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Hadrons in lattice QCD are usually created employing smeared interpolators. We introduce a new quark
smearing that allows us to maintain small statistical errors and good overlaps of hadronic wave functions
with the respective ground states, also at high spatial momenta. The method is successfully tested for the
pion and the nucleon at a pion mass mπ ≈ 295 MeV and momenta as high as 2.8 GeV. We compare the
results obtained to dispersion relations and suggest further optimizations.
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I. INTRODUCTION

Lattice QCD simulations predict an ever increasing
number of observables that are relevant to particle and
hadron physics phenomenology. These results are usually
extracted from expectation values of n-point functions at
large Euclidean time separations. Due to the decay of these
functions with time, statistical noise over signal ratios
increase exponentially as time separations are taken large
(with the notable exception of pseudoscalar mesons at zero
momentum). Fortunately, there exists some freedom in the
construction of interpolators for the creation of mesonic
and baryonic states. Employing interpolators that resemble
the spatial structure of the ground state wave function
enables asymptotic results to be extracted at time separa-
tions where the signal over noise ratio is still large.
Many applications nowadays demand hadrons that carry

momentum. For instance, pushing the calculation of semi-
leptonic decay form factors for B→πlν̄l or Λb → plν̄l [1]
toward small virtualities requires spatial momenta of the
size of the mass difference between the B meson and the
pion or between the Λb baryon and the proton, respectively.
Another important type of application are parton distribu-
tion functions (PDFs) and their generalizations, in particu-
lar transverse momentum dependent parton distribution
functions (TMDs), or Wigner distributions as a whole. Also
these quantities are extracted from matrix elements of the
type hHðp0ÞjOjHðpÞi, where HðpÞ is a hadron state with
momentum p. The operator O cannot have an extent in
Minkowski-time on the Euclidean lattice. Therefore, in
order to extrapolate to light front kinematics for an inher-
ently nonlocal operator, one has to work in a frame of
reference where hadrons carry high spatial momenta p, p0.

This fact has been known for quite some time in the
context of lattice calculations of TMDs [2–4] and is
illustrated very clearly in recent work on these distributions
in the pion [5]. For the same reason fast hadrons on the
lattice are highly desirable in a new scheme proposed to
relate quasi parton distributions to light front distributions
in a controlled manner [6,7]. First lattice computations in
this direction have started [8,9]. Earlier suggestions to
compute quasi distribution amplitudes in position space
[10–12] equally require pions or nucleons at high
momenta. Unfortunately, up to now no satisfactory tech-
niques for hadrons carrying high momenta existed to
suppress excited state contributions.
To be more specific, a two-point function is given as

CHðtÞ ¼ hHðtÞH†ð0Þi ¼
X
j>0

jhjjĤ†j0ij2
2EH;j

e−EH;jt; ð1Þ

where EH;j denotes the jth energy level within the tower of
states created by the interpolator H†. Obviously, the
contribution of the jth excited state is suppressed relative
to the ground state not only by exp½−ðEH;j − EH;1Þt� but
also by the ratio jhjjĤ†j0ij2=jh1jĤ†j0ij2: increasing the
ground state overlap factor jh1jĤ†j0ij, relative to jhjjĤ†j0ij
for j > 1, results in an additional suppression of
excitations.
Reducing excited state overlaps by employing extended

interpolators was first pursued in computations of the
glueball spectrum. In this case the gauge links within
the corresponding interpolators can be iteratively “APE
smeared” [13], “fuzzed” [14] or “HYP smeared” [15], to
better approximate the (smooth) ground state wave func-
tion, see also Ref. [16]. This gauge link smearing was
subsequently generalized to iterative smearing of quark
fields within interpolators that create mesonic and baryonic
states, in particular gauge covariant Wuppertal (i.e. Gauß)
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smearing [17–19], hydrogen-like smearing [19] as well as
Jacobi smearing [20,21]. Additionally, in Refs. [18,19,22]
APE smearing was employed for the spatial gauge trans-
porters within the quark smearing while in Ref. [22] linear
combinations of different levels of Wuppertal smearing
were utilized.
Since Gaussian smearing functions may not be optimal

for creating, e.g., p-waves, even when adding derivatives to
the interpolator, iterative smearing was later-on combined
with displaced quark sources (fuzzing) in Ref. [23], a
generalization of which was suggested in Ref. [24]. Finally,
in Ref. [25] “free form smearing”, folding Gaussian
smearing with an arbitrary function in a gauge covariant
way, was invented. Preceding and in parallel to gauge
covariant iterative smearing functions, gauge fixed sources
have been utilized: wall sources for zero [26] and nonzero
momentum [27], box [28] sources, Gaussian “shell
sources” [29] and sources with nodes [30]. These gauge
fixed methods and free form smearing share the disadvant-
age that smearing the sink requires all quark positions to be
summed over individually, turning this prohibitively
expensive. Having identical source and sink interpolators,
however, is very desirable as only this guarantees the
positivity of the coefficients of the spectral decomposition
Eq. (1) and thus the convexity of two-point functions. For
completeness, we also mention the “distillation” (or
Laplacian-Heaviside) method of Ref. [31] since this is
closely related to gauge covariant smearing.
Large momenta increase the energy of the state and result

in faster decaying two- and three-point functions and,
therefore, in inferior noise to signal ratios. Moreover, as
we shall see, excited state suppression becomes far less
effective when using conventional quark smearing meth-
ods. Some attempts have been made [32,33] to introduce an
anisotropy into Wuppertal smearing [17,18], aiming at
Lorentz contracting the interpolating wave function accord-
ing to the boost factor 1=γ ¼ m=EðpÞ, along the direction
of the spatial momentum p. However, this did not result in
the ground state enhancement that one would have hoped
for. Here we will argue and demonstrate that to achieve
satisfactory results at high momenta, additional phase
factors need to be incorporated into quark smearing
functions.
This article is organized as follows. First, in Sec. II, we

discuss the basic idea behind the new class of smearing
functions that we introduce. Then, in Sec. III we are more
specific, modifying Wuppertal smearing as a generic
example and suggest further improvements. In Sec. IV
we discuss our simulation parameters and expectations for
the nucleon and pion energies. After the stage is set, in
Sec. V we investigate the feasibility of the method in a
realistic numerical study, optimize the smearing parameters
and pursue a comparison between the new and the conven-
tional method. Finally, we study the pion and nucleon
dispersion relations, before we conclude.

II. MOMENTUM SMEARING: THE BASIC IDEA

As discussed above, quark smearing within hadronic
sources or sinks is essential in lattice simulations to
increase the overlap with the desired physical state,
reflecting the fact that hadrons are extended objects, rather
than pointlike. A smearing operator F is diagonal in time,
trivial in spin and acts on the position and color indices of
quark fields:

ðFqÞx ¼
X

y∈ðaZÞd
fx−yGxyqy; ð2Þ

where f is a scalar function, G is a gauge covariant
transporter, which in the free case will be a unit matrix
in color and position space, and d is the number of spatial
dimensions, usually d ¼ 3. Note that the field qx is usually
periodic in x on the lattice, whereas fx−y need not be
periodic in x − y. In the free case, the convolution Eq. (2)
becomes a product in Fourier space

X
x∈ðaZÞd

eip·xðFqÞx ¼ ~fðpÞ ~qp: ð3Þ

For the special case of a Gaussian,

fx−y ¼ f0 exp

�
− jx − yj2

2σ2

�
; ð4Þ

the Fourier transformed smearing kernel again is a
Gaussian:

~fðpÞ≡ X
z∈ðaZÞd

eip·zfz ¼ ~fð0Þ exp
�
− σ2p2

2

�
: ð5Þ

Thus, the smeared quark operator has maximal overlap
with a quark at rest, p ¼ 0. Nonzero velocities are sup-
pressed in accordance with the above Gaussian momentum
distribution. Clearly, for hadrons carrying significant spa-
tial momenta, such a smearing may be counterproductive.
Having identified the problem, it is easy to modify the

smearing to perform well for moving hadrons. We aim at a
momentum distribution of quarks centred around a finite
momentum k, so we need to shift the smearing kernel in
momentum space:

