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In this paper we present a model of subcritical hybrid inflation with a Pati-Salam (PS) symmetry group.
Both the inflaton and waterfall fields contribute to the necessary e-foldings of inflation, while only the
waterfall field spontaneously breaks PS hence monopoles produced during inflation are diluted during the
inflationary epoch. The model is able to produce a tensor-to-scalar ratio, r < 0.09 consistent with the latest
BICEP2/Keck and Planck data, as well as scalar density perturbations and spectral index, ns, consistent
with Planck data. For particular values of the parameters, we find r ¼ 0.084 and ns ¼ 0.0963. The energy
density during inflation is directly related to the PS breaking scale, vPS. The model also incorporates a ZR

4

symmetry which can resolve the μ problem and suppress dimension 5 operators for proton decay, leaving
over an exact R parity. Finally the model allows for a complete three-family extension with a D4 family
symmetry which reproduces low energy precision electroweak and LHC data.

DOI: 10.1103/PhysRevD.93.095003

I. INTRODUCTION

The Pati-Salam (PS) gauge symmetry, SUð4ÞC ×
SUð2ÞL × SUð2ÞR, has the nice feature that it unifies
one family of quarks and leptons into two irreducible
representations, Q ¼ ð4; 2; 1Þ ⊃ fq;lg; Qc ¼ ð4̄; 1; 2̄Þ ⊃
fðucdcÞ; ðν

c

ecÞg. In addition, the two Higgs doublets of the
minimal supersymmetric Standard Model (MSSM)
appear in one irreducible representation of PS given by
H ¼ ð1; 2; 2̄Þ. This allows for the possibility of Yukawa
unification for the third generation of quarks and leptons
with one universal coupling given by λQ3HQc

3 with λt ¼
λb ¼ λτ ¼ λντ ≡ λ at the grand unified theory (GUT) scale.
Although PS does not unify all the gauge couplings, it is
possible that the PS gauge symmetry is the four dimensional
gauge symmetry resulting from a 5D or 6D orbifold GUT
such as SO(10). In this case, gauge coupling unification is
enforced by the higher dimensional unification. In fact, it has
been shown that PS gauge symmetry in 4D can be obtained
from heterotic orbifold constructions [1,2].
In this paper we discuss inflationary dynamics governed

by subcritical hybrid inflation [3–6] with a waterfall field
which spontaneously breaks the PS symmetry.1 In the
subcritical hybrid inflation scenario, the coupling between
the inflaton and thewaterfall field is sufficiently small so that
the stage of inflation after the critical point may last for more
than 60 e-folds. The value of the inflaton at the critical point
can therefore be large relative to the Planckmass allowing for
GUT-scale inflation. After the critical point, the waterfall
field quickly settles into an inflaton-dependent minimum
which in turn yields an effective single-field inflaton poten-
tial. The potential is essentially an interpolation between a

nearly flat potential at large field values and a quadratic
potential at low field values. Such an arrangement allows for
a tensor-to-scalar ratio prediction between that of traditional
hybrid inflation and chaotic inflation. Furthermore, we are
able to directly identify the energy scale during inflationwith
the PS/GUT breaking scale and at the same time obtain a
tensor-to-scalar ratio, r ∼ 0.08. This was also accomplished
in Refs. [3–5] where the energy scale during inflation was
associated with a B − L breaking scale.2

Since the waterfall occurs before the last 60 e-foldings of
inflation, the monopoles produced by the PS symmetry
breaking [11] are diluted away during inflation. Moreover
they are not produced after reheating. Such a solution to the
monopole problem has been presented previously in the
context of hybrid inflation [8,9], although the details here
are markedly different. The model also has a ZR

4 symmetry
which can be dynamically broken to solve the μ problem
and eliminate problems with dimension 5 operators medi-
ating proton decay. The resulting low energy theory retains
an exact R parity. In addition we show how to obtain a 3-
family model for quark and lepton masses, with aD4 family
symmetry, which is known to be consistent with low energy
data. Finally we discuss reheating in the model, however
we defer to work in progress for discussions of lepto-
genesis, dark matter, and a potential gravitino problem.

II. INFLATION SECTOR

A. Model

The superpotential and Kähler potential for the inflaton
sector of the model with an SUð4ÞC × SUð2ÞL × SUð2ÞR

1In contrast to Refs. [3,4] we use F-term inflation instead
of D-term inflation.

