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Supersymmetric standard models (SSMs) with Dirac gauginos have the appealing supersoft property
that they only cause finite contributions to scalar masses. Considering gauge mediated SUSY breaking with
conformal sequestering and assuming there is one and only one fundamental parameter with dimension
mass arising from supersymmetry breaking, we find a cancellation between the dominant terms that
contribute to the electroweak fine tuning (EWFT). The resulting EWFT measure can be of order one even
for supersymmetric particle masses and μ-terms in the TeV range.
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I. INTRODUCTION

Supersymmetry (SUSY) provides a natural solution to
the gauge hierarchy problem in the standard model (SM).
In the supersymmetric SMs (SSMs) with R parity, gauge
coupling unification can be achieved, and the lightest
supersymmetric particle (LSP) is a dark matter candidate.
However, after the first run of the Large Hadron Collider
(LHC), the former top candidate for physics beyond the
SM, the minimal SSM (MSSM), has lost a lot of its
attraction. One reason is the discovery of the SM-like Higgs
boson with a mass of 125 GeV [1,2]. In order to obtain the
correct Higgs mass, there are two possibilities in the
MSSM: either there must be a very large mixing among
the supersymmetric partners of top quarks, or the SUSY
breaking soft masses must be much heavier than naively
expected. The first possibility is often disfavored by charge
and color breaking minima [3–7], while the second one
raises the question if the MSSM is really a natural solution
to gauge hierarchy problem. This has caused an increasing
interest in nonminimal SUSY models. The focus was
mainly on models which enhance the Higgs at tree level
to reduce the fine-tuning (FT) [8–19]. In addition, the other
ideas like R-symmetric SSMs with Dirac instead of
Majorana gauginos became much more popular in the last
few years [20–55]. On the one hand, such models are
known to be supersoft since they only give finite contri-
butions to scalar masses [20,34]. On the other hand, they

can reduce existing mass limits from SUSY searches and
weaken bounds from flavor physics [24]. It is somehow
surprising, but the electroweak fine tuning (EWFT) ques-
tion in the SSMs with Dirac gauginos and a specific SUSY
breaking mechanism has not been addressed so far. So we
shall close this gap here.
The single scale SUSY provides an elegant solution to

the SUSY EWFT problem [56–58]. In particular, the
original conditions for string inspired SSMs are mainly
[58]: (1) The Kähler potential and superpotential can be
calculated in principle or at least inspired from a funda-
mental theory such as string theory with suitable compac-
tifications; (2) There is one and only one chiral superfield
which breaks supersymmetry; (3) All the mass parameters
in the SSMs must arise from supersymmetry breaking.
With these conditions, one can show that the SUSY EWFT
measure is automatically of order one. The above con-
ditions seem to be too strong, thus, we point out that the
essential condition is: there is one and only one funda-
mental mass parameter and the coefficients to set the
different mass scales to be determined. Or simply speaking,
all dimensionful parameters in the SSMs are correlated.
In particular, all dimensionful parameters can be further
relaxed to all the dimensional parameters with large EWFT
measures, and we shall call it the effective single scale
condition.
In the minimal R-symmetric SSM (MRSSM) with Dirac

gauginos, we present for the first time the SUSY breaking
soft terms from gauge mediated SUSY breaking (GMSB)
[28] with conformal sequestering [59–61], and find that the
naive EWFT measure turns out to be similar to the other
SSMs, except the minor improvements due to supersoft
property and additional loop contributions to the Higgs
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boson mass. With our above updated condition for single
scale SUSY, we show a perfect cancellation analytically
and numerically between the dominant terms that contrib-
ute to the EWFT. The resulting EWFT measure can be of
order one even for the supersymmetric particle (sparticle)
masses in the TeV range. In particular, it is not necessary
that the dimensionful parameters in the superpotential have
to be tuned to be small as this is usually the case. In a wide
range of the parameter space we find a precise cancellation
among different contributions to the EWFT measures.

II. THE SUSY BREAKING SOFT TERMS

The generic new soft terms in the MRSSM are

L ¼ ðmDλiψAi
þ bAA2 þ H:c:Þ þm2

AjAj2; ð1Þ

where λ is a gaugino, ψ and A are the fermionic and scalar
components of a chiral adjoint superfield, mD is the Dirac
gaugino mass, and bA and m2

A are the holomorphic and,
respectively, nonholomorphic masses.
In the simplest ansatz that the origin of the Dirac mass

term is the operator for gauge field strengths W0
α and Wα

j

Wssoft ¼
W0

αWα
jAj

Λ
; ð2Þ

a massless scalar in the adjoint representation is predicted
[41]. This observation has triggered efforts in constructing
phenomenological reliable models with Dirac gauginos
[47,62,63]. In general, the aim is to get m2

D ∼m2
A ∼ bA.

