactions between its
color-carrying fundamental degrees of freedom—that is,
the quarks and the gluons—is (strongly believed to be)
characterized by two essential properties: color confine-
ment, expressing the empirically established fact of non-
observation of isolated colored particles in nature, and
dynamical breakdown of chiral symmetry, manifested by
the emergence of nonvanishing masses of nonperturbative
origin for, at Lagrangian level, massless quarks.
In principle, relativistic quantum field theory describes

bound states of its fundamental degrees of freedom by
Bethe-Salpeter amplitudes obtained by solution of the
homogeneous Bethe-Salpeter equation [1]. For technical
or practical reasons, the latter is frequently used in some
instantaneous limit [2], which—upon assuming, for each
bound-state constituent, free propagation with constant
effective mass—finally collapses to Salpeter’s equation [3].
QCD enables us to regard light pseudoscalar mesons as

bound states of quarks and gluons, or as pseudo-Goldstone
bosons whose presence is demanded by the Goldstone
theorem as a consequence of spontaneous chiral symmetry
breaking. Recently, we embarked on the quest for
reconciling both views by a well-tailored instantaneous
Bethe-Salpeter formalism [4–6].
Instead of attempting to solve a given bound-state

equation in use straightforwardly, its exact solutions may
be likewise determined (along a more indirect route and

only with a bit of luck) by application of sufficiently
sophisticated inversion techniques which establish the
rigorous relation between the relevant interactions and
the wave functions (in our case, the Bethe-Salpeter ampli-
tudes) that characterize the features of the bound states
under study. In Ref. [4], we demonstrated the feasibility of
this inversion concept for the easier-to-handle example of
the projection of the Salpeter equation to positive energies
of the bound quarks.
All symmetries of a quantum field theory are reflected by

its Ward-Takahashi identities rephrasing the implications of
such symmetries at the level of the theory’s Green func-
tions. In Ref. [5], we employed an emerging relation
between flavor-nonsinglet pseudoscalar-meson Bethe-
Salpeter amplitude and quark propagator to implement
the proper ultraviolet limit.
General insights, rooted in axiomatic foundations of

quantum field theory and encoded in the axiom of
reflection positivity, impose constraints on the propagators
of those degrees of freedom of any quantum field theory
that are bound to be subject to color confinement. In
Ref. [6], we added constraints on the momentum depend-
ence of the quark mass function, implied by the nonexist-
ence of a Källén-Lehmann representation for the quark
propagator.
Within our instantaneous Bethe-Salpeter approach, the

effective interaction governing bound states is fixed by the
quark couplings’ Lorentz nature and a central potential
VðjxjÞ. In this study, we pin down VðjxjÞ from a numerical
solution of the quark Dyson-Schwinger equation exploiting
the at present presumably most popular model for the
necessary input.
The outline of this paper is as follows. In Sec. II, we

sketch, only to the extent absolutely necessary for any self-
contained presentation, the established description of
bound states of fermion and antifermion by means of the
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Bethe-Salpeter framework in instantaneous limit. In
Sec. III, we briefly recall the interplay between Bethe-
Salpeter amplitude and quark mass function, established by
the axial-vector Ward-Takahashi identity for QCD by
relating the solution of the Bethe-Salpeter equation and
that of the quark’s Dyson-Schwinger equation. In Sec. IV,
we recall our favorite model for the latter. In Sec. V, we
infer VðjxjÞ as a function of the (at this stage) only free
parameter, the effective quark mass. In Sec. VI, we discuss
our observations. (For convenience of notation, we adopt
natural units throughout: ℏ ¼ c ¼ 1.)

II. MESONS BY INSTANTANEOUS
BETHE-SALPETER EQUATION

In quantum field theory, the Bethe-Salpeter approach
describes a two-particle bound state in terms of its Bethe-
Salpeter amplitude Φðp;PÞ, depending on both relative
momentum p and total momentum P of its bound-state
constituents (suppressing indices for simplicity). The
homogeneous Bethe-Salpeter equation [1] controlling
Φðp;PÞ reduces, for bound-state constituents experiencing
exclusively instantaneous interactions and having propa-
gators of a sufficiently trivial dependence on p0, to the
instantaneous Bethe-Salpeter equation [2] for