2In previous models in the literature, Refs. [7–10], the energy
scale during inflation was also related to a GUT symmetry
breaking scale. However, due to the fact that the inflaton potential
during inflation was very flat, the tensor-to-scalar ratio r< 10−2.
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gauge symmetry times ZR
4 discrete R symmetry are

given by

WI ¼ ΦðκS̄cSc þmY þ αHHÞ þ λX

�
S̄cSc −

v2PS
2

�

þ ScΣSc þ S̄cΣS̄c ð1Þ

K ¼ 1

2
ðΦþ Φ†Þ2 þ ðScÞ†Sc þ ðS̄cÞ†S̄c þ Y†Y

þ X†X

�
1 − cX

X†X
M2

pl

þ aX

�
X†X
M2

pl

�
2
�
; ð2Þ

where the inflaton and waterfall superfields are given by
fΦ ¼ ð1; 1; 1; 2Þ; Sc ¼ ð4̄; 1; 2; 0Þ; S̄c ¼ ð4; 1; 2; 0Þg. As a
consequence the Pati-Salam gauge symmetry is broken to
the Standard Model at the waterfall transition and remains
this way both during inflation and afterwards. The super-
field, Σ ¼ ð6; 1; 1; 2Þ, is needed to guarantee that the
effective low energy theory below the PS breaking scale
is just the MSSM. The singlet X ¼ ð1; 1; 1; 2Þ is introduced
in order to obtain F-term hybrid inflation in which the
coupling of the inflaton to the waterfall field is independent
of the self-coupling of the waterfall field. The term with the
singlet Y ¼ ð1; 1; 1; 0Þ is added in order to obtain a super-
symmetric vacuum after inflation. The parameter m is
smaller than in typical chaotic inflation models and the F-
term of Y acts to lift the flatness of the potential above the
critical point. The termwith theHiggs field,H ¼ ð1; 2; 2̄; 0Þ,
is added to enable reheating. This will be discussed later. The
Kähler potential has a shift symmetry, ImðΦÞ→ ImðΦÞþΘ,
whereΘ is a real constant. The constant cX is necessary forX
to have a mass larger than the Hubble parameter during
inflation, so that during inflation the field is stabilized at zero,
and the constant aX is necessary for the potential to be
bounded from below [12].

B. Inflationary dynamics

We consider now the inflationary dynamics in this
theory. Due to the shift symmetry in the Kähler potential,
ImðΦÞ can take trans-Planckian values without causing the
scalar potential to become very steep, and so we identify
this field as the inflaton. We assume that at the waterfall
transition the fields Sc; S̄c obtain vacuum expectation
values (vevs) in the νc direction. Following Buchmüller
et al. [13], we express the waterfall fields in the unitary
gauge so that the physical degrees of freedom are manifest
in the subsequent treatment of reheating. The superfields
Sc; S̄c are written as

Sc ¼ expðiTSUð4ÞC=SUð3Þϕc
uÞ expðiTSUð2ÞR=Uð1ÞRϕ

c
eÞ

×

�
0 1ffiffi

2
p expðiTÞVc

dcS 0

�

S̄c ¼ expð−iTT
SUð4ÞC=SUð3Þϕ̄

c
uÞ expð−iTT

SUð2ÞR=Uð1ÞRϕ̄
c
eÞ

×

� 0 1ffiffi
2

p expð−iTÞVc

d̄c
S̄

0

�
: ð3Þ

The fields ϕc
u; ϕ̄c

u;ϕc
e; ϕ̄c

e; T are goldstone fields which
are eaten by the broken SUð4ÞC and SUð2ÞR supergauge
fields. The gauge bosons in ðSUð4ÞC×SUð2ÞL×SUð2ÞRÞ=
ðSUð3Þ×SUð2Þ×Uð1ÞÞ obtain masses of order g

2
vPS,

where g ¼ g4 ≈ g2R is of order 1. The fields dcS; d̄
c
S̄
get a

supersymmetric mass with the color triplets in Σ and
the scalar component of Vc (s) gets a vev breaking PS
to the SM. Thus Pati-Salam is spontaneously broken at the
waterfall transition and remains broken after inflation. As a
result any monopole density formed during the breaking of
Pati-Salam to the SM [11] is diluted during inflation.
The F-terms in the global SUSY limit are

FΦ ¼ κ

2
ðVcÞ2 þmY; FVc ¼ ðκΦþ λXÞVc;

FX ¼ λ

2
ððVcÞ2 − v2PSÞ; FY ¼ mΦ: ð4Þ

Before inflation, only Φ has a nonzero vev and only FΦ
and FVc vanish. Thus supersymmetry is broken before and
during inflation. After inflation, hΦi goes to zero and
hVci ¼ vPS and hYi ¼ −κv2PS=ð2mÞ, restoring supersym-
metry. X remains stabilized at zero throughout. TheD-term
scalar potential is given by

VD ¼
X
a

g2a
2
ððScÞ�TaSc − S̄cTaðS̄cÞ� þ � � �Þ2; ð5Þ

where Ta are the generators of PS in the ð4̄; 1; 2̄Þ repre-
sentation and VD ¼ 0 during inflation.
The real scalar components of the inflaton, waterfall, and

Y superfields may be expressed as

Φ ⊃
aþ iϕffiffiffi

2
p ; Vc ⊃

sþ iτffiffiffi
2

p ; Y ⊃
yþ iuffiffiffi

2
p : ð6Þ

Before the waterfall transition, the fields a, s, τ, y, and u
have positive squared masses and are stabilized at the
origin. Once the inflaton reaches subcritical field values,
the field s develops a tachyonic mass and the waterfall
transition is triggered. We represent the symmetry breaking
in the Lagrangian by the field shifts, s ¼ σ þ ffiffiffi

