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The Schrödinger-Newton equation has been proposed as an experimentally testable alternative to
quantum gravity, accessible at low energies. It contains self-gravitational terms, which slightly modify the
quantum dynamics. Here we show that it distorts the spectrum of a harmonic system. Based on this effect,
we propose an optomechanical experiment with a trapped microdisc to test the Schrödinger-Newton
equation, and we show that it can be realized with existing technology.
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I. INTRODUCTION

What is the gravitational field of a quantum system in a
spatial superposition state? The seemingly most obvious
approach, the perturbative quantization of the gravitational
field in analogy to electromagnetism, makes it alluring to
reply that the space-time of such a state must also be in a
superposition. The nonrenormalizability of said theory,
however, has also inspired the hypothesis that a quantiza-
tion of the gravitational field might not be necessary after
all [1–3]. Rosenfeld already expressed the thought that the
question whether or not the gravitational field must be
quantized can only be answered by experiment: “There is
no denying that, considering the universality of the quan-
tum of action, it is very tempting to regard any classical
theory as a limiting case to some quantal theory. In the
absence of empirical evidence, however, this temptation
should be resisted. The case for quantizing gravitation, in
particular, far from being straightforward, appears very
dubious on closer examination.” [1]
Adopting this point of view, an alternative approach to

couple quantum matter to a classical space-time is provided
by a fundamentally semiclassical theory [4]; that is by
replacing the source term in Einstein’s field equations for
the curvature of classical space-time, energy-momentum,
by the expectation value of the corresponding quantum
operator [1,6]:

Rμν −
1

2
gμνR ¼ 8πG

c4
hΨjT̂μνjΨi: ð1Þ

Of course, such a presumption is not without complica-
tions. For instance, in conjunction with a no-collapse
interpretation of quantum mechanics it would be in blatant

contradiction to everyday experience [7]. Moreover, the
nonlinearity that the backreaction of quantum matter with
classical space-time unavoidably induces cannot straight-
forwardly be reconciled with quantum nonlocality in a
causality-preserving manner [8,9]. Be that as it may, there
is no consensus about the conclusiveness of these argu-
ments [2,10,11]. The enduring quest for a theory uniting the
principles of quantum mechanics and general relativity
gives desirability to having access to hypotheses which
could be put to an experimental test in the near future [12].
In the nonrelativistic limit, the assumption of fundamen-

tally semiclassical gravity yields a nonlinear, nonlocal
modification of the Schrödinger equation, commonly
referred to as the Schrödinger-Newton equation [15–17].
After a suitable approximation [16], for the center of mass
of a complex quantum system of mass M in an external
potential Vext it reads

iℏ
∂
∂tψðt; rÞ ¼

�
−

ℏ2

2M
∇2 þ Vext þ Vg½ψ �

�
ψðt; rÞ; ð2aÞ

Vg½ψ �ðt; rÞ ¼ −G
Z

d3r0jψðt; r0Þj2Iρcðr − r0Þ: ð2bÞ

The self-gravitational potential Vg depends on the wave
function, and hence renders the equation nonlinear. The
function Iρc , which models the mass distribution of the
considered system, will be defined below.
The Schrödinger-Newton equation has primarily been

discussed in the context of gravitationally induced quantum
state reduction [18,19]. Its relevance for a possible exper-
imental test of the necessity to quantize the gravitational
field was pointed out by Carlip [3]. First ideas of how to test
such kind of nonlinear, self-gravitational effects focused on
the spreading of a free wave function in matter-wave
interferometry experiments [3,20–25]. Recently, an exper-
imental test has been proposed by Yang et al. [26], based on
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the internal dynamics of a squeezed coherent ground state
of a micron-sized silicon particle in a harmonic potential.
Here we propose a novel experiment, studying the

spectrum of such a harmonically trapped microparticle.
The advantage of our proposal is that it needs neither
squeezing nor state tomography. Therefore, despite the fact
that effects are of the same order of magnitude as those
studied in Ref. [26], the prospects of its practical realization
in the near future are significantly better.
We show that for a suitable choice of mass and

frequencies the energy levels become state dependent,
due to the self-gravity term Vg½ψ � in Eq. (2), thus resulting
in a nondegenerate line spacing of the energy levels of the
harmonic oscillator. This is schematically depicted
in Fig. 1.