ϕðpÞ≡ 1

2π

Z
dp0ΦðpÞ; ð1Þ

the (equal-time) Salpeter amplitude. If the latter require-
ment is satisfied by approximating the propagators by their
free forms involving effective masses, the bound-state
equation for ϕðpÞ simplifies further to the Salpeter equa-
tion [3]. For bound states composed of a fermion and an
antifermion (with masses m1;2 and momenta p1;2, respec-
tively), that equation reads

ϕðpÞ ¼
Z

d3q
ð2πÞ3

�
Λþ
1 ðp1Þγ0½Kðp; qÞϕðqÞ�γ0Λ−

2 ðp2Þ
P0 − E1ðp1Þ − E2ðp2Þ

−
Λ−
1 ðp1Þγ0½Kðp; qÞϕðqÞ�γ0Λþ

2 ðp2Þ
P0 þ E1ðp1Þ þ E2ðp2Þ

�
; ð2Þ

with free energy and positive/negative energy projectors of
the two constituents defined by

EiðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
; Λ�

i ðpÞ≡ EiðpÞ � γ0ðγ · pþmiÞ
2EiðpÞ

;

i ¼ 1; 2:

Its instantaneous Bethe-Salpeter kernel Kðp; qÞ subsumes
the Lorentz nature and momentum dependence of the
effective interactions taking place between the bound-state
constituents, the former by a set of (generalized) Dirac
matrices Γi ði ¼ 1; 2Þ and the latter by corresponding
Lorentz-scalar potential functions VΓðp; qÞ. For identical

Lorentz structures of the effective couplings of fermion and
antifermion, i.e., Γ1 ¼ Γ2 ¼ Γ, the action of Kðp; qÞ on
ϕðpÞ reads

½Kðp; qÞϕðqÞ� ¼
X
Γ
VΓðp; qÞΓϕðqÞΓ:

Following Refs. [7–9], we rely on the postulate of Fierz
symmetry of Kðp; qÞ by choosing as its sole Lorentz
structure [whence Vðp; qÞ no longer needs an index] the
linear combination

Γ ⊗ Γ ¼ 1

2
ðγμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1Þ:

The Λþ ⊗ Λ− þ Λ− ⊗ Λþ projector structure of the
right-hand side of Eq. (2) implies that, in a Dirac-space
basis of 16 complex 4 × 4 matrices, the most general
solution ϕðpÞ has eight independent scalar component
functions. Out of these, ignoring flavor violation by letting
m1 ¼ m2 ¼ m, just two, henceforth called φiðpÞ, i ¼ 1, 2,
correspond to spin-singlet bound states of two spin-1

2
(anti)

fermions, such as pseudoscalar mesons [10]. For these,
ϕðpÞ reads

ϕðpÞ ¼
�
φ1ðpÞ

γ0ðγ · pþmÞ
EðpÞ þ φ2ðpÞ

�
γ5: ð3Þ

For spherically symmetric convolution-type kernels
Kðp; qÞ, i.e., Vðp; qÞ ¼ Vððp − qÞ2Þ, the Salpeter equa-
tion (2) simplifies to a set of coupled equations for the
radial factors φiðpÞ, i ¼ 1; 2;…, of the independent
Salpeter components. Therein, all interactions are encoded
in form of configuration-space central potentials, here
generically denoted by VðrÞ, r≡ jxj.
Under all these assumptions, the Salpeter equation (2)

can be shown to be equivalent to a system of two radial
equations [8], an integral equation and a relation of
algebraic nature, determining mass eigenvalue M̂ and radial
Salpeter components φ1;2ðpÞ of the bound state,

2EðpÞφ2ðpÞþ2

Z
∞

0

dqq2

ð2πÞ2Vðp;qÞφ2ðqÞ¼ M̂φ1ðpÞ;

2EðpÞφ1ðpÞ¼ M̂φ2ðpÞ; EðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

q
; p≡ jpj:

ð4Þ

The potential VðrÞ enters the first of these relations in form
of its Fourier-Bessel transform

Vðp; qÞ≡ 8π

pq

Z
∞

0

dr sinðprÞ sinðqrÞVðrÞ; q≡ jqj:

Within the context of the present kind of problem,
inversion simply means to determine the underlying
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interaction entering into the generic type of equation of
motion under study by postulating one’s favored set of
solutions. We take into account the Goldstone nature of the
pseudoscalar bound states to be described by Eq. (4) by
requiring their mass eigenvalue M̂ to vanish: M̂ ¼ 0. At this
point in our space of solutions, the two dynamical equa-
tions in the set (4) decouple. The second relation implies
φ1ðpÞ≡ 0, whence the Salpeter amplitude (3) simplifies to
ϕðpÞ ¼ φ2ðpÞγ5, and the first equation provides the sole
component φ2ðpÞ,

EðpÞφ2ðpÞ þ
Z

∞

0

dqq2

ð2πÞ2 Vðp; qÞφ2ðqÞ ¼ 0: ð5Þ

With the Fourier-Bessel transforms of the amplitude φ2ðpÞ
and the kinetic term EðpÞφ2ðpÞ

φðrÞ≡
ffiffiffi
2

π

r
1

r

Z
∞

0

dpp sinðprÞφ2ðpÞ;

TðrÞ≡
ffiffiffi
2

π

r
1

r

Z
∞

0

dpp sinðprÞEðpÞφ2ðpÞ;

transforming Eq. (5) to configuration space enables the
straightforward extraction of VðrÞ,

TðrÞ þ VðrÞφðrÞ ¼ 0⇔VðrÞ ¼ −TðrÞ=φðrÞ: ð6Þ

In this representation, it becomes plain that Eq. (5) is just a
spinless Salpeter equation [11].

III. THE DYSON-SCHWINGER–BETHE-
SALPETER CONSPIRACY

As an immediate consequence of the (global or local)
symmetries of a quantum field theory, Ward-Takahashi
identities relate differing n-point functions, e.g., propaga-
tors and vertices. In the chiral limit, the renormalized axial-
vector QCD Ward-Takahashi identity relates the dressed
quark propagator SðpÞ to the Bethe-Salpeter solution
Φðp; 0Þ for flavor-nonsinglet pseudoscalar mesons: among
others, a propagator function that basically determines the
quark mass function in the former to the dominant “Dirac”
component of the latter [12,13]. More precisely, if the two
Lorentz-scalar functions characterizing the propagator of
the quark are chosen to be its mass function,Mðp2Þ, and its
wave-function renormalization factor, Zðp2Þ,

SðpÞ ¼ iZðp2Þ
p −Mðp2Þ þ iε

; p≡ pμγμ; ε ↓ 0;

and if the—comparatively low—influence of the latter
function is neglected, in the chiral limit this Bethe-
Salpeter amplitude Φðk; 0Þ is found [5] to be related to
Mðk2Þ according to

Φðk;0Þ∝ Mðk2Þ
k2þM2ðk2Þγ5þ subleading contributions; ð7Þ

here and below, vectors in Euclidean space, where Eq. (7)
has been derived, are underlined.

IV. QUARK PROPAGATOR VIA
DYSON-SCHWINGER EQUATIONS

By virtue of the relationship established by Eq. (7), the
(approximate) pointwise behavior of the momentum-space
Bethe-Salpeter amplitude for the massless pseudoscalar
mesons in the center-of-momentum frame can be extracted
from the quark mass function entering the quark propaga-
tor. This two-point Green function, in turn, can be derived
as a solution of the Dyson-Schwinger equation for the
quark propagator (sometimes called the gap equation).
With sufficient information about the Bethe-Salpeter

amplitude for the light mesons at our disposal, it is a
(more or less) straightforward enterprise to chart the sought
interaction potential: The Salpeter amplitude of any
mesonic bound states under consideration follows by
application of its definition (1). Then, the underlying
potential may be read off from the configuration-space
representation of the effective equation of motion according
to Eq. (6).
Now, the Dyson-Schwinger equations constitute a count-

able infinity of coupled integral equations for the infinite
set of n-point Green functions of a quantum field theory.
However, every member of this hierarchy of relations
connects n-point Green functions of different n: each
Dyson-Schwinger equation requires as input the solution
of, at least, one higher-order Dyson-Schwinger equation.
Thus, the definition of a tractable problem is only possible
by a truncation of this infinite tower to a finite set of
equations for the Green functions of low n, with any
required higher-n input Green function modeled by phe-
nomenological reasoning.
For obvious reasons, one’s truncation of choice should