2
p

vPS and
y ¼ h − κv2PS=

ffiffiffi
2

p
m. In our setup, the coupling between

the inflaton and the waterfall field, κ, is taken to be
much smaller than the waterfall field self-coupling, λ.
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Furthermore, the parameter m will be taken to be 10−6Mpl

and the PS scale, vPS will be ∼10−2Mpl. It has been shown
that in this scenario the proceeding stage of tachyonic
preheating occurs for a few e-folds but produces kinetic and
gradient energy that is severely subdominant to the vacuum
energy and therefore fails to terminate inflation [3]. In fact a
considerably large number of e-folds can still be generated
after symmetry breaking.
At subcritical field values, the inflationary dynamics are

determined by the F-term supergravity scalar potential,

Vðϕ; s; yÞ≃ λ2v4PS
4

þ 1

4

��
m2

M2
pl

þ κ2
�
ϕ2 − λ2v2PS

�
s2

þ ðλ2 þ κ2Þ
16

s4 þ 1

2
m2ϕ2 þ κm

2
ffiffiffi
2

p s2y

þ 1

4

�
2

�
m2 þ λ2v4PS

4M2
pl

�
þ
�
m2 −

λ2v2PS
2

�
s2

M2
pl

þ λ2

8

s4

M2
pl

�
y2 þ 1

4

�
m2

M2
pl

þ λ2v4PS
8M4

pl

�
y4: ð7Þ

With this potential, we solve the coupled equations of
motion

ϕ̈þ 3H _ϕþ ∂ϕV ¼ 0;

̈sþ 3H_sþ ∂sV ¼ 0;

ÿþ 3H _yþ ∂yV ¼ 0: ð8Þ

The behavior is shown in Fig. 1. The initial conditions
will be discussed in Sec. IV along with reheating. The
s-dependent minimum value of y is

yminðsÞ≃
− κm

2
ffiffi
2

p s2

m2 þ λ2

16M2
pl
ðs2 − 2v2PSÞ2

: ð9Þ

Initially, y is at its local minimum of zero and it remains
near zero until the waterfall field is close to its global
minimum. Once the waterfall is near its global minimum,
the second term in the denominator of Eq. (9) vanishes
and we obtain the global minimum for y discussed
above, −κv2PS=ð

ffiffiffi
2

p
mÞ.

FIG. 1. Evolution of the fields ϕ, s, and y during and immediately after inflation.Hc is the value of the Hubble parameter at the critical
point. The values of ϕ at the start of the last 60 e-folds, ϕ�, and at the end of inflation, ϕf, are denoted by the vertical, dashed red and blue
lines, respectively. The parameter values are κ ≃ 4.5 × 10−4, λ≃ 0.8, and vPS ≃ 1.25 × 10−2Mpl ≃ 3 × 1016 GeV. The initial
conditions are discussed in Sec. IV.
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Setting y to zero and noting the relation
m=Mpl ≪ κ ≪ λ, we obtain3

Vðϕ; s; 0Þ≃ λ2v4PS
4

þ 1

4
ðκ2ϕ2 − λ2v2PSÞs2

þ λ2

16
s4 þ 1

2
m2ϕ2: ð10Þ

Initially, as the waterfall field s is stabilized at zero, the
potential is slightly quadratic in the inflaton direction which
lifts the flatness above the critical point and allows the
inflaton field ϕ to approach its critical value, ϕc ≡ λvPS

κ . The
shape of the potential is shown in Fig. 2.
Once the inflaton field attains subcritical values, the

waterfall field quickly reaches its local ϕ-dependent mini-
mum [3],

s2minðϕÞ ¼ 2v2PS

�
1 −

ϕ2

ϕ2
c

�
; ð11Þ

and yields the effective potential that is relevant for the last
60 e-foldings of inflation,

VeffðϕÞ ¼
λ2v4PS
2

ϕ2

ϕ2
c

��
1þ m2

κ2v2PS

�
−

ϕ2

2ϕ2
c

�

≃ λ2v4PS
2

ϕ2

ϕ2
c

�
1 −

ϕ2

2ϕ2
c

�
; ð12Þ

where m2=κ2v2PS ≪ 1. The effective potential is plotted
in Fig. 3.
The effective backreaction suppresses the steepness of

the inflaton potential and causes the inflaton field to roll
more slowly compared to chaotic inflation. It is easy to see
from Eq. (12) that at ϕ ¼ ϕc the potential is approximately

flat as in purely hybrid inflation models and at ϕ ≪ ϕc the
potential is quadratic as in purely chaotic inflation.
The interplay between the inflaton and waterfall fields in
the subcritical inflation scenario therefore interpolates
between these two regimes and can yield a tensor-to-scalar
ratio consistent with the recent bound from BICEP2/
Keck [14].