~fðpÞ ↦ ~fðp − kÞ; ð6Þ

as illustrated in Fig. 1. This translates to the replacement in
position space

fz ↦ eik·zfz: ð7Þ

Our modified smearing operator FðkÞ, where Fð0Þ ¼ F, can
thus be formally expressed as
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ðFðkÞqÞx ¼
X

y∈ðaZÞd
FðkÞxyqy

¼
X

y∈ðaZÞd
e−ik·ðx−yÞfx−yGxyqy: ð8Þ

The only new ingredient is the additional phase factor
exp ½−ik · ðx − yÞ�. Note that the quark momentum shift k
need not be a lattice momentum, i.e. it is not restricted to
discrete values k ∈ ð2π=LÞZd. The smearing kernel f and
the gauge dependent factor G can be taken over from
any existing smearing method. For an iterative smearing
method, the extra phase factor can easily be integrated into
the elementary smearing step. Below we demonstrate this
for the example of Wuppertal smearing. In principle, there
could be additional effects like a Lorentz contraction of the
wave function. This was studied, e.g., in Refs. [32,33], and
we will also address this possibility.
The new, modified smearing operator FðkÞ of Eq. (8)

inherits important properties from the smearing operator
Fð0Þ it is based on. If the unmodified smearing operator is
self-adjoint, then so is the modified smearing operator FðkÞ,
because from fx−y ¼ f�y−x and Gxy ¼ G†

yx it follows that

FðkÞxy ¼ F†
ðkÞyx. The underlying smearing operator Fð0Þ

should transform according to an irreducible representation
(irrep) of the cubic groupOh. Usually, this will be the trivial
A1 representation but the smearing operator can also be
used to inject angular momentum or to add nontrivial
gluonic excitations [23]. Obviously, FðkÞ with a momentum
shift k ≠ 0 breaks the cubic symmetry. However, when
used in conjunction with a momentum projection that

selects hadrons with a momentum p, then as long as
k ∥ p, the smearing operator remains within the A1 repre-
sentation of the Oh little group corresponding to the
momentum direction p.

III. MOMENTUM SMEARING AND HADRONIC
TWO-POINT FUNCTIONS

We recapitulate Wuppertal smearing as a generic exam-
ple of an iterative smearing algorithm. Then to clarify
notations we discuss the standard construction of hadronic
two-point functions, before generalizing the smearing by
introducing a momentum shift as described above. The
discussion can easily be extended to incorporate generic
hadrons and n-point functions with n ≥ 2. We conclude
with a suggestion how to further improve the method.
This is relevant for fine lattices where the iteration count
becomes large. In the Appendix we discuss how an addi-
tional Lorentz boost factor can be implemented.

A. Wuppertal smearing

The most prominent gauge covariant realization of a
smearing function is Wuppertal smearing [17,18], where
F ¼ Φn, with Φ being defined as

ðΦqÞx ¼
1

1þ 2dε

�
qx þ ε

X�d

j¼�1

Ux;jqxþȷ̂

�
: ð9Þ

Again d ¼ 3 denotes the dimension of space. The gauge
transporters

Ux;−j ¼ U†
x−ȷ̂;j; Ux;j ¼ Ux;j with x4 fixed; ð10Þ

can also be spatially APE smeared links [13,19,22]. ȷ̂
denotes a vector of length of one lattice unit a, pointing into
the direction j. In Eq. (9) we suppressed the index x4 since
the smearing is diagonal in time. ε is a positive constant
and the arbitrary normalization factor 1=ð1þ 2dεÞ is
introduced to avoid a numerical overflow for large iteration
counts n.
Φ (and by implication Φn) is self-adjoint, a unit matrix in

spinor space and transforms according to the A1 represen-
tation ofOh or its little groups.

1 The replacement q ↦ Φnq
will therefore not interfere with the symmetry properties of
any interpolator.
The smearing operator Φ is related to a discretized

covariant Laplacian Δ:

Φq ¼ qþ ε

1þ 2dε
a2Δq; ð11Þ

FIG. 1. Conventional smearing versus momentum smearing
for the example of a Gaussian wave function in d ¼ 1 spatial
dimensions. The momentum k shifts the center of the distribution
in momentum space, resulting in an oscillatory behavior in
position space.

1Oh symmetry will be reduced to Cnv for momenta along a
lattice axis (C4v), a spatial diagonal (C3v) or a planar diagonal
(C2v), see, e.g., Ref. [34].
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a2ðΔqÞx ¼ −2dqx þ
X�d

j¼�1

Ux;jqxþȷ̂: ð12Þ

Introducing a fictitious time τ ¼ nΔτ and defining
qðτÞ ¼ Φnqð0Þ, i.e. qðτ þ ΔτÞ ¼ ΦqðτÞ, results in the
diffusion (or heat) equation

∂qðτÞ
∂τ ≈

qðτ þ ΔτÞ − qðτÞ
Δτ

¼ αΔqðτÞ; ð13Þ

where

α ¼ a2

Δτ
ε

1þ 2dε
: ð14Þ

This is solved by qðτÞ ≈ exp ðατΔÞqð0Þ. Starting from
δ-sources in position and color space qaxð0Þ ¼ δx0δ

ab,
assuming the free case Ux;j ¼ 13 and large distances
r ¼ jxj ≫ a, Eq. (13) is obviously solved by a Gaussian
with

σðτÞ ¼
ffiffiffiffiffiffiffiffi
2ατ

p
¼

ffiffiffiffiffiffiffiffiffiffi
2na2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε

1þ 2dε

r
ð15Þ

being the square root of the variance, i.e. the smearing
corresponds to the smearing kernel Eq. (4). Employing a
parallel transporter within the covariant Laplacian Eqs. (10)
and (12) that is close to unity, like d dimensional APE
smeared gauge links, means that this Gaussian shape is a
good approximation, see, e.g., Ref. [35].
The diffusivity α obviously is maximal for large values

of the parameter ε (α → 1
6
a2=Δτ for ε → ∞). For small

values (α ≈ εa2=Δτ), the iteration count n to achieve a
given smearing radius2

ffiffiffi
3

p
σ is larger but the resulting wave

function will be smoother. Equation (15) highlights that, to
keep the smearing radius fixed in physical units, the
iteration count needs to be increased in proportion to the
square of the inverse lattice spacing. Obviously, this
becomes computer time intensive toward the continuum
limit. We remark that at small lattice spacings the diffusion
equation (13) should be solved using a smarter method than
iteratively applying the smearing operator Φ defined in
Eq. (10). We will return to this in Sec. III E.

B. Construction of two-point functions

As an example we discuss the construction of momen-
tum projected pion and nucleon two-point functions:

Cπðp; tÞ ¼ hπpðtÞπ†pð0Þi;
CNðp; tÞ ¼ hNα

pðtÞN̄β
pð0ÞiPαβ; ð16Þ

where P ¼ 1
2
ð1þ γ4Þ denotes a projector onto positive

parity.3 Without smearing the pion and nucleon interpola-
tors are local quark bilinears and trilinears:

πp ¼ a3
X
x

eip·xūxγ5dx; ð17Þ

Nα
p ¼ a3

X
x

eip·x½utxCγ5dx�uαx; ð18Þ

where C is the charge conjugation operator and ux and dx
annihilate up and down quarks, respectively, at the spatial
position x.
For the pion the Wick contraction then gives