II. THEORY

In matter-wave interferometry, even large molecules can
approximately be considered as single, pointlike particles,
meaning that the wave function is wide in comparison to
the extent of the considered quantum system. In this case,
the function Iρc in Eq. (2) reduces to the Coulomb-like
potentialM2=jr − r0j. This changes if the wave function for
the center of mass cannot be treated as wide, as it is the
usual situation in optomechanical experiments. In that
instance, one must take the mass distribution ρc of the
constituents relative to the center of mass into account. The
general shape of Iρc is

IρcðdÞ ¼
Z

d3ud3v
ρcðuÞρcðv − dÞ

ju − vj : ð3Þ

It has been pointed out by Yang et al. [26] that, for a
sufficiently narrow wave function, the crystalline structure
of matter becomes significant. Provided that the atomic
mass density can be modeled by a Gaussian distribution,
and the microparticle as a whole has a spherical structure of
radius R much larger than the extent of the wave function,
we get approximately [27]

IρcðdÞ ≈
6M2

5R
þMm

d
erf

�
dffiffiffi
2

p
σ

�
: ð4Þ

Here, and in the following, we denote by m the atomic
mass, and by M the mass of the whole microparticle. The
localization of the nuclei, σ, is related to the Debye-Waller
B-factor by σ ¼ 2π

ffiffiffiffi
B

p
. Values for B at different temper-

atures can be found in Refs. [28,29] for most elemental
crystals.
The external potential is now supposed to be a harmonic

trap with frequency ω0 in the x direction, and we assume
the wave function to separate in the three spatial dimen-
sions [30]. The additional self-gravitational potential leads
to a shift of the energy levels from their unperturbed values

at Eð0Þ
n ¼ ℏω0ð1=2þ nÞ. If the system is in a stationary

state of the trap, and the mass is such that the self-
gravitational potential is weak, as is the case in any realistic
experimental situation, the energy shift is well approxi-
mated by a first-order perturbative expansion in the
gravitational constant G:

ΔEn ¼ hψ ð0Þ
n jVg½ψ ð0Þ

n �ðrÞjψ ð0Þ
n i þOðG2Þ: ð5Þ

Strictly speaking, this is a twofold approximation, first by

taking the unperturbed state ψ ð0Þ
n as the source of the

gravitational potential, which renders Vg a linear potential,
and then applying ordinary perturbation theory. Inserting the
energy eigenstates of the harmonic oscillator, and introduc-
ing the dimensionless parameter α ¼ 2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mω0=ℏ

p
, the

energy shift can be written as

ΔEn ¼ −
Gℏm
4σ3ω0

fnðαÞ; ð6Þ

with the state, mass, and frequency-dependent functions fn
yet to be determined.
We first consider the situation of Ref. [26], where the

potential Vg was simplified further by taking the limit of a
narrow wave function, and Taylor expanding Iρc to quad-
ratic order in jr − r0j. In this case, the function fn takes the
form

FIG. 1. Schematic overview of the effect of the Schrödinger-
Newton equation on the spectrum. The top part shows the first
three energy eigenvalues and their shift due to the first-order
perturbative expansion of the Schrödinger-Newton potential. The
bottom part shows the resulting spectrum of transition frequen-
cies. In the narrow-wave-function regime (middle part), all
energy levels are shifted down by an n-independent value minus
an n-proportional contribution that scales with the inverse trap
frequency. In the intermediate regime, where the wave-function
width becomes comparable to the localization length scale of the
nuclei, this n-proportionality no longer holds, leading to a
removal of the degeneracy in the spectrum.
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fnarrown ðαÞ ¼∝ M5=3ω0 −
4