C. Cosmological observables

With s ¼ sminðϕÞ, the slow-roll parameters take their
usual forms

ϵðϕÞ ¼ 1

2

�
V 0
eff

Veff

�
2

; ηðϕÞ ¼
�
V 00
eff

Veff

�
; ð13Þ

where the prime denotes differentiation with respect to ϕ.
The number of e-folds is then computed as

Ne ¼
Z

ϕ�

ϕf

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ϵðϕÞp ; ð14Þ

where ϕ� and ϕf are the values of the inflaton field when
the last 60 e-folds begins and when ϵ ¼ 1, respectively.
Equation (14) can be solved to give ϕ� as a function of Ne,

ϕ2� ¼ ϕ2
c½1 −W0ðΔeΔe−8Ne=ϕ2

cÞ�; ð15Þ

whereΔ≡ 1 − ϕ2
f=ϕ

2
c andW0 is the principal branch of the

Lambert W function [3].
With the addition of the 95 GHz data from the Keck

Array, the BICEP2/Keck Array experiments yield a tensor-
to-scalar ratio r < 0.09 at 95% confidence [14]. The Planck
Collaboration gives best fits for the scalar spectral index

FIG. 2. The potential during inflation with y set to zero.

FIG. 3. The effective single-field potential during inflation. The
critical point ϕc is denoted by the vertical, dashed green line.
The value of ϕ at the start of the last 60 e-folds, ϕ�, is denoted
by the vertical, dashed red line. For values of ϕ above ϕc, the

potential is given by V0 ¼ λ2v4PS
4

þ 1
2
m2ϕ2.

3Under the redefinitions, κ → λ, λ →
ffiffiffi
2

p
g, and vPS →

ffiffiffi
ξ

p
,

Eq. (7) matches the potential in [3] up to the 1
2
m2ϕ2 term. In [3]

the flatness is lifted by quantum corrections rather than a small
quadratic term.
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ns ¼ 0.968� 0.005 and for the amplitude of the scalar
power spectrum As ¼ ð2.22� 0.067Þ × 10−9 [15].
Requiring Ne ¼ 60, we perform a scan over suitable

values for the parameters κ, λ, m, and vPS and consider
points that satisfy both the 2σ upper bound on r and the 2σ
bounds on ns. In Fig. 4 we overlay the result of the scan on
the r − ns best-fit plane found in [14].
The best-fit point from the scan gives κ ≃ 4.5 × 10−4,

λ≃ 0.8, m¼ 10−6Mpl and vPS ≃ 1.25× 10−2Mpl ≃ 3×
1016 GeV. With these parameter values, we find ϕ� ¼
14.5Mpl and the cosmological observables are computed
to be

r ¼ 16ϵ� ¼ 0.084; ns ¼ 1 − 6ϵ� þ 2η� ¼ 0.963

As ¼
V�

24π2ϵ�
¼ 2.21 × 10−9; ð16Þ

where ϵ� ¼ ϵðϕ�Þ and η� ¼ ηðϕ�Þ.
We note that with ϕ�=ϕc ≃ 2=3 and λ2 ≃ 2=3, Eq. (12)

gives Veffðϕ�Þ≃ ð2
3
vPSÞ4, and thus the energy scale during

inflation is due directly to the GUT symmetry breaking
scale, vPS. The identification between the GUT scale and
the energy scale during inflation was made in the context of
D-term hybrid inflation with a Fayet-Iliopoulos term in [4].

D. Mass spectrum

To conclude this section, we discuss the resulting mass
spectrum in the inflation sector after inflation ends. It is
important to determine the mass eigenstates of the fields in
the inflationary sector in order to calculate the perturbative
decay rates of these fields. This is necessary for the analysis
of reheating presented in Sec. IV. We express the scalar and
fermion components of the superfields as

Φ ⊃
�
aþ iϕffiffiffi

2
p ; ~ϕ

�
; Vc ⊃

�
σ þ ffiffiffi

2
p

vPS þ iτffiffiffi
2

p ; ~s

�
;

X ⊃
�
xr þ ixiffiffiffi

2
p ; ~x

�
; Y ⊃

�
h − κv2PS=

ffiffiffi
2

p
mþ iuffiffiffi

2
p ; ~y

�
:

ð17Þ

Once the global minimum is reached, supersymmetry is
restored and two massive chiral supermultiplets are formed.
The mass eigenstates of the component fields are given as
follows. In the fermion sector, the states ~ϕ and ~ymix with ~x
and ~s forming two Dirac mass eigenstates. The mass matrix
is given by

~m ¼ ð ~ϕ ~xÞ
�
κvps m

λvps 0

��
~s

~y

�
: ð18Þ

The mass eigenstates are found by diagonalizing the
symmetric matrices

~mT ~m ¼
� ðκ2 þ λ2Þv2ps κvpsm

κvpsm m2

�
ð19Þ

and

~m ~mT ¼
�
κ2v2ps þm2 κλv2ps

κλv2ps λ2v2ps

�
: ð20Þ

In the scalar sector we have the quadratic terms in the
scalar potential for the real components of the fields Vc and
Y given by