Cπðp; tÞ ¼ −L3a3
X
x

eip·xhūxγ5dxd†0γ5ū†0i

¼ −L3a3
X
x

htr½ðdd̄Þx0γ5ðuūÞ0xγ5�ieip·x

¼ −L3a3
�X

x

trðM−1†
x0 M−1

x0 Þeip·x
�
; ð19Þ

where x ¼ ðx; tÞ and the trace is over spin and color.
Momentum projection at the source is not necessary,
due to the translational symmetry of expectation values
and L3 ¼ N3a3 denotes the three-volume that corresponds
to this omitted sum. M is a Wilson-like lattice Dirac
matrix with the quark mass mu ¼ md and we have used4

d†γ5ū† ¼ d†γ5γ4u ¼ −d̄γ5u, the Grassmann nature of the
quark field creation and annihilation operators and replaced
hdd̄id ¼ huūiu ¼ M−1, where the subscripts d, u denote
integrating out the respective Grassmann field on a given
gauge background. In the last step we also exploited γ5-
Hermiticity: γ5M−1γ5 ¼ M−1†. For the nucleon one can
easily work out an analogous expression that contains
ϵabcϵa

0b0c0 ðM−1Þaa0x0 ðM−1Þbb0x0 ðM−1Þcc0x0 , where we have sup-
pressed the spinor indices and a; b; c; a0; b0; c0 ∈ f1; 2; 3g
run over fundamental color. Equation (19) can now be
evaluated, solving the linear systems

X
x;α;a

Mβ0b0αa
x0x Sαaβbx ¼ δx00δ

bβ0βδb
0b ð20Þ

2Note that the root mean squared radius in d dimensions readsffiffiffi
d

p
σ. Also note that the width of the gauge invariant combination

q†xqx Eq. (45) is smaller by a factor
ffiffiffi
2

p
.

3Note that for p ≠ 0 this projector will not completely
remove the negative parity contribution. To improve on this,
instead one can employ the oblique projector [36] Pp ¼
1
2
f1þ ½mN�=EN� ðpÞ�γ4g, where mN� and E�

N denote mass and
energy of the nucleon’s negative parity partner. Since this state is
higher in mass than the nucleon, for simplicity, here we abstain
from attempting this.

4Note that the assignment d̄ ¼ d†γ4 is convenient but not
consistent in Euclidean spacetime, where the Dirac operator is γ5-
instead of ðγ4 ¼ γ0Þ-Hermitian. This is the reason for the negative
sign in Eq. (19). In the simulation, we correct for this phase and
obtain a positive two-point function.
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for twelve δ-sources (for each source spin β and color b) to
obtain the point-to-all propagator S with sink position, spin
and color indices x, α and a, respectively. Then,

Cπðp; tÞ ∝
�X

x

trðS†xSxÞeip·x
�
; ð21Þ

where again x4 ¼ t. The construction of the analogous
nucleon two-point function from three point-to-all propa-
gators is straightforward. Note that in that case no
Hermitian adjoint will appear.
Smearing is diagonal in Euclidean time (hence we

suppressed the t dependence) and trivial in Dirac spin.
So, obviously, the smearing operator F ¼ Φn commutes
with any Γ structure, however, it does not commute with
covariant derivatives that may appear within the hadronic
interpolator. Smearing can easily be implemented at the
source, replacing S ¼ M−1δ by SF ¼ M−1Fδ, see Eq. (20).
Note that, due to the fact that F is a unit matrix in spinor
space, the same smeared source can be employed for all
four spinor components. To obtain a so-called smeared-
smeared two-point function, the argument of the sum in
Eq. (21) will usually be replaced by tr½ðFSFÞ†xðFSFÞx�eip·x:
every source smearing requires new inversions while sink
smearing needs to be carried out on all time slices of
interest.
We remark that momentum sources have been used

for quite some time, see, e.g., Refs. [37–39]. Injecting
momentum into quark sources is necessary (and has been
done) in the context of the one-end-trick of Refs. [40,41],
where one usually employs color-diagonal (complex) ZN
or U(1) random sources. Generalizing this to SU(3) noise
is in fact equivalent to using a non-gauge fixed wall
source [42], which does not change expectation values.
Momentum was however also injected into gauge fixed
wall sources in Refs. [27,43] (“color wave propagator”),
favorably affecting not only statistical errors but also
ground state overlaps. While these latter references share
some of our motivation, the method presented here is
quite different. For instance, in our case the hadron’s total
momentum still needs to be injected at the source and k is
not quantized.
Finally, we remark that the asymmetry of only carrying

out the position sum at the sink often is exploited to reduce
the statistical errors of heavy-light meson correlation
functions, by only smearing the heavy quark with F2 ¼
FF at the source, instead of smearing each quark with F.
Clearly, it would be advantageous if for each momentum
smearing parameter of interest only the heavy quark
propagator had to be recomputed. Unfortunately, momen-
tum smearing (as well as traditional smearing) as an
operation will not commute with momentum projection,
unless p ¼ 0. Therefore, a different distribution of the
smearing between the quarks will result in a different and
not necessarily optimal ground state overlap.

C. Momentum (Wuppertal) smearing

As explained in Sec. II, if we inject a momentum p into
the hadron, it may be a good idea to distribute at least part
of it among the quarks. Their smearing functions should
therefore ideally be centred around a value k ≠ 0, where k
is some fraction of p, to best resemble the wave function of
the physical state we wish to create.
The Fourier transform of a Gaussian, centered about k in

momentum space, reads

fσðkÞx−y ∝ exp

�
− ðx − yÞ2

2σ2
− ik · ðx − yÞ

�
: ð22Þ

Similarly, momentum can be injected also into differently
shaped smearing functions, a possibility that we shall not

explore here. qðτÞ ¼ FσðτÞ
ðkÞ qð0Þ solves the heat equation

with a constant drift term

∂qðτÞ
∂τ ¼ αð∇þ ikÞ2qðτÞ: ð23Þ

In analogy to the discussion of Sec. III A, in the free case
the above smearing function can iteratively be constructed
from “momentum” Gauß smearing steps, FðkÞ ¼ Φn

ðkÞ,
introducing a phase into Eq. (9):

ðΦðkÞqÞx ¼
1

1þ 2dε

�
qx þ ε

X�d

j¼�1

Ux;jeik·ȷ̂qxþȷ̂

�
; ð24Þ

where Φð0Þ ¼ Φ. One can easily show that the variance
σ2ðτÞ is still given as in Eq. (15). Moreover, as expected
ΦðkÞ remains self-adjoint:

ΦðkÞxy ¼
1

1þ 2dε

	
δx;y þ ε

X3
j¼1

½δxþȷ̂;yUx;jeik·ȷ̂

þ δyþȷ̂;xU
†
y;je

−ik·ȷ̂�


;

Φ†
ðkÞyx ¼

1

1þ 2dε

	
δy;x þ ε

X3
j¼1

½δyþȷ̂;xU
†
y;je

−ik·ȷ̂

þ δxþ|̂;yUx;jeik·ȷ̂�



¼ ΦðkÞxy: ð25Þ

We will use the same smearing for quarks and antiquarks.
For the π− meson this amounts to the replacements
d ↦ Φn

ðkÞd, u ↦ Φn
ð−kÞu, d̄ ↦ d̄Φn

ðkÞ and ū ↦ ūΦn
ð−kÞ

within Eq. (19). Note that the Φn
ð−kÞ smearing is needed

as in the contraction with the momentum projector,
ðδxx0eip·xÞΦn

ðkÞxyΦ
n
ðkÞx0y0 , transposing the ordering of the indi-

ces of the first smearing operator givesΦn
ðkÞxy ¼ Φn

ð−kÞyx in the
free case, see Eq. (29). Exploiting the Hermiticity of Φn

k , we
then obtain
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CπðtÞ∝
X
x

htrf½ðΦn
ð−kÞM−1Φn

ð−kÞÞx0�†ðΦn
ðkÞM

−1Φn
ðkÞÞx0gieip·x:

ð26Þ

In contrast, for baryonic two-point functions,where all quarks
propagate in the forward direction, only Φn

ðþkÞ will appear.
The pion two-point function can now be constructed in
analogy to Eq. (21) from

Cπðp;tÞ∝
�X

x

tr½ðΦn
ð−kÞSð−kÞÞ†xðΦn

ðkÞSðkÞÞx�eip·x
�
; ð27Þ

where the source-smeared point-to-all propagator is defined
as [see Eq. (20)]

SðkÞαaβbx ¼
X

x0;α0;a0;z;c

ðM−1Þαaα0a0x;x0 δα
0βΦn

ðkÞ
a0c
x0z
δz0δ

cb; ð28Þ

or, in shorthand notation: SðkÞ ¼ M−1Φn
ðkÞδ. For mesons the

above twelve linear systems need to be solved, both for
δ-sources smeared with Φn

ðkÞ and with Φn
ð−kÞ, while for

baryons smearing with Φn
ðkÞ is sufficient.