However, if bA and mD are generated at one loop, bA is
naturally larger than m2

D by a loop factor of 16π2. To
address this mD − bA problem and generate the proper
Dirac gaugino and scalar masses, we introduce two pairs of
messenger fields for the gauge mediated supersymmetry
breaking (GMSB) [28] and consider the conformal seques-
tering [59–61]. Supposing the hidden sector interactions are
strong below the messenger scale Mmess down to some
scale where conformality is broken, we obtain

mDi
¼ gi

16π2
CDi

λi

6
ffiffiffi
2

p Λ02
F

Mmess
;

bAi
¼ −

1

16π2
Cbiλ

2
i

2δi
Λ02
F ;

m2
Ai
¼

�
1

32π2
λ2i
2δi

þ 1

128π4
X
i

CiðAiÞg4i
�
CAi

Λ02
F ;

m2
ϕ ¼ 1

128π4
X
i

CiðϕÞg4i CϕΛ02
F ; ð3Þ

where ðδ1; δ2; δ3Þ ¼ ð0; 1; 1Þ, gi and λi are gauge and
Yukawa couplings, ϕ represents scalars not appearing in
the adjoint representation, CDi=bi=Ai=ϕ is the conformal
sequestering suppression factor, and CiðAi=ϕÞ is the

quadratic Casimir index. For simplicity, we assume
Cbi ¼ CAi

¼ Cϕ ≡ CXX, and define

yi ≡ CDi
λi

6
ffiffiffi
2

p Λ02
F

MmessΛD
;

Λ2
F ≡ CXXΛ02

F ; ð4Þ

where ΛD and ΛF are roughly the same mass scales.
Assuming that CXX ≪ CDi

and 10λi ≤ g21=2
ffiffiffi
2

p
π, we

approximately have

mDi
¼ giyi

16π2
ΛD; bAi

≃ 0; ð5Þ

m2
Ai=ϕ

≃ 1

128π4
X
i

CiðAi=ϕÞg4iΛ2
F: ð6Þ

III. THE MRSSM

The particle content of the MRSSM is the MSSM
extended by adjoint superfields for all gauge groups
necessary to construct Dirac gaugino masses as well as
by two chiral isodoublets Ru and Rd with R charge 2 to
build μ like terms. Thus, the superpotential is

W ¼ − Ydd̂ q̂ Ĥd − Yeê l̂ Ĥd þ Yuû q̂ Ĥu þ μDR̂dĤd

þ μUR̂uĤu þ ŜðλdR̂dĤd þ λuR̂uĤuÞ
þ λTd R̂dT̂Ĥd þ λTu R̂uT̂Ĥu: ð7Þ

All the other terms are forbidden by the R-symmetry as
the Majorana gaugino masses and trilinear soft-breaking
couplings are. However, a soft-breaking term Bμ necessary
to give mass to the pseudoscalar Higgs is allowed by
this symmetry. The tree-level Higgs mass is even smaller
than the MSSM because of negative contributions from the
new D-terms proportional to the Dirac gaugino masses.
Moreover, the stops cannot be used to push this mass
significantly since all A-terms are forbidden by
R-symmetry. Nevertheless, it has been shown that the large
loop corrections stemming from the new superpotential
terms λi and λTi (i ¼ u, d) increase the Higgs mass to the
demanded level [64,65]. Moreover, this model is consistent
with gauge coupling unification [49]. Thus, it is natural to
embed it in a constrained SUSY breaking scenario.
We use the boundary conditions defined in Eqs. (5)–(6)

in the limit ΛD=M → 0 to calculate most soft masses at the
conformal scale M. Only the soft-mass for the singlet m2

s
and Bμ, which can also be generated via Yukawa media-
tions, are derived from the minimization conditions at the
vacuum. The other two minimization conditions are used to
calculate μD and μU. In short, we have the following input
parameters

ΛF;ΛD;M; yi; λu; λd; λTu ; λTd ; tan β; vs; vT; ð8Þ
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where tan β≡ hH0
ui=hH0

di, and vs and vT are the vacuum
expectation values (VEVs) of the singlet and neutral triplet.
Also, we assume μD and μU are positive.