best respect all the symmetries of the quantum field theory
expressed by its Ward-Takahashi identities: the “rainbow-
ladder truncation” is defined by a tree-level quark-gluon
vertex, a Bethe-Salpeter kernel in ladder approximation
relying on single-gluon exchange, and a free gluon propa-
gator. Nonetheless, the desired conformity of the resulting
predictions with constraints imposed by experiment is, on
the other hand, ensured by effective coupling functions
which substitute the square of the strong couplings and
have been composed so as to incorporate any necessary
feature. This truncation preserves, at least, the crucial QCD
axial-vector Ward-Takahashi identity.
For the purposes of our present investigation, we will

take advantage of the findings of a study [13] adopting a
renormalization-group-improved truncation model devised
such that the effective coupling strength that defines a
particular rainbow-ladder truncation exhibits two decisive
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features: a distinctive enhancement in the infrared region
(k2 → 0), motivated by the apparent behavior of the gluon
propagator, and a decay similar to the perturbative behavior
of the strong fine-structure coupling of QCD in the ultra-
violet region (k2 → ∞).
Recognizing the importance of taking into account—in

the course of the application of our relation (7)—the
behavior of the quark mass function in the limit k2 → ∞
as correctly as possible [5], we should capture a k2 interval
which extends to k2 values as large as available. Hence, we
utilize the quark mass functionMðk2Þ in the form presented
in Fig. 2 of Ref. [13].

V. INTERACTION POTENTIALS FROM
QUARK MASS FUNCTIONS

After these preliminaries, the potential VðrÞ enabling the
Salpeter equation (2) to describe massless pseudoscalar
solutions can be derived by an unspectacular sequence of
operations.
(1) In order to get a firm grip on our inversion problem

under consideration, we first need to convert the
input information, provided in pointwise shape by
Fig. 2 of Ref. [13], to a mathematical expression. We
may achieve this goal by construction of a conven-
ient parametrization of the quark mass function

Mðk2Þ in terms of a very small number of elementary
(and hence easy-to-handle) functions. We employ a
six-parameter ansatz,

Mðk2Þ ¼ a
½1þ ðk2=bÞγ�δ þ c exp ð−dk2Þ: ð8Þ

Fitting our parametrization (8) of the quark mass
function, Mðk2Þ, to the graph of its momentum
dependence in the chiral limit given in Ref. [13]
provides, for the involved six parameters, a, b, γ, δ,
c, and d, the numerical values listed in Table I.
Accordingly, for lightlike momenta (k2 ¼ 0),Mðk2Þ
takes the value Mð0Þ ¼ aþ c ¼ 0.778572 GeV.
Figure 1 depicts our view (8) on Mðk2Þ for both
double-logarithmic and linear scales.

(2) Inserting Mðk2Þ in form of its parametrization (8)
into our starting-point relation (7) takes us to the
Goldstone-boson Bethe-Salpeter amplitude Φðk; 0Þ.
Mimicking the p0 integration requested by the
definition (1) by an integration of Φðk; 0Þ with
respect to k4 yields the Salpeter amplitude ϕðpÞ.
For the outcome of this numerical integration, the
function φ2ðpÞ multiplying the Dirac matrix γ5, a
nearly perfect fit may be found,

TABLE I. Numerical values of the six parameters a, b, γ, δ, c, and d defining our formal modeling (8) of the quark
mass function Mðk2Þ in the chiral limit as retrieved from Fig. 2 of Ref. [13].

Parameter a (GeV) b (GeV2) γ δ c (GeV) d (GeV−2)

Value 0.070 589 6 0.486 542 1.48 0.751 88 0.707 983 1.526 16
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FIG. 1. Mass function Mðk2Þ, derived by solution of the renormalization-group-improved rainbow-ladder approximation to the
Dyson-Schwinger equation for the quark propagator, SðkÞ, in the chiral limit (Fig. 2 of Ref. [13]), for double-logarithmic (a) and linear
(b) scales.
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φ2ðpÞ ¼
a

ðb2 þ p2 þ cp4Þγ ;

∥φ2∥2 ≡
Z

∞

0

dpp2jφ2ðpÞj2 ¼ 1; ð9Þ

with the numerical values of its just four parameters
a, b, c, and γ revealed in Table II. Figure 2 confronts,
for the Salpeter amplitude φ2ðpÞ, its parametrization
(9) with the direct output of the integration (1). The
maximum error is less than 0.0036 GeV−3=2.