L ⊃
1

2
ðσhÞ

� ðκ2 þ λ2Þv2ps κvpsm

κvpsm m2

��
σ

h

�
: ð21Þ

And for the real components of the fields Φ and X we have

L ⊃
1

2
ðaxrÞ

�
κ2v2ps þm2 κλv2ps

κλv2ps λ2v2ps

��
a

xr

�
: ð22Þ

The mass squared matrices for the imaginary components
of the fields are the same as for their real components. We
see that the spectrum is supersymmetric and the mass
eigenvalues for the two different scalar sectors are identical
with only the mixing angles being different.
The mass eigenvalues are given by

m2
1ð2Þ ¼

1

2
½ðκ2 þ λ2Þv2PS þm2 þ ð−Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðκ2 þ λ2Þv2PS þm2�2 − 4κ2v2PSm

2

q
�: ð23Þ

The mixing angles for ðϕ1 ≡ σþiτffiffi
2

p ;ϕ2 ≡ hþiuffiffi
2

p Þ are given by
ϕi ¼ OT

ijϕ̂j (where ϕ̂j are the mass eigenstates),

FIG. 4. The green points represent the result of our parameter
scan and are overlayed on the best-fit plane found in [14]. The
yellow star represents our best-fit point.
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O ¼
�

cos θ sin θ
− sin θ cos θ

�
;

and

tan 2θ ¼ 2κvPSm
ðκ2 þ λ2Þv2PS −m2

: ð24Þ

The mixing angles for ðχ1 ≡ aþiϕffiffi
2

p ; χ2 ≡ xrþixiffiffi
2

p Þ are given by
χi ¼ ~OT

ijχ̂j,

~O ¼
�

cos η sin η
− sin η cos η

�
;

and

tan 2η ¼ 2κλv2PS
ðκ2 − λ2Þv2PS þm2

: ð25Þ

Given the values of the parameters, λ, κ and vPS; m, we
find the approximate form of the masses and mixing angles.
The mass eigenstates of the component fields are presented
in Table I and Table II along with their masses and mixing
angles. In the scalar sector, there is a very small amount of
mixing between the scalar components of Φ and X and also
between the scalar components of Vc and Y. We represent
this slight misalignment between the interaction basis and
the mass basis by simply placing a hat on the interaction-
basis scalar fields (e.g. ϕ̂ is the mass eigenstate that is
approximately equal to ϕ.). In the fermion sector, the states
~ϕ and ~x mix with the same mixing angles as their scalar
partners. Likewise the states ~s and ~y mix. The masses and
mixing angles are given in Table I and Table II.

III. MATTER SECTOR

In this section we show how the inflationary dynamics
can be coupled to the rest of the supersymmetric Standard
Model. In particular we present a three-family model which
has been shown to give good fits to low energy precision

electroweak and LHC data.4 The superfields S̄c and Y
interact with PS singlets Na; N3 to give large masses to the
right-handed neutrinos. Furthermore, the σ and h fields
decay predominantly into right-handed neutrinos allowing
for the possibility of baryogenesis via nonthermal
leptogenesis.

A. Three-family Pati-Salam model

The matter sector of the theory is given by the super-
potential W ¼ WI þWPS with

WPS¼WneutrinoþλQ3HQc
3þQaHFc

aþFaHQc
a

þF̄c
a

�
M0OFc

aþϕaOB−LQc
3þOB−L

θaθb
M̂

Qc
b−B2Qc

a

�

þF̄a

�
M0OFaþϕaOB−LQ3þOB−L

θaθb
M̂

QbþB2Qa

�
;

ð26Þ

where fQ3;Qa;Fag¼ð4;2;1;1Þ;fQc
3;Q

c
a;Fc

ag¼ð4̄;1; 2̄;1Þ
with a ¼ 1, 2, a D4 family index, H ¼ ð1; 2; 2̄; 0Þ, and the
fields F̄a; F̄c

a are Pati-Salam conjugate fields. The super-
potential for the neutrino sector is given by

Wneutrino ¼ S̄cðλ2NaQc
a þ λ3N3Qc

3Þ

−
1

2

�
λ02YNaNa þ

~θa ~θb
M̂

NaNb þ λ03YN3N3

�

¼ λ22
2M1

ðS̄cQc
1Þ2 þ

λ22
2M2

ðS̄cQc
2Þ2 þ

λ23
2M3

ðS̄cQc
3Þ2;

ð27Þ

where

M1 ¼ λ02Y; M2 ¼ λ02Y þ
~θ22
M̂

; M3 ¼ λ03Y ð28Þ

and ~θ1 is taken to be zero.
After expanding the waterfall field by its vev, the last line

of Eq. (27) yields (with S̄c → Vc=
ffiffiffi
2

p
and λ1 ≡ λ2)

λ2i
2Mi

�
σ þ iτ þ ffiffiffi

2
p

vPS
2

�2

νci ν
c
i

¼ 1

2
Mi

Rν
c
i ν

c
i þ

hi
2
ðσ þ iτÞνci νci ð29Þ

plus terms quadratic in σ, τ with Mi
R ≡ λ2i v

2
PS

2Mi
and hi ≡ λ2i vPSffiffi

2
p

Mi
.

Here we have identified Y as one of the flavon fields. The
“right-handed” neutrino fields, Na; N3 are PS singlets with
charge (1,1,1,1). The vev of Y gives a heavy mass term for

TABLE I. Mass eigenstates, masses, and mixing angles of
scalars.