3

ffiffiffi
2

π

r �
nþ 1

2

�
: ð7Þ

Obviously, the transition frequency ω0 between adjacent
energy levels will not be affected by the n-independent part,
while the n-proportional term leads to a shift

ΔωSN ¼
ffiffiffi
2

π

r
Gm
3ω0σ

3
: ð8Þ

This frequency shift is, however, independent of n, there-
fore leaving the degeneracy of the spectrum intact, accord-
ing to which all energy transitions with the same Δn
correspond to the same spectral line at Δnðω0 þ ΔωSNÞ.
The experimental situation of Ref. [26], where the

frequency is high enough to allow for the wave function
to be approximated as narrow, hides the true behavior of the
energy levels. This becomes evident if we consider the
scenario where the width of the wave function is compa-
rable to the localization σ of the nuclei, and hence the
quadratic approximation becomes inaccurate. The wave
function width is characterized by the factor α defined
above, which relates the width of the ground state to σ.
Small values, α ≪ 1, correspond to wide wave functions
and large values, α ≫ 1, to narrow ones.
For now, consider only the case where the trap frequency

is lowered in one dimension, but the wave function is kept
narrow in the remaining two. Then, in the intermediate
regime, where α is of the order of unity, the function fn can
be approximated as (see Ref. [27] for a more thorough
derivation)

fnðαÞ≈ constþα3
ffiffiffi
2

π

r Z
∞

0

dζ

×exp

�
−
α2ζ2

2

�
PnðαζÞ

�
erfð ffiffiffi

2
p

ζÞ
2ζ

−
ffiffiffi
2

π

r �
; ð9aÞ

where “const.” refers to n-independent terms, and the
polynomials Pn are defined by

PnðzÞ ¼
e−z

2=2ffiffiffiffiffiffi
2π

p ð2nn!Þ2
Z

∞

−∞
dξe−2ξ

2

HnðξÞ2ðe2zξHnðξ − zÞ2

þ e−2zξHnðξþ zÞ2Þ; ð9bÞ
with the Hermite polynomials Hn. The integrals in fn can
be evaluated analytically for low n [31]. One ends up with
the frequency shift

Δωinterm
n1n2 ¼ ΔωSNgn1n2ðαÞ; ð10aÞ

gn1n2ðαÞ ¼
3

8

ffiffiffiffiffiffi
2π

p
ðfn1ðαÞ − fn2ðαÞÞ; ð10bÞ

which now depends not only on the difference Δn but
explicitly on n1 and n2. This is the effect we are interested

in, which can be observed experimentally. ΔωSN contains
the material properties, while gn1n2ðαÞ depends only on the
total mass M and trap frequency ω0.
The functions gn1n2 are plotted in Fig. 2 for Δn ¼ 1 and

n1 ranging from 0 to 12. As one can see in the plot, while
they tend to zero for small α (wide wave functions) and to
Δn for large α (narrow wave functions), for values 1≲
α≲ 10 there is a significant dependence on the actual state,
leading to a substantial deviation from the degenerate
structure of the spectrum.
A fully three-dimensional analysis, giving up the

approximation of a wave function that is narrow in two
dimensions, can only be obtained numerically. For an
axially symmetric wave function that is in the ground state
for the transverse directions the details can be found in
Appendix A of Ref. [27]. There it has been shown that the
effect stays the same in quality and order of magnitude also
in this three-dimensional situation.

III. PROPOSAL FOR EXPERIMENT

We propose to measure this effect by interrogating
optomechanically the motion of a single micron-sized
superconducting osmium mirror in a dilution refrigeration-
cooled linear Paul ion trap, as shown schematically in
Fig. 3. The Schrödinger-Newton effect will be probed with
the longitudinal motion (x direction in Fig. 3) of the trapped
osmium microdisc.
While best known for atomic and molecular ions, the

first demonstration of Paul traps included a 20 μm particle
[32], and a recently renewed interest has shown single
micron-scale particles at 100 Hz frequencies with single-
charge resolution [33,34]. Longitudinal frequency can be
orders of magnitude lower than the transverse [35,36],