(3) Clearly, for the envisaged extraction of any under-
lying interaction potential VðrÞ, we next have to
move to configuration space. It goes without saying
that, in the course of performing the required Fourier
transformations, we would like to maintain sufficient
control about the actual reliability of our inversion
technique. We may feel entitled to claim to have
achieved such a goal if we are able to estimate the
accuracy of our results. To this end, we would like to
perform the remaining intermediate steps of the

present inversion approach by means that are ana-
lytical to an extent as reasonably possible. Con-
sequently, in spite of having at our disposal, in the
form of Eq. (9), a parametrization pretty close to the
optimum, we prefer to proceed by the use of an
approximation which is of slightly lesser quality but
resembles the single-particle kinetic energy EðpÞ
sufficiently to provide, for particular values of the
quark mass, analytic access to VðrÞ. Hence, we
continue with the ansatz

φ2ðpÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γð2γÞffiffiffi
π

p
Γð2γ − 3

2
Þ

s
2b2γ−

3
2

ðp2 þ b2Þγ ;

∥φ2∥2 ≡
Z

∞

0

dpp2jφ2ðpÞj2 ¼ 1; ð10Þ

for γ > 3
4
, with the appropriate values of the two

parameters b and γ given in Table III.
The proximity of convenient fit (10) to “perfect”

fit (9) may be judged from Fig. 3(a).
For the marginally simpler parametrization (10), it

is then straightforward to obtain, by Fourier-Bessel
transformation of φ2ðpÞ, the Salpeter component
φðrÞ analytically, in terms of the modified Bessel
functions KηðzÞ of the second kind of order
η ∈ R [14],

φðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γð2γÞffiffiffi
π

p
Γð2γ − 3

2
Þ

s
22−γbγ

ΓðγÞ rγ−
3
2K3

2
−γðbrÞ;

∥φ∥2 ≡
Z

∞

0

drr2jφðrÞj2 ¼ 1:

Figure 3(b) illustrates this configuration-space
behavior of our Salpeter component.

(4) In general, the kinetic term’s Fourier-Bessel trans-
form TðrÞ can be computed merely by a numerical
integration. Thereafter, according to Eq. (6), this
inversion procedure is easily completed by comput-
ing the sought potential VðrÞ by dividing TðrÞ by
φðrÞ. The behavior of the resulting potentials for
various quark masses is shown in Fig. 4.
As promised when motivating our step 3, owing to

the pivotal simplification (10), the Fourier-Bessel

TABLE II. Numerical values of the four parameters (a, b, c,
and γ) controlling the behavior (9) of the (sole) component φ2ðpÞ
of the Salpeter amplitude (3) of a spin-singlet quark-antiquark
bound state fixed by insertion of our parametrization (8) of the
quark mass function Mðk2Þ into the “starting-point” relationship
(7) and subsequent integration (1) with respect to k4.

Parameter a (GeV2γ−3
2) b (GeV) c (GeV−2) γ

Value 8.7344 1.236 35 2.575 41 1.770 44

0 0.5 1 1.5 2

0

1

2

3

4

0 0.5 1 1.5 2

0

1

2

3

4

p GeV

2
p

G
eV

3
2

FIG. 2. Comparison of the result of a numerical integration,
according to definition (1), of the Bethe-Salpeter amplitude
Φðk; 0Þ emerging from the quark mass function (8) (red dotted
line) with our parametrization (9) defined by the parameter values
of Table II (blue dashed line).

TABLE III. Numerical values of the two parameters b and γ
determining our “user-friendly” approximate parametrization
(10) of the single component φ2ðpÞ of the Salpeter amplitude
(3) of spin-singlet quark-antiquark bound states derived from the
quark mass function (8).

Parameter b (GeV) γ

Value 1.693 34 6.492 92
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transform of the kinetic term EðpÞφ2ðpÞ, and thus
the potential VðrÞ, can be found in analytical form
for at least two distinct choices of the quark mass m:
(a) If that common quark mass m vanishes, that is,

for m ¼ 0, the kinetic term TðrÞ may be

formulated by the use of the modified Bessel
functions of the first kind IηðzÞ, of order η ∈ R
[14], and the modified Struve functions LηðzÞ,
of order η ∈ R [14],

0 1 2 3
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3

4

0 1 2 3

0
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3

4
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2
p

G
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3
2

0 2 4 6 8
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0.4

0.6

0 2 4 6 8

0
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0.4

0.6

r GeV 1

r
G
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3

2

(a) (b)