We remark that the momentum smearing Eq. (24) can
very easily be implemented by substituting the (APE
smeared) transporters Ux;j ↦ Ux;jeik·ȷ̂ and then iterating
the usual Wuppertal smearing Eq. (9) on these modified
U(3) links.

D. Free field investigation

Having defined the smearing and how the contractions
are to be carried out, we are now in the position to address
the question what value of k should be chosen. Naively, one
may expect k ≈ p=2 and k ≈ p=3 to be optimal for mesons
and baryons, respectively, that are composed of degenerate
quarks and carry a total momentum p. This is indeed what
we will find here for the noninteracting case. The interact-
ing case somewhat deviates from this as we will see in
Sec. V below.
Setting Ux;j ¼ 1 within Eq. (24) gives the free case

smearing function Eq. (22) for a large volume L3 ≫ σ3 and
number of smearing iterations so that σ ≫ a. Smearing the
quark and antiquark annihilation operators at the sink with
FðkÞ and Fð−kÞ, respectively, we obtain the momentum
projected smeared pion interpolator,

πp ∝
X
x;y;y0

ūy0fð−kÞy0−xeip·xfðkÞx−yγ5dy

∝
X
x;y;y0

exp

�
− ðy − xÞ2 þ ðy0 − xÞ2

2σ2

�
eip·xe−2ik·xeik·ðyþy0Þ½ūy0γ5dy�

∝ exp

�
− σ2

2
ðp − 2kÞ2

�X
Z;Δ

exp

�
−Δ2

σ2

�
eip·Z½ūZþΔγ5dZ−Δ�; ð29Þ

where we have defined center and relative coordinates

Z ¼ yþ y0

2
; Δ ¼ y0 − y

2
: ð30Þ

Note that the components of Z=a and Δ=a can be integer or
half-integer valued, subject to the constraints ðZj þ ΔjÞ=
a ∈ Z. The result of Eq. (29) is indeed maximized for
k ¼ p=2: in the free case k ¼ p=2 is the optimal smearing
parameter for mesons with mass-degenerate valence quarks
while we encounter an exponential suppression in p2 for the
conventional k ¼ 0 smearing. The broader thewave function
in coordinate space, the more important becomes the correct
choice of k as one can see from the first exponent in Eq. (29)
[as well as from Eq. (5)]. Unsurprisingly, for baryonic
interpolators k ¼ p=3 would be the optimal choice.
We have demonstrated that in the free case k can be

interpreted as the momentum carried by the smeared quark.
If the quarks differ in mass or, like for the example of the
nucleon, the interpolator is not symmetric with respect to

the quark flavor, injecting different k-values into different
quark fields may be advisable. In the interacting case the
interpretation is not as straightforward: neither is the
interpolator directly related to any of the usual definitions
of a wave function nor will all momentum be carried by the
valence quarks.

E. Noniterative (momentum) smearing

We propose replacing iterative smearing, where the
iteration count diverges with a−2 toward the continuum
limit, by a more refined method. In this context we show
how to introduce phase factors (and shape functions) into the
“distillation” (or Laplacian-Heaviside) method of Ref. [31].
Although we already present the basics of the method here,
systematic tests are yet to be completed. Another natural
extension, which wewill investigate numerically in Sec. V, is
to Lorentz boost the smearing function.
We define eigenvectors jvli and eigenvalues −ω2

l of a
covariant Laplacian with (smeared) gauge transporters, at a
fixed Euclidean time:
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ðΔþ ω2
lÞjvli ¼ 0: ð31Þ

Since the Laplacian is self-adjoint, the bra-ket notation is
convenient in the present context. For a lattice of Nd points
per time slice (L ¼ Na), 3Nd linearly independent eigen-
vectors jvli with components valx exist. Such eigenvectors
were for instance used in Ref. [31]. The heat equation (13)
is solved by

jqðτÞi ¼ exp ðατΔÞjqð0Þi
¼

X
l

jvli exp ð−ατω2
lÞhvljqð0Þi: ð32Þ

If we start from a δ-function at τ ¼ 0, this results in a
Gaussian of variance σ2 ¼ 2ατ.
To implement momentum smearing one can easily

replace Ux;j ↦ Ux;jeik·ȷ̂ within the covariant Laplacian
Δ ↦ ΔðkÞ ∼ ð∇þ ikÞ2 and then recompute the eigenvec-
tors and -values:

ðΔðkÞ þ ω2
ðkÞlÞjvðkÞli ¼ 0: ð33Þ

The natural generalization of Eq. (32) for moving particles
then reads:

jqðkÞðτÞi ¼
X
l

jvðkÞli exp ð−ατω2
ðkÞlÞhvðkÞljqð0Þi: ð34Þ

The motivation for computing eigenvectors of the
covariant Laplacian is to truncate Eqs. (32) or (34) at a
value lmax where ω2

lmaxþ1 > ω2
max. As ατ ¼ σ2=2, achieving

a suppression by a factor e−2 requires ωmax ≈ 2=σ. In
general, the wider the smearing function in coordinate
space the less eigenvectors will be needed. The extreme
opposite limit ατ ¼ 0 ⇒ σ ¼ 0 corresponds to the
Laplacian-Heaviside method proposed in Ref. [31], where
summing over all eigenvectors will ultimately result in
a δ-function in position space while truncating at some
finite lmax value gives a bell shape [31]. (In the free case the
modulus would be a sum of sines.) The same holds for the
sources suggested in Ref. [38] that correspond to sums of
eigenvectors of the noninteracting Laplacian.
It is trivial to work out more details in the free case,

where one basically encounters a one dimensional
problem. For instance, setting ω ¼ jð2π=LÞ ≳ 2=σ, where
j ∈ Znf0g means jjj≳ L=ðπσÞ. Therefore, in d dimen-
sions lmax ≳ 3 × ½πd=2=Γðd=2þ 1Þ� × ½L=ðπσÞ�d, where
the factor 3 is due to color and the next factor is the
volume of a d dimensional unit-sphere (4π=3 for d ¼ 3):
the number of required eigenvectors increases in proportion
to the spatial volume in physical units but is independent of
the lattice spacing a. In contrast, in the case of iterative
smearing, reducing the lattice spacing at a fixed value
of σ increases the iteration count in proportion to a−2,

independent of the volume. For our smearing size σ ≈
0.45 fm and a spatial volume L3 ¼ ð6 fmÞ3, which would
ensure Lmπ > 4 even at the physical mass point, we obtain
lmax ≈ 960 while for a ð3 fmÞ3 box about 120 eigenvectors
should suffice. Therefore, satisfactory results in terms of
ground state overlaps appear to be within reach, employing
moderately large numbers of eigenvectors. This is at
present under investigation.
Non-Gaussian shapes can easily be modeled too,

e.g., by multiplying in a “free form” weight function,
ðjvlihvljÞxy ↦

P
xyhxy exp ½ατðx − yÞ2�ðjvlihvljÞxy, in

analogy to Ref. [25]. However, the numerical complexity
of this operation is OðN2dÞ for each time slice and
eigenvector. At the source this can be reduced to OðNdÞ
if the solution is only required for a fixed δ-source
position jqð0Þi ¼ jδay0i (hy; bjδay0i ¼ ðjδay0iÞby ¼ δyy0δ

ba).
Other, numerically less expensive options include placing
nonlinear functions of ω2

l in the exponents of Eqs. (32)
and (34), employing linear combinations of Gaussians or
substituting the covariant Laplacian by a different operator
within Eqs. (31) and (33), e.g., introducing an anisotropy.
Once the eigenvectors Eq. (31) or Eq. (33) of the APE or