FIG. 2. Plot of the coefficient function gn1n2ðαÞ for the lowest
13 transitions between harmonic oscillator eigenstates with
Δn ¼ 1. n increases from top to bottom, with the blue curve
belonging to n1 ¼ 0. The parameter α characterizes the wave-
function width. Small values of α (wide wave functions)
correspond to smaller masses (for a given frequency) and there-
fore weaker self-gravity. In the limit of narrow wave functions
(large α) the lines become degenerate again, with all gn1n2 tending
to Δn ¼ 1.
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which accurately embodies our theoretical description that
the wave function remains narrow in two dimensions.

A. Magnitude of the expected effect

Requiring that the ground-state wave function be in the
intermediate regime, α ≈ 5, yields M ¼ ℏ=ð2σ=αÞ2=ω0≈
1016 u=ðω0=2π s−1Þ. Values of ΔωSN for selected materials
can be found in Table I. We choose osmium, which has a
superconducting critical temperature TC ¼ 700 mK, favor-
able Debye-Waller B-factor [29], and offers the smallest
particle for a given mass. The spectral lines are plotted for
different mass osmium particles at a trap frequency
ω0 ¼ 2π × 10 s−1 in Fig. 4. The split between adjacent
spectral lines scales with 1=ω0, just like the mass for which
the effect is most pronounced. For M ¼ 1015 u, corre-
sponding to an osmium particle (density ρ ¼ 22.57 g=cm3)
of diameter 5.2 μm, we predict a frequency splitting
Δf ∼ 0.1 mHz.
A spherical particle would have a radius comparable with

typical laser wavelengths, making it impractical for use in a
concave-convex cavity. Instead, the superconductor should

be a thin disk ≳3 μm in diameter and ∼1 μm thick [38].
Finesse in cavities with wavelength-scale mirrors is limited
by mirror size and orientation stability [39].

B. Competing effects

All competing heating effects must produce a damping
rate which is low compared with the frequency shift we
expect: subhertz heating rates have been demonstrated in
room-temperature conventional traps [40] and cryogenics
reduces heating rates substantially, as demonstrated in
microfabricated traps [41]; rates depend strongly on micro-
fabrication processes, and improvements to the levels we
require are likely. Indeed, already a cryogenically cooled
conventional trap should fulfill our requirements with
existing technology.
Decoherence routes include interaction with blackbody

radiation: however, for radiation frequencies below the
superconductor gap energy there is no absorption [42], so
by ensuring an environmental temperature much less than
the superconductor critical temperature, interaction with
ambient photons is exclusively via Rayleigh scattering. To
reach this regime requires dilution refrigerator temperatures
and we assume T ¼ 100 mK. Using the particle as a mirror,
not a subwavelength particle, means there is negligible
Rayleigh scattering of laser light [43], which would
otherwise be a decoherence mechanism. The Rayleigh
scattering rate decreases sharply for long wavelengths,
and we find negligible probability of even a single
scattering event (see the Appendix). Decoherence from
collisions with background gas is also negligible for the
low pressures (P≲ 10−10 mbar) in the UHV cryo-pumped
environment [44].

C. Optomechanical readout

The lack of a long-lived internal state in our particle,
such as those employed in sideband-resolved manipulation

FIG. 3. Schematic of proposed experiment showing (a) optical
access, (b) mode-matching lens, (c) concave cavity mirror, (d) ion
trap electrode structure, and (e) electrically levitated supercon-
ducting disc. The disc acts as a concave cavity mirror and forms
an optomechanical cavity with the mirror (c) to read the position
of the disc. The apparatus is enclosed in a dilution refrigerator to
reduce thermal noises. The longitudinal direction, which will be
used to investigate the self-gravity modification of the mechanical
harmonic oscillator energy levels, is along the x axis.

FIG. 4. The resulting frequency spectrum for osmium at
T ¼ 100 mK at trap frequency ω0 ¼ 2π × 10 s−1 with
Δn ¼ 1. At low masses, self-gravity becomes negligible. At
high masses all spectral lines are degenerate, shifted by ΔωSN.
The intermediate regime, where a significant splitting appears,
spans about 3 orders of magnitude in mass.