Interaction Basis Mass Basis Mass Mixing Angle

χ1, χ2 χ̂1, χ̂2 m, λvPS θ ¼ κm=ðλ2vPSÞ
ϕ1, ϕ2 ϕ̂1, ϕ̂2

λvPS, m η ¼ −κ=λ

TABLE II. Mass eigenstates and masses of fermions.

Interaction Basis Mass Basis Mass

~ϕ, ~x ~̂ϕ, ~̂x m, λvPS
~s, ~y ~̂s, ~̂y λvPS, m

4See footnote 5.
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Na; N3 which are in turn integrated out to yield effective
couplings between the waterfall field and the left-handed
antineutrinos in Qc

a;Qc
3. Similar to the waterfall field, the

scalar components of Y also obtain a coupling to the left-
handed antineutrinos

hi
2

�
m

κvPS

�
ðhþ iuÞνci νci : ð30Þ

The fields Fa; F̄a; Fc
a; F̄c

a are Froggatt-Nielson fields
which are integrated out to obtain the effective Yukawa
matrices. We have defined the effective operators

M̂2ðOB−LÞαiβj ≡ −
4

3
δijS̄cγk

�
δαγδ

λ
β −

1

4
δαβδ

λ
γ

�
Scλk

¼ ðB − LÞαβδij
v2PS
2

ð31Þ

and

M̂2Oαi
βj ≡ S̄cγk

�
δαβδ

i
jδ

λ
γδ

l
k þ ~αδλγ

�
δikδ

l
j −

1

2
δijδ

l
k

�

−
4

3
~βδlkδ

i
j

�
δαγδ

λ
β −

1

4
δαβδ

λ
γ

��
Scλl

¼ ½Iαiβj þ ~αðT3RÞijδαβ þ ~βðB − LÞαβδij�
v2PS
2

≡ ½Iαiβj þ αðXÞiαjβ þ βðYÞiαjβ�
v2PS
2

ð32Þ

where X ¼ 3ðB − LÞ − 4T3R commutes with SUð5Þ and
Y ¼ 2T3R þ ðB − LÞ is the SM hypercharge. The Froggatt-
Nielson fields Fa; F̄a; Fc

a; F̄c
a have a mass term given by

M0Oαi
βj. The flavon fields fϕa; θa; ~θag are doublets under

D4 and B2 is a nontrivial D4 singlet such that the product
B2 � ðx1y2 − x2y1Þ is D4 invariant with fxa; yag being D4

doublets. The D4 invariant product between two doublets
is given by xaya ≡ x1y1 þ x2y2. The flavon fields have
zero charge under ZR

4 and are assumed to get the nonzero
vevs—fϕ1;2; θ2; ~θ2; B2g and all others are zero.
Note, with the given particle spectrum and ZR

4 charges,
we have the following anomaly coefficients:

ASUð4ÞC−SUð4ÞC−ZR
4
¼ ASUð2ÞL−SUð2ÞL−ZR

4

¼ ASUð2ÞR−SUð2ÞR−ZR
4

¼ 1ðmodð2ÞÞ: ð33Þ

Thus the ZR
4 anomaly can, in principle, be canceled via the

Green-Schwarz mechanism, as discussed in Refs. [16,17].
Dynamical breaking of the ZR

4 symmetry would then
preserve an exact R parity and generate a μ-term, with μ ∼
m3=2 and dimension 5 proton decay operators suppressed
by m2

3=2=MPl.

B. Yukawa matrices

Upon integrating out the heavy Froggatt-Nielsen fields
we obtain the effective superpotential for the low energy
theory,

WLE ¼ Yu
ijqiHuucj þ Yd

ijqiHddcj þ Ye
ijliHdecj þ Yν

ijliHuν
c
j

þ 1

2
MRi

νci ν
c
i ; for i ¼ 1; 2; 3

where

MR1;2
¼ λ22v

2
PS

2M1;2
; MR3

¼ λ23v
2
PS

2M3

: ð34Þ

The Yukawa matrices for up-quarks, down-quarks, charged
leptons and neutrinos are given by (defined in Weyl
notation with doublets on the left)5

Yu ¼

0
B@

0 ϵ0ρ −ϵξ
−ϵ0ρ ~ϵρ −ϵ
ϵξ ϵ 1

1
CAλ

Yd ¼

0
B@

0 ϵ0 −ϵξσ
−ϵ0 ~ϵ −ϵσ
ϵξ ϵ 1

1
CAλ

Ye ¼

0
B@

0 −ϵ0 3ϵξ

ϵ0 3~ϵ 3ϵ

−3ϵξσ −3ϵσ 1

1
CAλ ð35Þ

with

ξ ¼ ϕ1=ϕ2; ~ϵ ∝ ðθ2=M̂Þ2;
ϵ ∝ −ϕ2=M̂; ϵ0 ∼ ðB2=M0Þ;

