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We present an analytic description of numerical results for the ghost propagator G(p?) in the minimal
Landau gauge on the lattice. The data were produced in the SU(2) case using the largest lattice volumes to
date, for d = 2, 3 and 4 spacetime dimensions. Our proposed form for G(p?) is derived from the one-loop
relation between ghost and gluon propagators, considering a tree-level ghost-gluon vertex and our
previously obtained gluon-propagator results [A. Cucchieri et al, Phys. Rev. D 85, 094513 (2012).
Although this one-loop expression is not a good description of the data, it leads to a one-parameter fit of our
ghost-propagator data with a generally good value of ¥?/d.o.f., comparable to other fitting forms used in
the literature. At the same time, we present a simple parametrization of the difference between the lattice

data and the one-loop predictions.
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I. INTRODUCTION

An analytic description of propagators and vertices of
Yang-Mills theories—at the nonperturbative level, in a
given gauge—is a possible starting point for understanding
the relevant features of these theories and, in particular, the
phenomenon of color confinement [1-4]. From this point of
view, the first natural step is the study of the infrared (IR)
behavior of the gluon propagator D(p?) and of the ghost
propagator G(p?) as functions of the momentum p. In the
last 30 years, many numerical and analytic studies have
addressed this issue in Landau gauge, in two, three and four
spacetime dimensions (see, for example, the reviews [4-9]
and references therein). All the numerical studies, usually
done for pure SU(2) and SU(3) lattice gauge theories,
now agree that, in three and in four spacetime dimensions
[10-21], the gluon propagator is IR-finite and the ghost
propagator is freelike in the same limit. On the contrary, in
the 2D case [10,14,15,18,22,23], the gluon propagator goes
to zero at small momenta and the ghost propagator is
IR-enhanced. In the former case, the numerical data can
be related to the so-called massive solution of the Dyson-
Schwinger equations [24-31], while in the latter case one
should refer instead to the so-called scaling solution of
these equations [1,32-38]. The two different types of
solutions can also be related to the Gribov-Zwanziger (GZ)
[39-45] and Refined GZ (RGZ) [46-52] approaches, which
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correspond, respectively, to the scaling and to the massive
behaviors for the gluon and ghost propagators in the deep
IR limit."

In Refs. [10,18] we have presented an analytic
description of lattice data [12,14] for the SU(2)
Landau-gauge gluon propagator D(p?) in two, three
and four spacetime dimensions d. For the cases d =3
and 4, the numerical data can be well fitted using tree-
level predictions of the RGZ approach, i.e. considering
sums of propagators of the type a/(p* + @), where a
and w are in general complex constants.” On the contrary,
in the 2D case, no such predictions are available [48],
and the data may be fitted using a noninteger power of p
in the numerator of D(p?). These fitting forms have
subsequently been used in Ref. [64] to evaluate the one-
loop-corrected ghost propagator G(p?) and to analyze
the behavior of the so-called Gribov ghost form factor
o(p?), defined by

1.e.,

'The interested reader should see Refs. [53-63] for other
approaches and points of view on the scaling and/or the massive
solutions.

Let us mention that this proposed behavior for the gluon
propagator, i.e. a pole structure with complex-conjugate masses
(with comparable real and imaginary parts), can be interpreted as
describing an unstable particle. This is discussed in Ref. [10],
where we also compute the resulting mass and decay width for
the gluon in the 4D case.

© 2016 American Physical Society
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o(p?) =1-[p*G(pH)]™". (2)

Using these analytic results one can show that, consid-
ering the bare coupling constant g> as a free parameter,
the massive solution G(p?)~ 1/p?, corresponding to
6(0) < 1, is obtained for all values of ¢> smaller than
a “critical” value g2. At g2, one has ¢(0) =1 and the
ghost propagator is IR-enhanced. These findings confirm
that, in the Dyson-Schwinger-equation approach, the
ghost propagator admits a one-parameter family of
behaviors [65-68], labeled by the coupling constant g°.

In this work we present the final step of our analysis,
using the one-loop results for G(p?) of Ref. [64] as
theoretical predictions for the analytic modeling of numeri-
cal data [12,15] for the ghost propagator in Landau gauge
in two, three and four spacetime dimensions. (Similar
studies have been presented in Refs. [69-71] for the
four-dimensional case.) We find that the proposed analytic
forms do not yield a good description of the ghost-
propagator data. This is in agreement with Refs. [69-71].
Nevertheless, by treating ¢g> as a free parameter in these
forms, one obtains fits of G(p?) with generally good values
of y?/d.o.f., comparable to other fitting forms used in the
literature (see e.g. [15,27]). Finally, we attempt a simple
parametrization of the difference between the lattice data
and the one-loop predictions, which turns out to be very
similar for the d =2, 3 and 4 cases. This supports a
possible interpretation of the physical effects that are
missing in the one-loop results [69-72].