FIG. 3. Normalized radial independent Salpeter component defining, at least for Salpeter equations (2) characterized by the Lorentz
structure 2Γ ⊗ Γ ¼ γμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1 of their interaction kernels, the Salpeter amplitude (3) of any spin-singlet state, and
thus, in particular, of any pseudoscalar meson. In momentum-space representation (a) we show its exact shape computed, via the
relationship (7), from the quark mass function of Fig. 1 (black solid line) as well as an approximation deduced from a fit to the simplified
functional dependence (10) (magenta dashed line); in configuration-space representation (b) we only depict the behavior of the Fourier-
Bessel transform of the latter approximation (magenta solid line).
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V
r

G
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FIG. 4. Configuration-space potential VðrÞ extracted from the Salpeter equation (2) with interaction-kernel Lorentz structure
2Γ ⊗ Γ ¼ γμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1, for typical quark-mass value m: m ¼ 0 (black solid line), m ¼ 0.35 GeV (red dotted line),
m ¼ 0.5 GeV (magenta short-dashed line), m ¼ 1 GeV (blue long-dashed line), and m ¼ b (violet dot-dashed line).
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TðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

3
2Γð2γÞ

Γð2γ− 3
2
Þ

s
21−γ

sinðγπÞΓðγÞ
1

r
5
2

×

�
2ð1− γÞðbrÞγIγ−3

2
ðbrÞ− ðbrÞ1þγIγ−1

2
ðbrÞþðbrÞγL3

2
−γðbrÞþðbrÞ1þγL5

2
−γðbrÞþ

sinðγπÞ
2

3
2
−γπ

3
2

Γðγ−2ÞðbrÞ52
�
:

Clearly, because of the presence of the sine
function sinðγπÞ in the denominator, the require-
ment of TðrÞ to be well defined constrains the
exponent γ to noninteger values: γ∉N. We do
not see a genuine need for reproducing here the
rather lengthy expression of VðrÞ that arises
upon division of the above TðrÞ by φðrÞ: see the
solid curve in Fig. 4. With this explicit expres-
sion for VðrÞ at hand, it is trivial to characterize
the behavior of VðrÞ in the limit of either small
or large interquark distances r,

Vð0Þ ¼ −
2b

ffiffiffi
π

p
sinðγπÞΓð3 − γÞΓðγ − 3

2
Þ for γ > 2;

VðrÞ ⟶
r→∞

γðγ − 1Þ
4 sinðγπÞ

expð2brÞ
r

:

Thus, for appropriate values of γ, we get a
confinement-betraying rise to infinity,

VðrÞ⟶
r→∞

þ∞ for γ ∈ ð2n; 2nþ 1Þ;
n ¼ 1; 2; 3;…

By formula (6.1.17) of Ref. [14], the expression
sinðγπÞΓð3 − γÞ is nonvanishing,

sinðγπÞΓð3 − γÞ ¼ π

Γðγ − 2Þ > 0 for γ > 2:

Accordingly, at spatial origin r ¼ 0, the poten-
tial VðrÞ assumes a finite value: for the param-
eters of Table III, Vð0Þ ¼ −0.926813 GeV (cf.
the solid curve in Fig. 4).

(b) If, by chance, the common quark mass m is
exactly equal to the mass parameter b in our
ansatz (10), that is, for m ¼ b, the kinetic term
TðrÞ turns out to involve only the modified
Bessel functions of the second kind KηðzÞ, of
order η ∈ R [14],

TðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γð2γÞffiffiffi
π

p
Γð2γ − 3

2
Þ

s
2
5
2
−γb

1
2
þγ

Γðγ − 1
2
Þ r

γ−2K2−γðbrÞ:

With the overall normalization dropping out, the
emerging potential VðrÞ reads

VðrÞ ¼ −
ΓðγÞ

Γðγ − 1
2
Þ

ffiffiffiffiffiffi
2b
r

r
K2−γðbrÞ
K3

2
−γðbrÞ

:

This behavior of VðrÞ is reflected graphically by the
dot-dashed curve in Fig. 4. For such a simple VðrÞ
shape, its r → 0 and r → ∞ limits can be directly
read off,

Vð0Þ ¼ −
bΓðγ − 2ÞΓðγÞ
Γðγ − 3

2
ÞΓðγ − 1

2
Þ for γ > 2;

VðrÞ⟶
r→∞

−
ΓðγÞ

Γðγ − 1
2
Þ

ffiffiffiffiffiffi
2b
r

r
⟶
r→∞

0:

Thus, for rising separation r, this potential starts
from a finite, negative value at the origin r ¼ 0,
namely, Vð0Þ ¼ −1.96928 GeV for the two param-
eter values of Table III, but stays below zero even for
r → ∞ (cf. the dot-dashed curve in Fig. 4).