σ ¼ 1þ α

1 − 3α
; ρ ∼ β ≪ α ð36Þ

and

Yν ¼

0
B@

0 −ϵ0ω 3
2
ϵξω

ϵ0ω 3~ϵω 3
2
ϵω

−3ϵξσ −3ϵσ 1

1
CAλ ð37Þ

with ω ¼ 2σ=ð2σ − 1Þ and a Dirac neutrino mass matrix is
given by

mν ≡ Yν
vffiffiffi
2

p sin β: ð38Þ

5These Yukawa matrices are identical to those obtained
previously (see [18]) and analyzed most recently in [19,20].
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From Eq. (35) and Eq. (37) one can see that the flavor
hierarchies in the Yukawa couplings are encoded in terms
of the four complex parameters ρ; σ; ~ϵ; ξ and the additional
real ones ϵ; ϵ0; λ. These matrices contain 7 real parameters
and 4 arbitrary phases. Note, the superpotential (WPS) has
many arbitrary parameters. However, the resulting effective
Yukawa matrices have much fewer parameters and we
therefore obtain a very predictive theory. Also, the quark
mass matrices accommodate the Georgi-Jarlskog mecha-
nism, such that mμ=me ≈ 9ms=md. This is a result of the
ðOB−LÞ vev in the B − L direction.

IV. REHEATING

After inflation ends, the inflaton and waterfall fields
oscillate about their respective minima. Additionally, the y
field quickly reaches its minimum and also begins to
oscillate. In order to reach a radiation dominated era
necessary for big bang nucleosynthesis (BBN), the energy
stored in these fields must be transferred to decay products.
Since the Hubble expansion causes radiation energy
density to dilute at a faster rate than matter energy density
does, we require that the fields be coupled to matter in order
to avoid a matter dominated era during BBN. In this section
we perform a simple calculation to determine the reheating
temperatures from the inflaton and waterfall field decays.
Lastly we discuss the decay of y oscillations. A full
treatment of reheating and the evolution thereafter is left
for future work.
In order to calculate the reheating temperatures it is

necessary to determine the amount of energy density stored
in the fields at the times when their respective decay rates
become efficient. Because the fields are weakly coupled to
one another and they are oscillating about their respective
minima, we consider only the terms quadratic in the fields.
We can therefore treat each field as having a separate
energy density. After shifting the waterfall field by its
global minimum, s ¼ σ þ ffiffiffi

2
p

vPS, we find the separate ϕ
and σ potential energy densities,

Vϕ ≡ 1

2
ðκ2v2PS þm2Þϕ2; Vσ ≡ 1

2
λ2v2PSσ

2: ð39Þ

Reheating occurs when the Hubble parameter becomes
of order the decay rate. The Hubble parameter is a function
of the total energy density,

H2 ¼ ρtot
3M2

pl

; ð40Þ

where the total energy density is ρtot ¼ ρϕ þ ρσ and the
separate energy densities are

ρϕ ¼ 1

2
_ϕ2 þ Vϕ; ρσ ¼

1

2
_σ2 þ Vσ: ð41Þ

In our scenario, both the ϕ and σ fields contribute non-
negligibly to the total energy density. As shown in [3], the

waterfall field reaches its local inflaton-dependent mini-
mum shortly after the waterfall transition, i.e. within a few
e-folds. When solving the equations of motion to determine
the values of the energy densities at the end of inflation, we
therefore set the initial value of the waterfall field to be at its
local minimum. It is left to determine the velocities of the
fields near the critical point. For values of ϕ above
the critical point, the waterfall field is stabilized at zero

and the tree level potential is given by V0 ¼ λ2v4PS
4

þ 1
2
m2ϕ2.

The flatness of the potential is lifted slightly by the
quadratic term and the velocity of the inflaton field
immediately after reaching the critical point is determined
from the slow-roll equation of motion of the inflaton,

_ϕ0 ≡ −
1

3H
∂V0

∂ϕ
����
ϕc

¼ −
2m2Mplffiffiffi
3

p
κvPS

: ð42Þ

For the parameter values given above, we find that
_ϕ0=Hc ≃ −10−4ϕc and the inflaton approaches its mini-
mum very slowly.6 Since the waterfall field quickly reaches
its local minimum, as an approximation we take the initial
velocity of the waterfall field to be

_s0 ≡ _ϕ0

∂smin

∂ϕ
����
ϕc

: ð43Þ

With these initial conditions, we solved the equations
of motion given by Eq. (8). We find the energy densities
at the end of inflation to be ρ0ϕ ≈ 5 × 10−11M4

pl and
ρ0σ ≈ 7 × 10−14M4

pl. Since ρ0ϕ dominates over ρ0σ, we take

the approximation, H2 ≃ ρϕ
3M2

pl
.

The inflaton field, ϕ, must convert its energy into matter.
To achieve this we have introduced the operator:

WΦ ¼ αΦHH: ð44Þ

We find the decay rate into higgsinos (neglecting mixing)
given by

Γϕ→ ~h0u ~h
0
dþ ~hþu ~h−d

≈
α2

8π
m: ð45Þ

The formula for the reheating temperature from ϕ decays is
given by the usual form

Tϕ
R ¼

�
90

π2g�
Γ2
ϕM

2
pl

�
1=4

⇒ Tϕ
R ≃ ð2 × 1014 GeVÞα;

ð46Þ

where we have taken g� ¼ 200 and α ∼Oð1Þ.