The paper is organized as follows. In the next section, we
recall the main results of Refs. [10,18,64] and, in particular,
the formulas used in our analysis of the ghost propagator.
Then, in Sec. III, we present and discuss the fits to the
lattice data. Last, in Sec. IV, we outline our conclusions.

I1. ONE-LOOP PREDICTIONS

As already explained in the Introduction, in Refs. [10,18]
the SU(2) gluon propagator has been fitted in d = 3, 4 and
2 using, respectively, the functions’

(p*+s)(p*+ 1)

D(p*)=C , 3
) =iy O
2

p-+s
D(p)=C—— "~ 4
(P) p4—|—u2p2+l‘2 ()

and

2 Ip"

p(p?)=c LS (5)

ptHulp? + 127

The first two propagators are tree-level expressions
obtained in the RGZ approach [46-52], while the last

*Note that, here and in the following, we choose to present
results for the 3D and 4D cases before the 2D case.
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formula is a simple generalization of the form in Eq. (4).
Note that these three functions can be expressed as linear
combinations of propagators of the type 1/(p* + @?),
where @” is in general a complex number. In particular,
Egs. (3) and (4) can be rewritten, respectively, as

a p 4
D(p?) = 6
v o pPray pPtal (6)

and

o, a_
=2 7+ 2
p-t+wiy pTt+ o

D(p?) (7)

The fits to the data [10,18] suggest that, in the 3D case [see
Eq. (6)], one root is real, for example w;, while the other
two roots are complex-conjugate, i.e. (w3)* = @3, imply-
ing also f = y*. Similarly, in the 4D case [see Eq. (7)], one
finds, by fitting the lattice data, that @? are complex-
conjugate roots, i.e. > = (w?)* and a_ =a’. On the
other hand, in the 2D case we need to consider the more
general form p"/(p* + ®*) with n > 0. Indeed, one can
rewrite Eq. (5) as

a_ —icp"
PP+’

_ag, +icp'
- prted

D(p?) , (8)

where c is real, a_ = o, and @? = (w%)*. Estimates for
the fitting parameters of the functions (3)—(8) can be found,
respectively, in Tables IX, II, XII, XI, IV and XIV
of Ref. [10].

Using the notation of Ref. [64], the one-loop-corrected
Landau-gauge ghost propagator can be evaluated [for the
SU(N,) gauge group in the d-dimensional case] using the
relation

1 5% 1 o
G(pZ) :?_N% - ?ngadcfcdh
d? 1
< | G P L@ 2 (9

where 5’D(¢*)P,,(g) stands for the gluon-propagator
forms described above and P,,(q) = (8,, — 9,4,/4%) is
the usual projector onto the transverse subspace. Here we
have considered the tree-level ghost-gluon vertex igf*p,,
where p is the outgoing ghost momentum. The color
indices a, d, c refer, respectively, to the incoming ghost,
to the gluon and to the outcoming ghost. Then, using for the
gluon propagator the expressions (6)—(8) above and writing
G(p?) as in Eq. (1), one can show [64] that the Gribov
ghost form factor (p?) is given in three, four and two
spacetime dimensions by the formulas reported in the
subsections below.
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A. The three-dimensional case

Assuming (see above) that @, and « are real and writing
the remaining fitting parameters of Eq. (6) as

p=a+ib, y=a—ib (10)
and
w3 = v+ iw, w3 =v—iw, (11)
we obtain [64]
o (p?) = gZéVc [aigrl)ajé;%) +fR(P2)] , (12)

where

s(p?.@?) = —ap* +2p°V w® - 2p(a?)*?

+2(p* + w?)? arctan <\/%) (13)

fr(P?) = F1(p?) + f2(P?) + £3(P?) + f4(p?) + f5(P?)
(14)

with
R= V0 +w, (15)
fi(p?) = —p%, (16)
£(p?) = (av + bw)v/R —I—\;}Z—ﬂifv —aw)VR - v (17)
1 avR+v—bvR—v

fsp?) =5 VR ﬁﬂ\/ . (18)

B p*(av + bw) + 2ap’R? + R?*(av — bw)

falp?) = A7) 27R?p3 )
(19)

4 2 p2 2
p*(bv —aw) 4+ 2bp*R* + R*(bv + aw
fs(Pz) [ (pZ) ( ) ( )

27R?p?
(20)
and
arctan (‘/EI’;_; Vp’i“) ifR—p>>0
A(p?) = i ., (21)
7 + arctan (1?—7 sz”) if R—p?> <0
1 3 3
\Vp*+2p v+ R
L(p?) = ln[ } ) 22
) R+ p(p+V2VR =) 2
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B. The four-dimensional case