IV. NATURALNESS

To quantize the EWFT size, we adopt the measure
introduced in Refs. [66,67]

ΔFT ≡MaxfΔαg; Δα ≡
����
∂ lnM2

Z

∂ ln α
����; ð9Þ

where α is a set of independent parameters, and Δ−1
α gives

an estimate of the accuracy to which the parameter α must
be tuned to get the correct electroweak symmetry breaking
(EWSB) scale [68]. The smaller ΔFT, the more natural the
model under consideration is. We use the conformal scale
M as a reference scale and calculate the FT with respect
to fΛF;ΛD; yi; λd;u; λTd;u; μD;U;m2

s ; Bμg.
For large regions in parameter space, the main EWFT

sources are μU and the scale ΛF because of the impact on
the running soft mass m2

Hu
responsible for EWSB. If we

only include the terms proportional to top Yukawa coupling
in the running, we can estimate the EWFT measures for
these two parameters to be

ΔFTðΛFÞ ≈
����

ffiffiffi
2

p
Λ2
F

384π4v2
ðð32ð−1þ RÞ þ 9ð1þ RÞg42ÞÞÞ

����;

ð10Þ

ΔFTðμUÞ ≈
����R · 4

ffiffiffi
2

p μ2UðMÞ
v2

����; ð11Þ

where R ¼ eðð3 logðMSUSY=MÞY2
t Þ=ð16π2ÞÞ, and μUðMÞ is the

running value of μU at the conformal scale. For simplicity
we assumed that Yt does not change significantly between
the SUSY breaking and conformal scales, but our con-
clusion is independent of this approximation. As usual, one
finds that the FT measure increases quickly with increasing
values for the SUSY breaking scale and/or the scale of the
dimensionful parameters in the superpotential. For μU in
the TeV range, it seems not to be possible to find a FT
measure below 100 unless the conformal scale is very low.
Assuming that all the parameters with dimension mass

are correlated at the conformal scale, which is defined as
single scale supersymmetry, we have

ΛD ∼ ΛF ∼ μD ∼ μU ∼ms ∼
ffiffiffiffiffiffi
Bμ

p
:

The underlying assumption is: there is one and only one
fundamental parameter with dimension mass and the
coefficients to set the different scales are calculable.
However, a concrete construction of such a model is
beyond the scope of this paper. As we will show, the
single scale SUSY condition can be relaxed further to
the effective conformal sequestering single scale SUSY

condition, and for the following discussion only ΛF ∼ μU is
necessary since their corresponding EWFT measures are
relatively large while all the rest are small and negligible.
To study the effect of this correlation, we first determine

μUðMÞ from the tadpole equations in the limit vT → 0 and
λu → 0. We obtain

μUðMÞ¼ 1

96π2ðλT;2d −λT;2u tan2βÞð6g
2
2λ

T
u
~ΛDtan2β

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λT;2d tan2βð12g42 ~Λ2

DþλT;2u Λ2
FRÞ−3λT;4d Λ2

FR
q

Þ;

where ~ΛD ≡ y2ΛD. If we combine Eqs. (10) and (11), we
get the correlated FT measure

ΔC
FT ¼

ffiffiffi
2

p
λT;2u Λ2

Ftan
2βR

384π4v2ðλT;2d − λT;2u tan2βÞ þ
~ΛD

ΛF
F1 þ

~Λ2
D

Λ2
F
F2;

where F1 and F2 are functions of g2, λTi and tan β which
we skip for brevity. The last two terms can be suppressed
in the limit ~ΛD ≪ ΛF. This is also the preferred limit,
because large ~ΛD would cause large wino masses which
reduce the tree-level Higgs mass. The first term becomes
very small for λTu → 0. We have checked numerically that
these estimates reproduce the correct behavior to a large
extent even if we include the correlation to all other
dimensionful parameters. For this purpose, we implement
the model in the Mathematica package SARAH [69–73]
and generate FORTRAN code for SPHENO [74,75] to
calculate the FT measures using the full two-loop
renormalization group equations (RGEs) based on
Ref. [37]. The calculated values for ΔFTðΛFÞ, ΔFTðμUÞ
and ΔC

FT as function of ΛD, λTd , and λ
T
u are shown in Fig. 1.

We find that ΔC
FT tends to be very small for small ΛF and

λTu together with large λTd , whileΔFTðΛFÞ andΔFTðμUÞ are
several orders larger.
Our proposal is completely different from focus point

SUSYoften considered in the MSSM [76,77]: in the focus
point SUSY m2

Hu
is rather insensitive to the UV parameters

because of specific hierarchies in the corresponding
β-function. While this suppresses the FT with respect to
m2

Hu
one has always to tune μ to be small in order to obtain

a low overall FT. In our proposal, there is no need that the
FTwith respect to the μ-term is small nor the cancellations
in the running of m2

Hu
are needed because there is a precise

cancellation among these two sources.
We have checked whether this mechanism can be applied

to the MSSM with the minimal GMSB. And indeed, we
have found there a good cancellation for large tan β if we
relate the SUSY breaking scale Λ and μ at the messenger
scale. However, this cancellation in the MSSM is not as
good as the MRSSM considered here. The point is that
the contributions from the Majorana gaugino masses to the
running of m2

Hu
are absent in the MRSSM. The ΔC

FT in
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the MSSM is always bigger than the MRSSM, but still very
good and well below 100. We test it numerically by
removing the gaugino contribution terms “by hand” from
the β-functions of scalars, and indeed we can recover a
similar cancellation as described here and ΔC

FT drops to
very small values. Thus, the supersoft character of Dirac
gauginos together with an underlying correlation among
dimensionful parameters results in a very natural model.
The detailed study for the MSSM will be given elsewhere.