HYP smeared covariant Laplacian have been computed,
any smearing radius can be realized, replacing ατ by the
targeted σ2=2 value within the exponent of Eq. (32) or
Eq. (34). Another potential advantage of the non-iterative
smearing is that, instead of solving for smeared sources
jqðkÞðτÞi that have evolved from a δ-source jqð0Þi ¼ jδy0ai,
one can also directly apply the inverse lattice Dirac
operator to the eigenvectors, thereby constructing so-called
perambulators [31]:

τðkÞ
αβ
mtl0 ¼ hvðkÞmtjðM−1Þαβt0 jvðkÞl0i: ð35Þ

The inner product above is over spatial position and color,
replacing these indices by the eigenvector labels l at the
sink and m at the source. The respective Euclidean times
are explicitly shown as additional eigenvector (and peram-
bulator) subscripts. These perambulators can then be
folded with the appropriate eigenvalue Gaussians during
the construction of hadronic n-point functions.
We abstain from repeating here the steps outlined in

Ref. [31] how to construct hadronic two-point functions
from these perambulators as there is only one difference:
In the contractions over l and m weight factors
expð−σ2ω2

ðkÞl0=2Þ and expð−σ2ω2
ðkÞmt=2Þ should be intro-

duced, where ω2
ðkÞmt refers to the mth eigenvalue of the

negative covariant Laplacian defined on time slice t.
On one hand using perambulators will require a larger

number of inversions and computationally more expensive
contractions than starting from δ-sources. On the other
hand, due to volume averaging, the statistical errors of the
perambulator method will be smaller and this method
allows for more flexibility in the subsequent construction

NOVEL QUARK SMEARING FOR HADRONS WITH HIGH … PHYSICAL REVIEW D 93, 094515 (2016)

094515-7



of hadronic n-point functions. Whether the use of peram-
bulators or of traditional (smeared) point-to-all propagators
is preferable will therefore depend on the problem at hand
and in particular on the number of different hadrons we are
interested in. We have shown that the same quark smearing
can be employed in both cases.
Finally, we remark that in certain situations recomputing

the eigenvectors for different values of k may be avoidable.
In the interacting case, gauge covariant derivatives ∇2

j will
depend on all spatial coordinates, including xi with i ≠ j,
and will therefore not commute with each other. However,
our intuition was based on the free case and also the
spatially APE [13] or HYP [15] smeared gauge covariant
transporters are close to unity. Assuming translational
invariance, the coordinates can be separated and the
components of an eigenvector read vax ∝ sinðωa

1x1Þ � � �
sinðωa

dxdÞ, where ωa
j ¼ 2πma

j=L andma
j are integer valued.

The corresponding eigenvalue of the negative Laplacian
is given as ω2 ¼ ω2 where the frequencies for different
color components are constrained: ω2≔ω12¼ω22¼ω32.
Defining

j ~vðkÞli ¼ e−ik·xjvli ð36Þ

then gives ½ð∇þ ikÞ2 þ ω2
l�j ~vðkÞli ¼ 0.

In the interacting case this will not exactly solve the heat
equation with drift (23) but the approximation ωðkÞl ≈ ωl,
jvðkÞli ≈ j ~vðkÞli should be sufficient to construct a gauge
covariant Gaussian shape with the intended phase factors.
Note that the phases Eq. (36) appear both in the bra- and in
the ket-vector of Eq. (34), such that only relative phases
between two spatial positions matter and the choice of
the zero point becomes irrelevant. The clear disadvantage
of the explicit multiplication by phase factors Eq. (36)
is that these have to obey the lattice periodicity, i.e.
kj ∈ ð2π=LÞZ. However, such a restriction may be toler-
able on large lattices. Also introducing twisted fermionic
boundary conditions [44,45] may provide a way to increase
the flexibility of the choice of k.

IV. LATTICE ENSEMBLE AND
DISPERSION RELATIONS

We study the new momentum smearing method on 200
effectively decorrelated configurations of Nf ¼ 2 nonper-
turbatively improved Wilson fermions with the Wilson
gluon action, generated by QCDSF and RQCD. This
constitutes a subset of ensemble IV of Ref. [46]. Note that
in hadron structure studies we typically employ several
sources on about 2000 configurations [46], i.e. the present
statistics are very moderate. Nevertheless, we will report
meaningful signals for momenta as high as 2.8 GeV. The
parameter values of this 323 × 64 ensemble read β ¼ 5.29,
κ ¼ 0.13632, corresponding to the inverse lattice spacing
a−1 ≈ 2.76 GeV and the (finite volume) pion mass

mπ ≈ 295 MeV. This gives a spatial extent L ≈
2.29 fm ≈ 3.42=mπ . Note that realizing the physical pion
mass at this lattice spacing, while keeping L≳ 3.5=mπ ,
requires L > 70a. As we are aiming at momenta exceeding
the hadron masses in any case, we do not expect qualitative
changes of results towards smaller pion masses and have
chosen the present parameters as a sufficiently realistic but
still affordable compromise.
The momentum on a finite cubic lattice with even

numbers of points N ¼ L=a in each spatial direction can
take the discrete values

p ¼ 2π

L
P; Pi ∈

	
− L
2a

þ 1;− L
2a

þ 2;…;
L
2a



:

ð37Þ

This means the smallest nontrivial jPj ¼ jð1; 0; 0Þj gives a
momentum jpj≈0.54GeV while P ¼ ð3; 3; 3Þ corresponds
to jpj ≈ 2.82 GeV.
The pion and nucleon masses have already been deter-

mined with high statistics in Ref. [47] and read

amπ ¼ 0.10675ð52Þ; amN ¼ 0.3855ð45Þ: ð38Þ

We will compare our pion and nucleon ground state
energies to expectations from continuum and lattice
dispersion relations, using these reference values. The
continuum dispersion relation reads

aE ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
: ð39Þ

In addition, we will compare the pion energies to the lattice
dispersion relation for a free naively discretized scalar
particle,

coshðaEπÞ ¼ coshðamπÞ þ
a2

2
p̂2; ð40Þ

and the nucleon energies to the dependence expected for a
free Wilson fermion with the Wilson parameter r ¼ 1, see,
e.g., Ref. [48],

coshðaENÞ ¼ 1þ ðeamN − 1þ a2p̂2=2Þ2 þ a2p̄2

2ðeamN þ a2p̂2=2Þ : ð41Þ

Above, we used the standard abbreviations

p̂μ ¼
2

a
sin

�
apμ

2

�
; p̄μ ¼

1

a
sinðapμÞ; ð42Þ

and p̂2 ¼ P
jp̂

2
j , p̄

2 ¼ P
jp̄

2
j . We remark that the mass

parameters m0 within the naive propagators (e.g., for the
scalar case: 1=ðm2

0 þ p̂μp̂μÞ) differ from the rest frame
energies by lattice artefacts. The above masses are defined
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to satisfy m ¼ Eð0Þ, as it should be. Their conversions
to m0 are given as mπ ¼ 2a−1 sinhðam0=2Þ and mN ¼
a−1 lnð1þ am0Þ, respectively.
Obviously, the continuum dispersion relation should

become violated toward large momenta. In this case, we
would not expect the lattice dispersion relations, that apply
to free pointlike particles, to accurately describe the data
either. However, the difference between the continuum and
the lattice formulas can serve as a naive estimate of the
expected size of lattice artefacts.

V. RESULTS

We first describe and check our implementation of
momentum Wuppertal smearing. Then, in Sec. V B we
optimize the smearing parameters and test the effectiveness
of the method. In Sec. V C we investigate whether
introducing an additional Lorentz contraction is advanta-
geous, before determining pion and nucleon dispersion
relations up to momenta of 1.94 GeV and 2.82 GeV,
respectively, in Sec. V D.