6In the usual hybrid inflation scenario, κ ∼Oð1Þ and _ϕ0=Hc is
close to ϕc causing inflation to end within a few e-folds.
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Once the inflaton decayswe are left with oscillations in the
waterfall field, σ.7 The reheating temperature from σ decays
can now be calculated given the decay rate of σ into matter.
Note, the radiation energy density scales like the scale factor
a−4, while the energy in the σ field scales like a−3. Thus, as
long as Γϕ ≥ 106Γσ the energy density of the Universe when
σ decays is dominated by the energy in the σ field.
The rates for σ to decay into two right-handed neutrinos

or sneutrinos are

Γσ→νci ν
c
i
¼ h2i

32π
mσ

�
1 −

4ðMi
RÞ2

m2
σ

�
3=2

; ð47Þ

Γσ→~νci ~ν
c
i
¼ h2i

32π
mσ

�
1 −

4ðMi
RÞ2

m2
σ

�
1=2

: ð48Þ

Since Mi
R ≪ mσ ≃ 2.4 × 1016 GeV, we can ignore the

factors in parentheses and take the decay rate of σ into
matter to be

Γσ→νcνcþ~νc ~νc ¼
h21
16π

mσ; ð49Þ

where we have taken h1 ≫ h2; h3 for simplicity. To obtain
an estimate of the reheating temperature from σ decays, we
takeM1

R¼ 7×1010 GeV and h1 ¼
ffiffiffi
2

p
M1

R=vPS ≃ 3 × 10−6.
Note that σ can also decay into pairs of ϕ or a, however, the
rates for these decays are greatly suppressed compared to
the decay rate into matter,

Γσ→ϕϕþaa

Γσ→νcνcþ~νc ~νc
≈

κ4v2PS
h21M

2
pl

≈ 10−6: ð50Þ

We are now ready to calculate the reheating temperature.
The reheating temperature from σ decays is given by

Tσ
R ¼

�
90

π2g�
Γ2
σM2

pl

�
1=4

⇒ Tσ
R ≃ ð1.6 × 1016 GeVÞh1:

ð51Þ
Using the value of h1 from above we have

Γσ ≃ 5 × 103 GeV ð52Þ
and

Tσ
R ≃ 5 × 1010

�
h1

3 × 10−6

�
GeV: ð53Þ

Note, we want to choose a value for h1 such that Tσ
R < M1

R
so that the degree of CP violation produced when the right-
handed neutrinos decay is not washed out from thermal-
ization. Clearly this is easily done. This is also consistent
with the inflaton field decaying first and subsequently the

waterfall field decaying with the final reheat temperature
given by Tσ

R.
Finally, consider the y field. The energy density after

inflation stored in the physical field h (ρ0h ≈ 10−17M4
pl) is

much less than the energy density stored in the waterfall
field, σ. Furthermore, we see from Eq. (29) and Eq. (30)
that Γh→νcνc ¼ ðm=κvPSÞ2Γσ→νcνc ≃ 0.03Γh→νcνc . Thus the
energy density of the Universe is still dominated by the
energy in radiation due to σ decay, when h finally decays.

V. CONCLUSIONS

We have presented a Pati-Salam model of inflation and
reheating which is consistent with recent cosmological
data. The inflationary era is described by subcritical hybrid
inflation which yields a tensor-to-scalar ratio consistent
with the recent BICEP2/Keck data. Furthermore, the
energy scale during inflation is directly identified with
the PS breaking scale. Since the last 60 e-folds of inflation
occur after the critical point, monopoles formed from the
spontaneous breaking of the PS symmetry are diluted away.
After inflation, the waterfall fields eventually decay into
right-handed neutrinos at a reheat temperature below the
mass of the lightest right-handed neutrino allowing for the
possibility of nonthermal leptogenesis via CP violation in
the subsequent decays of the right-handed neutrinos. The
model has also been extended to a three-family model for
fermion masses and mixing angles which reproduces
results found previously in the literature [18–20].
In a future paper we intend to analyze reheating, lepto-

genesis, and dark matter generation in the more complicated
three-family Pati-Salam model discussed earlier. We know
that since our right-handed neutrino masses are hierarchical
with typical values of order 1010; 1012; 1014 GeV, a dis-
cussion of leptogenesis will require a detailed analysis of the
production of a lepton asymmetry aswell aswashout effects.
Finally a discussion of dark matter will depend on the
possible candidates. With degenerate gaugino masses at the
GUT scale, the lightest neutralino is binolike. This dark
matter candidate typically over-closes the Universe.
However with mirage mediation it has been shown that
one can obtain a well-tempered dark matter candidate (see
for example [21]). Any discussion of dark matter must also
include the discussion of the SUSY breaking sector of the
theory. In particular, SUSY breaking must necessarily be
decoupled from the inflationary sector such that the grav-
itinomass is less than theHubble parameter during inflation,
i.e. m3=2 < Hinf (see Refs. [22–25]). In addition, the
cosmological moduli [26–29] and gravitino problems
[30–32] must be ameliorated.
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