V. BENCHMARK SCENARIOS

In the EWFT discussion so far, we have neglected
all other current experimental constraints that must be
fulfilled. In particular, the mass limits on the SUSY
particles from direct and indirect searches as well as the
measurement of the SM-like Higgs mass exclude large
parameter regions in SUSY models today. We can use the
generated SPHENO version to check all these constraints. It
is especially worthwhile to point out that the Higgs mass is
also calculated at the two-loop level including all model
specific contributions in the gaugeless limit [78,79].
Therefore, the theoretical uncertainty is of the same level
as in the MSSM and can be estimated to be Oð3 GeVÞ. We
show the input and the most important output parameters
for two benchmark scenarios in Table I.
One sees that the uncorrelated EWFT measures in our

model are already smaller than in the usual MSSM with
GMSB. The reason are the additional loop corrections
which weak the need for very heavy stops significantly.
For example, we have very large λd couplings for BP2. This
is similar to the MSSM extensions with vectorlike (s)tops
where the additional loop corrections cause a significant
improvement in the EWFT measure [80]. Also the two-loop
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FIG. 1. The calculated FT measures ΔFTðμUÞ (dashed red),
ΔFTðΛFÞ (dashed black), ΔC

FT (full black line) as function
of ΛD (first row), λTd (second row) and λTu (third row).
The other parameters were set to ΛF ¼ 2.7 × 105 GeV, ΛD¼
2.0×105GeV, M¼ 1012 GeV, tanβ¼ 20, yi ¼ ð0.6;−0.15;
−0.75Þ, λs;d¼ð−0.78;−0.01Þ, λTs;d¼ð−1;0.037Þ, vs ¼−5GeV,
vT ¼ −0.25 GeV.

TABLE I. The input parameters, important particle spectra, and
EWFT measures for two benchmark scenarios. Max(ΔFTðλÞ) is
the maximal EWFT measure for λd;u and λTd;u.

BP1 BP2

Input
ΛF½105 GeV� 2.7 2.0
ΛD½105 GeV� 2.0 2.2
M½107 GeV� 1.0 1.0
yi −ð−0.63; 0.15; 0.75Þ −ð0.45; 0.16; 1.1Þ
λd;u −ð0.78; 0.01Þ (−1.45, 0.09)
λTd;u (−1.0, 0.037) (−1.60, 0.07)
tan β 20 20
vs;T ½GeV� −ð5.0; 0.25Þ −ð4.0; 0.56Þ

Output
μU½GeV� 1850

Masses
mh½GeV� 123.5 122.4
m~g½GeV� 1620.5 2316.9
m ~q½GeV� ∼3000 ∼2300
m~lR

½GeV� ∼500 ∼400
m~lL

½GeV� ∼1000 ∼1000
m~χ0

1
½GeV� 151.2 159.0

ΔFT
Max(ΔFTðλÞ) 0.7 1.8
ΔFTðΛFÞ 342.5 180.0
ΔFTðΛDÞ 0.2 0.1
ΔFTðμUÞ 342.8 186.7
ΔFTðμDÞ 4.2 9.2
ΔFTðBμÞ 4.3 9.1

ΔC
FT

ΔC
FT 0.2 6.8
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corrections are enhanced due to the presence of scalar octets.
Moreover, the correlated EWFT becomes much smaller due
to the precise cancellation between the contributions from
ΛF and μU. For BP1 the resulting EWFT is even smaller for
the dimensionless parameters. Because of the slightly larger
value of λTu , as expected, the cancellation for BP2 is not
working as good as for BP1, althoughΔC

FT is still very small.

VI. CONCLUSION

We considered the GMSB with conformal sequestering,
and found that the naive EWFT measures in the MRSSM
are similar to the other SSMs except the minor improve-
ments due to supersoft property and additional loop

contributions to the Higgs boson mass. With the effective
single scale SUSY condition that all dimensionful param-
eters with large EWFT measures are correlated, we showed
explicitly an excellent cancellation between the dominant
terms that contribute to the EWFT. As we expected, the
correlated EWFT measure is of unit order even for the
TeV-scale supersymmetric particle masses.
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