A. Implementation of the smearing

We iterate the momentum Wuppertal smearing on our
dþ 1 ¼ 3þ 1 dimensional gauge ensemble described in
Sec. IV, employing spatially APE smeared [13] gauge
transporters within Eq. (24). These are iteratively con-
structed as follows.

Uðnþ1Þ
x;i ¼ PSUð3Þ

�
UðnÞ

x;i þ δ
X
jjj≠i

UðnÞ
x;jU

ðnÞ
xþȷ̂;iU

ðnÞ†
xþı̂;j

�
; ð43Þ

where i ∈ f1; 2; 3g, j ∈ f�1;�2;�3g: the sum is over
the four spatial “staples,” surrounding Ux;i where, again,
we suppressed the time index as the smearing is local in
time. PSUð3Þ is a gauge covariant projector onto the SU(3)
group, defined by maximizing Retr½A†PSUð3ÞðAÞ�. We
iterate over the three diagonal SU(2) subgroups to achieve
this. Other projection possibilities can, e.g., be found in
Refs. [22,49]. We iterate Eq. (43) 15 times, using the
weight factor δ ¼ 2.5.
Momentum Wuppertal smearing Eq. (24) is imple-

mented, multiplying the APE smeared links for a given
k value by phases, Ux;j ↦ Ux;jeik·ȷ̂, and then iterating the
usual Wuppertal smearing Eq. (9) on these links. Within
this article we set ε ¼ 0.25 to obtain smooth smearing
functions at tolerable iteration counts. Starting from three
δ-functions (one for each source color b) at the spatial
position 0, we can define “wave functions” for three
different source colors,

ψab
ðkÞx ¼

X
x0;a0

ðΦn
ðkÞÞaa

0

xx0
δa

0b
x00 ; ð44Þ

and the associated gauge invariant density:

ρðxÞ ¼
P

abjψab
ðkÞxj2

a3
P

x;abjψab
ðkÞxj2

: ð45Þ

ρðxÞ does not carry any information relating to the U(1)
phases. We therefore define

φðxÞ ¼ arg

�ψ11
ðkÞx

ψ11
ð0Þx

�
∈ ½0; 2πÞ; ð46Þ

as the phase of momentum smearing, relative to the
standard Wuppertal smearing. Above, we have singled
out one particular color component but any diagonal
component will give the same phase function φðxÞ. In
the case of a free configuration, i.e. employing trivial links
Ux;i¼1, Eqs. (45)–(46) simplify since ψ11

ðkÞx¼ψ22
ðkÞx¼ψ33

ðkÞx
and color off-diagonal elements vanish. Moreover,
φðxÞ ¼ argðψ11

ðkÞxÞ in this case.
In Fig. 2 we display ρðxÞ in lattice units for the two

dimensional cross section x3 ¼ 0 and different settings.
The color encodes the phase φðxÞ. We employ n ¼ 200
momentum Wuppertal smearing iterations with ε ¼ 0.25
and set K ¼ ð1; 1; 0Þ ¼ ½L=ð2πÞ�k, i.e. k lies within the
depicted plane and its modulus is given as jkj ≈ 0.77 GeV.
Up to discretization and finite volume effects, with this
smearing we expect the free case variance σ2 ≈ ð6.3aÞ2
from Eq. (15), i.e. ρðjxj ¼ 6.3aÞ ≈ e−1ρð0Þ. In the top left
panel we show the free case result from our iterative
smearing, which is consistent with this expectation. In the
top right panel of Fig. 2 we repeat this on one time slice
of one of our gauge configurations, after having APE
smeared the gauge links. The resulting shape is slightly
narrower but otherwise indistinguishable from the free
case and almost invariant with respect to continuous
rotations. However, rotations take place in color space:
plotting individual components of qabx (not shown) gives a
less smooth behavior. In particular, the off-diagonal com-
ponents do not vanish anymore. The smoothness of the
gauge invariant density ρðxÞ means that the differences
relative to the free case can be removed almost completely
by a suitable gauge transformation.
In the bottom left panel we apply momentum Wuppertal

smearing to a time slice of the original, not APE smeared
gauge links. In this case the resulting density is less
symmetric and less smooth. As one may expect from
mean field arguments [50], the average smearing radius is
somewhat reduced in a way consistent with multiplying ε
by the fourth root of the average plaquette. Also in this
case, the U(1) phase information is intact. A comparison
with the top right panel of Fig. 2 clearly demonstrates the
advantage of additional gauge link smearing.
Finally, in the lower right panel we apply boosted

momentum Wuppertal smearing Eqs. (A6)–(A8), using
the APE smeared gauge links. We set γ ¼ 5.3, which
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corresponds to the ratio of the pion energy for a momentum
p ≈ 2k over the pion mass mπ ¼ 295 MeV. The smearing
parameter is converted according to Eq. (A10). Indeed, the
perpendicular shape in the central region is basically
unaltered relative to the top panels while in the direction
parallel to the boost the density is contracted by the γ factor.
Due to the large numerical value of this factor there are
slight deviations from the theoretical expectation but these
discretization related effects can be removed by reducing
the smearing parameter ε0 and increasing the iteration count
n, keeping σconstant, see Eqs. (15) and (A10).

B. Optimization and test of momentum smearing

We now compute smeared-point and smeared-smeared
pion and nucleon two-point functions at different lattice
momenta Eq. (37), where we denote momentum and
smearing vectors in physical units as p and k, respectively,
and integer component lattice momenta as P ¼ ½L=ð2πÞ�p.
Note that K ¼ ½L=ð2πÞ�k does not need to have integer
valued components. We (mostly) restrict ourselves to

K ¼ ζP; ð47Þ

where the naive expectation would be ζ ¼ 1=2 for the pion
and ζ ¼ 1=3 for the nucleon, see Sec. III D. From the
resulting two-point functions, we define effective energies

EH;effðp; tþ a=2Þ ¼ 1

a
ln

�
CHðp; tÞ

CHðp; tþ aÞ
�
; ð48Þ

where H ∈ fπ; Ng. For the nonperturbatively improved
action that we use, which contains a clover term that
couples adjacent time slices, the meaningful range of t
values is t ≥ 2a, i.e. we plot effective energies, starting
at 2.5a ≈ 0.18 fm.
We realized different numbers of iteration counts n both

for momentum and for conventional Wuppertal smearing.
In both cases the best results in terms of the ground state
overlaps for pions and nucleons at different momenta were
obtained within the range 200≲ n≲ 400. For the results
we present here we set n ¼ 200, ε ¼ 0.25, corresponding to
σ ≈ 6.3a ≈ 0.45 fm, see Fig. 2. We average the pion two-
point function propagating in the forward and backward
time directions (folding). For the nucleon we can only make
use of the forward correlation function, since we only
employed the projector P ¼ 1

2
ð1þ γ4Þ, see Eq. (16).

In Fig. 3 we show effective energies from smeared-
smeared two-point functions for different values of ζ. In
this case ζ ¼ 0.8 (red squares) appears to be the best
choice, however the results are relatively robust against
increasing or decreasing this by 20%. In general, at our
pion massmπ ≈ 295 MeV and momenta up to ∼3 GeV, the
optimal ζ values came out to be ζ ≈ 0.8 > 1=2 for the pion