TABLE I. Relevant material properties for selected elements.
σ ¼ 2π

ffiffiffiffi
B

p
is defined as in the text and depends on the Debye-

Waller B-factor. Values are at T ¼ 100 mK. We give ΔωSN,
which determines the magnitude of the effect according to
Eq. (10), depending on the trap frequency ω0.

Material m=u ρ=g=cm3 σ=pm ΔωSN=s−1

Silicon 28.086a 2.329a 6.96b 0.00246=ðω0=s−1Þ
Tungsten 183.84a 19.30a 3.48b 0.128=ðω0=s−1Þ
Osmium 190.23a 22.57a 2.77c 0.264=ðω0=s−1Þ
Gold 196.97a 19.32a 4.66b 0.0574=ðω0=s−1Þ

aReference [37].
bReference [28].
cReference [29].
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of trapped atomic ions, means that many techniques for
engineering Fock states in ion traps [45] cannot be applied
here. Instead we appeal to optomechanics: inspired by
cantilever experiments [46], where a microfabricated can-
tilever provides one mirror of a high-finesse cavity, we use
the levitated metallic superconducting particle of sufficient
reflectivity as one mirror in a tightly focused, plano-
concave, high optical Q cavity. Cantilever position can
be monitored at the shot-noise limit [47], and protocols
have been proposed to prepare [48] and reconstruct [49]
Fock states in these systems.
There are experiments with levitated hybrid nanoparticle

ion-optomechanical systems, albeit with subwavelength
particles [50]. The creation of Fock states of mechanical
motion or phonon number states for 1014 u particles has
previously been proposed for a magnetically levitated
superconducting microsphere coupled to a quantum circuit
[44], while its experimental demonstration is yet to
be shown.

IV. CONCLUSION

We predicted a new self-gravity effect to shift the energy
states of a massive mechanical oscillator. We proposed an
experimental scenario which makes use of the best parts of
the mature technology of levitation of ions in Paul traps, the
cavity-enhanced optical position readout and the use of
superconducting materials to avoid competing heating
effects for instance by blackbody radiation. The new
scheme does not require one to prepare squeezed states
of the mechanical harmonic oscillator or other difficult-to-
prepare nonclassical states. It also does not require one to
perform rather complicated state tomography. The self-
gravity induced energy level splitting effect survives also
for states above the mechanical vacuum state, and hence
particularly for thermal states, which means cooling to the
ground state is not required as such. Our proposed experi-
ment is feasible with existing technology and is therefore an
important conceptual step ahead of previous proposals.
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APPENDIX: RAYLEIGH SCATTERING
OF BLACKBODY RADIATION BY
SUPERCONDUCTING MICRODISC

For radiation frequencies below the superconductor gap
energy [42] there is no absorption; by ensuring the radiation
temperature is much less than the gap energy, we can
assume that no photons with energy exceeding the gap are
encountered. Under these conditions, the polarizability of
the subwavelength particle is χ ¼ 3V where V is the
volume of the particle. The Rayleigh scattering cross
section is σR ¼ k4χ2=6π where k ¼ ω=c is the wave
number. Integrating over the blackbody energy density
uðT;ωÞ we find the total rate of photon scattering

ΓR ¼
Z

∞

0

dω
σRcuðT;ωÞ

ℏω

¼ 30720π5ζð7Þ × c
χ2

λ7T
≈ 107 × c

χ2

λ7T

where ζ is the Riemann zeta function [ζð7Þ ≈ 1.01] and
λT ¼ hc=kBT is the typical wavelength of the thermal
radiation at temperature T. For T ¼ 100 mK, we find
λT ≈ 14 cm. Therefore, for both a sphere of V ¼
4
3
πð1 μmÞ3 and a disc of V ¼ π

4
ð1 μmÞð3 μmÞ2 the scatter-

ing rate is ΓR ∼ 10−12 s−1.
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