In general, the Fourier-Bessel transform of the kinetic
term, TðrÞ, and, consequently, the resulting potential,
VðrÞ, have to be computed by numerical integration.
Figure 4 presents the outcomes of such an undertaking
for a couple of selected quark masses m in the interval
0 ≤ m ≤ b. Needless to say, in both analytically
accessible cases, our numerical results exhibit perfect
agreement with the above explicit findings for VðrÞ.

Numerically, the oscillatory behavior induced by the very
definition of the Fourier-Bessel transformation requires in
its application a particularly careful analysis. In view of
this, the possibility of the independent verification of one’s
numerical findings, for exceptional cases, by corresponding
analytic results should be considered as a precious and
welcome bonanza.

VI. SUMMARY, CONCLUSION,
INTERPRETATION, AND OUTLOOK

Abandoning for the moment most of our previous
ambitions towards analytic treatments of the lightest
pseudoscalar mesons within the formalism of the instanta-
neous Bethe-Salpeter approach [4–6], in the present analy-
sis we derived, for the Salpeter equation (2), the form of
that interaction kernel which is capable of describing
Goldstone-type pseudoscalar mesons, from the quark mass
function; the latter is rendered accessible by a fundamental
relationship (resulting from the chiral symmetry of QCD
[12,13]) between the quark propagator on the one hand and
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the meson Bethe-Salpeter amplitude on the other hand. For
increasing effective quark mass m, the gross behavior of
VðrÞ resembles that observed in Ref. [5]: a rise to infinity
for sufficiently small m but an approach to a finite non-
positive value for larger m. This is in full accordance with
the inevitable large-m behavior of VðrÞ already demon-
strated in Ref. [5],

EðpÞ ⟶
m→∞

m ⇒ TðrÞ ⟶
m→∞

mφðrÞ ⇒ VðrÞ ⟶
m→∞

−m:

The origin of any such qualitatively different behavior of
the derived potentials VðrÞ is easily identified: For given
mass m of the bound-state constituents, the configuration-
space quantities TðrÞ and φðrÞ, as mere Fourier-Bessel
transforms, and thus likewise their ratios, the potentials
VðrÞ ¼ −TðrÞ=φðrÞ, are unambiguously determined
already by the Salpeter component φ2ðpÞ forming the
exclusive momentum-space input of our inversion pro-
cedure. Thus, any substantial differences of the predictions
for VðrÞ have to be attributed to φ2ðpÞ. For the sake of
comparison, let us represent the approximate behavior of
φ2ðpÞ in the form

φ2ðpÞ ∝
1

ðp2 þ μ2Þν ;

with some characteristic mass scale, μ, and discuss the
associated exponents ν encountered in this and two
previous analyses: In Ref. [5], the momentum dependence
of the chiral-limit quark mass function in the ultraviolet
limit of large spacelike momenta, deduced on general
grounds [13], implied ν ¼ 3

2
. In Ref. [6], we modeled the

(confinement-promoting) presence of an inflection point in
the quark mass function by an admixture that entailed a
somewhat modified value of the effective ν, depending on
the relative amount of this admixture. Here, this exponent
is, of course, equal to the numerical value of the parameter γ
in the simplified parametrization (10), ν ¼ γ ≈ 13

2
according

to Table III, and markedly larger, because in the simplified
form (10) this parameter must take care of the p4 term in the
parametrization (9) which otherwise would dominate
the behavior of φ2ðpÞ at large p. This is reflected by the
nonsingular behavior of φðrÞ at the origin, whence there is
no need for a counterbalancing singularity of VðrÞ at the
origin that allows for the sought masslessness of the bound
states.
So far, we have harvested our (analytical or numerical)

input in Euclidean space, i.e., at spacelike quark momenta.
Beyond doubt, it will be interesting to move to Minkowski
space and to exploit findings for timelike quark momenta,
to the extent that such results are available.
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