FIG. 2. Cross sections of the smearing density profile ρðxÞ Eq. (45) in the x1 − x2 plane. The color encodes the phase Eq. (46) and the
momentum smearing k parameter has the direction (1,1,0). Top left: free field case. Top right: APE smeared gauge links. Bottom left:
original gauge links. Bottom right: APE smeared links with an additional boost factor γ ¼ 5.3.
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and ζ ≈ 0.45 > 1=3 for the nucleon. As discussed in
Sec. III D, we can only interpret k as the momentum
carried by a single quark in the noninteracting case.
Nevertheless, finding values that are larger than the naive
expectation, rather than smaller, was somewhat unex-
pected. Since the deviation from the free field case is
not uniform but bigger for the pion than for the nucleon, it
would be interesting to extend our study to non-Gaussian
smearing functions.
In Figs. 4 and 5 we compare effective pion energies from

smeared-point (SP) and smeared-smeared (SS) correlation
functions with the expectations from the continuum and
lattice dispersion relations Eqs. (39) and (40), using the
pion mass Eq. (38) (horizontal lines). Note that the SS

effective energies should be monotonous functions of t
while this need not be the case for SP energies. It is well
known that statistical errors of SP correlators are smaller
than in the SS case and we also confirm this. For the
momentum smeared two-point functions the data are
consistent with plateaus for t≳ 0.5 fm and we find agree-
ment with the expectations. For jpj ≈ 0.94 GeV (Fig. 4)
also the effective energies from conventionally smeared
two-point functions are consistent with the expectation,
however, the errors are too large to allow for quantitatively
meaningful statements. For jpj ≈ 1.88 GeV (Fig. 5), within
our statistics of one source position on 200 gauge con-
figurations, it turned out to be impossible to obtain effective
energies without momentum smearing at all.
The same comparison is shown for the nucleon in Figs. 6

and 7, where in Fig. 7 we also include a momentum as
high as jpj ≈ 2.82 GeV. In this case we show the lattice
dispersion relation Eq. (41) of a free Wilson fermion with

FIG. 3. Effective pion energies for P ¼ ð1; 1; 0Þ, corresponding
to jpj ≈ 0.94 GeV and different ratios ζ, see Eq. (47). The line is
the expectation from the continuum dispersion relation. Symbols
are shifted horizontally to enhance the legibility.

FIG. 4. Effective pion energies Eq. (48) for the lattice mo-
mentum P ¼ ð1; 1; 1Þ, corresponding to jpj ≈ 0.94 GeV. In the
case of momentum smearing (squares), we set K ¼ ζP with
ζ ¼ 0.8. Solid symbols correspond to smeared-smeared, open
symbols to smeared-point two-point functions. Some data points
are shifted horizontally to enhance the legibility. The expectations
from the continuum and lattice dispersion relations can be found
in Eqs. (39) and (40), respectively. Symbols are shifted horizon-
tally for better legibility.

FIG. 5. The same as Fig. 4 for P ¼ ð1; 1; 1Þ, corresponding to
jpj ≈ 1.88 GeV. The effective energies without momentum
smearing cannot be determined, due to prohibitively large errors
and nonmonotonous behavior of the central values of the
respective two-point functions.

FIG. 6. The same as Fig. 4 for the nucleon and ζ ¼ 0.5. The
horizontal lines correspond to the expectations from the con-
tinuum and lattice dispersion relations Eqs. (39) and (41),
respectively.
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the nucleon mass given in Eq. (38). The statistical errors of
the momentum smeared data again are much smaller than
for the nonmomentum smeared cases. Like for the pion, it
was impossible within our statistics to extract effective
energies for momenta larger than 1.5 GeV. At jpj ≈
0.94 GeV the data agree with the expectation for t≳
0.6 fm while for the higher momenta, where the statistical
errors are larger, the data are consistent with plateaus
starting at t≳ 0.45 fm. For the high momenta shown in
Fig. 7 the data seem to prefer the continuum dispersion
relation over the lattice dispersion relation Eq. (41).
It is clear from the results shown above that the gain of

using momentum smearing is tremendous. The only draw-
back, in addition to the computational overhead from the
smearing itself, is that each value of the parameter k
employed at the source requires us to recompute the
respective quark propagator. A natural question therefore
is whether it is possible to efficiently realize several
momenta p using one and the same smearing vector k.
We already know from Fig. 3 that for p∥k the proportion-
ality constant ζ defined in Eq. (47) can be varied by about
20% without a significant deterioration and by much more
if one is willing to accept a compromise: comparing Fig. 3
with Fig. 4 reveals that even a much less than perfect
momentum smearing is a tremendous improvement over
the conventional ζ ¼ 0 case. We may also ask whether it is
possible to (slightly) vary the direction of p relative to k.
This of course is potentially dangerous since the interpo-
lator used will not transform anymore according to an irrep
of the little group of Oh (or its double cover), associated to
the momentum direction. However, if for instance we are
only interested in the ground state mass of a spin-0 or spin-
1=2 hadron this should not be a major problem. Figure 8
demonstrates that to a certain extent varying the momentum
direction for a fixed k appears feasible too. In all the cases
shown it is impossible to extract any meaningful effective
energies without momentum smearing.

C. Test of boosted (momentum) smearing

It has been suggested by two groups [32,33] that
introducing an anisotropy and thereby Lorentz boosting
the smearing function may improve the overlap of high
momentum interpolators with the respective hadronic
ground states. We generalize these ideas to off-axis
momentum directions, also incorporating phase factors,
in the Appendix, see Eqs. (A6)–(A10). Length contractions
depend on the choice of coordinates and in particular on
time differences in the moving frame relative to the rest
frame. Since in Euclidean spacetime all distances are
spacelike and any real time information is lost, it is not
clear to us why spatial distances should be subjected to a
Lorentz boost. Our numerical observations are negative.
In Fig. 9, which is representative for our experiences,

we show effective pion energies for P ¼ ð3; 0; 0Þ,
corresponding to jpj ≈ 1.63 GeV and a boost factor

FIG. 7. The same as Fig. 6 for P ¼ ð2; 2; 2Þ (ζ ¼ 0.4) and P ¼
ð3; 3; 3Þ (ζ ¼ 0.44), corresponding to jpj ≈ 1.88 GeV and
jpj ≈ 2.82 GeV, respectively. Again, the conventional Wuppertal
smearing data are too noisy to allow for the extraction of effective
energies.

FIG. 8. The nucleon smeared-smeared effective energy with
one and the same momentum smearing K ¼ ð0.8; 0.8; 0.8Þ,
optimized for P ¼ ð2; 2; 2Þ, but for momenta pointing into
different directions. Symbols are shifted horizontally for better
legibility.

FIG. 9. Effective smeared-smeared pion energies for
P ¼ ð3; 0; 0Þ, corresponding to jpj ≈ 1.63 GeV: momentum
smearing with the optimized parameter ζ ¼ 0.8 and boosted
momentum smearing Eq. (A6) for γ ≈ 5.6 with ζ ¼ 0.5, 0.8, 0.
Symbols are shifted horizontally for better legibility.
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γ ¼ EπðpÞ=mπ ≈ 5.6, close to the one that corresponds to
the bottom right panel of Fig. 2 (γ ¼ 5.3). In this case it
was again not possible to extract effective energies using
the conventional Wuppertal smearing. All Lorentz con-
tracted (boosted) interpolators give results much inferior
to the one obtained using the unboosted momentum
smearing. This also holds for different contraction factors
1=γ (not shown). At the same time the boost enhances the
signal relative to unboosted Wuppertal smearing, without
the momentum phase factor. In the figure we show
boosted smearing results for different momentum shifts:
k ¼ 0, the naive expectation k ¼ 0.5p and the case that is
close to optimal without the boost applied, k ¼ 0.8p. We
find the effective energies and their uncertainties are quite
insensitive to the k value. This is not surprising since the
support of the smearing function in the direction of the
momentum is quite small. At the same time this small
support may explain why the boost outperforms conven-
tional Wuppertal smearing as broad wave functions are
disfavored at high momenta, unless the k vector is
introduced, see Eq. (29).
In summary, substantially contracting the smearing

function in the direction of the momentum ameliorates
the phase mismatch discussed in this article. Therefore,
some improvement over the conventional isotropic smear-
ing case can be achieved. However, only momentum
smearing correctly accounts for this effect and we see
no indication that injecting a momentum alters the optimal
shape of the modulus of the smearing function Eq. (45).

D. Comparison with dispersion relations

Our main aim here was to demonstrate the effectiveness
of momentum smearing. For this purpose it was sufficient
to consider only one source position on 200 individual
gauge configurations. The present state-of-the-art, how-
ever, is to realize multiple sources on ten times as many
configurations. In the near future we will compute a
multitude of physically interesting observables with
enhanced statistics. The masses shown in Eq. (38) were
already obtained with high statistics and in Figs. 3–9 we
have compared effective energies against the continuum
and lattice dispersion relations Eqs. (39)–(41), using these
values.
In all cases the smeared-smeared effective energies from

optimized momentum smearing were in agreement with
plateaus from t ≥ tmin ¼ 8.5a ≈ 0.61 fm onwards, where
t ¼ 8.5a corresponds to the effective energy obtained
from the correlation function at 8a and 9a, see Eq. (48).
In many cases tmin could be chosen smaller. For the moment
being, we conservatively approximate the energies by
EHðpÞ ≈ EH;effðp; tminÞ. The results as a function of p are
shown in Figs. 10 and 11 and compared to the dispersion
relation expectations. We also display results obtained with
conventional smearing for small momenta where this is
possible. For the two-point functions studied here the

precision of the conventional results can be improved at
little computational overhead by averaging over (for the
absolute momentum values shown) six, eight or twelve
equivalent directions. We have not done this, to allow for a
“fair” comparison of the efficiency of the smearing meth-
ods. It is clear from the figures, however, that the max-
imally possible error reduction, assuming different
momentum direction results to be statistically uncorrelated,
would not affect any of our conclusions.
We do not expect either parametrization shown in

Figs. 10 and 11 to perfectly describe the data as the lattice
dispersion relations are for point particles, assuming a
particular form of the effective Lagrangian. However,
differences between the two functions are indicative for
the size of possible lattice effects. While in the pion case
differences between the parametrizations are on the present
level of statistics insignificant, the nucleon data appear to
be better described by the continuum dispersion relation. In
the near future we will further investigate this, increasing
our statistics and also employing a different smearing as
described in Sec. III E.

FIG. 10. Pion energies for different lattice momenta. in com-
parison to the continuum (solid curve) and lattice (points
connected by dotted lines) dispersion relations Eqs. (39) and (40).

FIG. 11. Nucleon energies for different lattice momenta. in
comparison to the continuum (solid curve) and lattice (points
connected by dotted lines) dispersion relations Eqs. (39) and (41).
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VI. CONCLUSION

In many lattice gauge theory applications hadrons
carrying high momenta are required. Due to the exponential
increase of relative errors of n-point functions with
Euclidean time distances and diminishing ground state
sampling, high momenta previously were very difficult or
impossible to achieve. In Sec. II we have introduced a new
class of quark smearing methods for the construction of
hadronic interpolators that address and substantially mit-
igate these problems. One particular realization of these
methods, that is trivial to implement and comes with very
little computational overhead, is momentum Wuppertal
smearing, defined in Eq. (24). We tested this very success-
fully in Sec. V B, enabling us to determine pion and
nucleon energies for momenta as high as almost 2 GeV
and 3 GeV, respectively, with just 200 measurements, see
Figs. 10 and 11. These figures also include a comparison
with the conventional method.
In Sec. V C we investigated the possibility of introducing

an (additional) Lorentz boost [32,33]. With and without a
momentum phase factor included, this gave some
improvement over unboosted Wuppertal smearing, pos-
sibly due to a dampening of the phase mismatch by the
more rapid falloff of the interpolating wave function in the
direction of the momentum. However, the results obtained
were inferior to those of momentum Wuppertal smearing,
without any boost applied. We conclude that the intuition
of contracting the wave function may be unjustified since
the hadron is moving in real time but not in imaginary
(Euclidean) time.
Iterative methods (momentum smearing or not) suffer

from high iteration counts n ∝ a−2 as the continuum limit
a → 0 is approached, in addition to the naive volume factor
due to an increasing number of lattice sites. Therefore, in
Sec. III E we introduce other noniterative (momentum)
smearing methods that may be more suitable for small
lattice spacings and that also allow for the construction of
non-Gaussian shapes. These will be used by us in the near
future.
Realizing momenta that are much larger than the hadron

masses of interest is of fundamental importance in several
modern applications, e.g., in direct determinations of
(quasi) distribution amplitudes [10–12], of (quasi) (gener-
alized) parton distributions [6–9] and moments of trans-
verse momentum distributions [2–5]. The new method
allowed us to extract nucleon masses (employing very
moderate computational resources) up to momenta
p2 ≈ 7.9 GeV2. This clearly makes the above observables
amenable to lattice simulations in a realistic setting. For
three-point functions, these methods potentially even allow
for virtualities Q2 ¼ 4p2 ≈ 30 GeV2, switching a source
momentum of −p into a sink momentum of þp. The
computation of these quantities with the new smearing is,
depending on the observable, either in progress or planned.
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APPENDIX: BOOSTED
(MOMENTUM) SMEARING

We describe how we introduce an anisotropy into
(momentum) Wuppertal smearing to introduce a Lorentz
contraction of the smearing function [32,33] along the
momentum direction proportional to 1=γ, where in the
continuum

γ ¼ EðpÞ=m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

m2

r
≥ 1: ðA1Þ

Note that m above denotes the hadron mass and the hadron
momentum p differs from the momentum smearing param-
eter k. We remark that as we are using equal Euclidean time
interpolators there is no compelling reason why such a
boost should be applied.
In order to “boost” the smearing function we need to

replace

∇þ ik ↦

�
∇∥

γ
þ ∇⊥

�
þ i

�
k∥
γ
þ k⊥

�
ðA2Þ

within Eq. (23), where ∇∥ ¼ eðe · ∇Þ, ∇⊥ ¼ ∇ − ∇∥ and

e ¼ p
jpj ¼

k
jkj : ðA3Þ

For the Laplacian this means

Δ ↦
∇2
∥

γ2
þ ∇2⊥ ¼

�
1

γ2
− 1

�
∇2
∥ þ Δ; ðA4Þ

where
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∇2
∥ ¼

X
i;j

eiej
∂
∂xi

∂
∂xj : ðA5Þ

One can easily derive a corresponding iterative smearing:
Generalizing Eqs. (9)–(14) and (24), we obtain

ðΦγ
ðkÞqÞx¼

1

N

	
qxþε0

�X�d

j¼�1

NjjjUx;jeik·ȷ̂qxþȷ̂

þ
�
1− 1

γ2

� Xd
i≠j¼1

eiej
2

ðUx;jUxþȷ̂;−iþUx;−iUx−ı̂;jÞ

×eik·ðȷ̂−ı̂Þqxþȷ̂−ı̂
�


; ðA6Þ

where

Nj ¼ Njðγ; eÞ ¼ 1þ
�
1

γ2
− 1

�
ej
Xd
i¼1

ei: ðA7Þ

The (arbitrary) normalization factor

N ¼ Nðε0; γÞ ¼ 1þ 2ε0
�
d − 1þ 1

γ2

�
ðA8Þ

follows in the free case and is kept to avoid numerical
overflow for high iteration counts. Like Eq. (24) this is

most easily implemented, replacing the (APE smeared)
links Ux;j by Ux;jeik·ȷ̂ and then iterating Eq. (A6), using
these modified transporters, instead of multiplying in the
additional phase factors.
We remark that if the momentum is chosen parallel to a

lattice axis, the second sum within Eq. (A6) vanishes. In
this case the only differences with respect to the momentum
Wuppertal smearing defined in Eq. (24) are that shifts in
this direction carry a suppression factor 1=γ2, the normali-
zation factor N and ε0 ≠ ε.
The free field solution for n iterations of Eq. (A6) is a

Gaussian with a phase factor eik·x and variance,

σ2 ¼ 2na2
ε0

Nðε0; γÞ ; ðA9Þ

in the directions perpendicular to the momentum, see
Eq. (15). Parallel to the momentum the width is reduced
by a factor 1=γ, as it should be. The perpendicular
variance above can be kept fixed, equating ε0=N with
ε=ð1þ 2dεÞ. The resulting relation between the γ ¼ 1
smearing parameter ε and the boosted parameter ε0
reads:

ε0 ¼ ε

1þ 2εð1 − 1=γ2Þ ≤ ε: ðA10Þ
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