By working in the MS scheme, using dimensional
regularization and writing the fitting parameters of
Eq. (7) as a; = a = ib and wi = v % iw, one finds [64]

— 2N
N (P?) = 5z PP (P7) + B(p?) + p6(p)
— 1 (p?) (23)

with R defined in Eq. (15),

t1(p?) = (av + bw)[£5(p?) + £53(p?)]
- (bv - aw) [01(172) - az(Pz)]v (24)

t(p?) = a5+ ¢1(p?) + £2(p?) + £3(p?) — 444(p?)]
= bla\(p?) = ay(p?) = 4az(p?)], (25)
3(p?) = [1 = 345(p?)](av® — bwv? + vaw? — bw?)
—3ay(p?)(bv® + awv® + vbw? + aw?),  (26)

t4(p?) = £5(p?)(av* = 2wbv® — 20bw?* — aw®)
+ ay(p?) (bv* + 2awv? + 2vaw® — bw*)  (27)

and
207 = (75 (29)

() = m (ML) g

) =PRI )

() = arctan (). ()

() —aweun(F L)

as(p?) = arctan (). (34

The above result for o}¥5(p?) cannot, however, be
directly compared to the lattice data, since the MS scheme
is defined only at the perturbative level. Thus, in order
to make this comparison in the next section, we use a
momentum-subtraction (MOM) renormalization scheme

defined by
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1 1
_ GMOM (pZ) | 5 —
i

MOM ( .2 _
D (p )|p2 e p=pt =

(35)

=2 =

The MOM-scheme condition for the gluon propagator
affects only the global multiplicative factor C in Eq. (4),
or the parameters a. in Eq. (7). As a consequence [see

Egs. (23)—(34)] the quantity o}1(p?) also gets modified
by a global factor. At the same time, we can transform
the above MS result for G(p?) into the MOM scheme
by writing4

1

GMOM(p?) = (1= aAS(p?) +hE@)]™, (36)

where the parameter h(ii?) is fixed by imposing the
MOM-scheme condition (35), i.e.

oS (7%) = h(@?). (37)

C. The two-dimensional case
In the 2D case one finds [64]

o (p?) = ¢*Nla f(p*. 02 ) + a_f(p* o)
+icf(p?.a? . n) — icf(p* w?.n)] (38)

11 p*\ , 1 W’
f(p,@?) =% [?ln (1 —l—;) —l—;ln (1 —i—Fﬂ (39)

N2 T2 1 2 2
T (0*)"* [p* + @ o o n
= B ==, 14=
Fp, @) dznp? [ @? <p2+w2 2 +2)
—B(l—Z,lJrZ } (40)
Here,

B(x;a,b) = /x dere= (1 = £)P~! (41)

0

is the incomplete Beta function, which is defined for «,
b > 0 [73], implying 2 > 5 in our case, and B(a,b) =
B(1;a,b) is the Beta function. Then, by writing a. =
a + ib and @} = v & iw one gets for the first two terms of
Eq. (38) above the expression

“This corresponds to a one-loop (finite) shift in the renorm-
alization factor of the ghost propagator.
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(7702 + 0 (Pt = af(07) - basp7)
sl bw)s(p7)

~r-amas(?)] | (42

where

4 v 2 2
f5<p2>—1n(”’ . +R) 43)

and R, Z3(p?), a,(p?) and as(p?) have already been
defined in Egs. (15), (30), (33) and (34). We also have

icf(p*, 0%, n) —icf(p* @k, n) = =2e3[f(p2 a2, 1)),
(44)

where we have indicated with J the imaginary part of the
expression in square brackets.

III. FITS TO GHOST-PROPAGATOR DATA

The data for the ghost propagators G(p?) ind = 3, 4 and
2 have been evaluated for essentially the same set of lattice
parameters considered for the gluon propagator D(p?) in
Refs. [10,18]. A summary of the various lattice setups is
presented in Table I. More details about the numerical
simulations can be found in Ref. [10]. These simulations
[12,14,15] have been done in 2007 using, in 3D and in 4D,
the 4.5 Tflops IBM supercomputer at LCCA-USP and, in
the 2D case, a PC cluster at the IEFSC-USP. In all cases we
set the lattice spacing a by relating the lattice string tension
\/Olan to the physical value (/o ~0.44 GeV, which is a
typical value for this quantity in the 4D SU(3) case. For
/01 We used the results described in [74-76], respec-
tively, for d = 3, 4 and 2. Note that all runs are in the
scaling region and all data refer to the SU(2) case. Possible
systematic effects due to Gribov copies [17,77-82] or
unquenching effects [83—87] were not considered.

Let us also recall that the Landau-gauge ghost propagator
G(p?) is obtained by inverting the lattice Faddeev-Popov
matrix M (b, x;c,y) and is given by

o27ip-(x=y) /N

G (P =) ———

X,y

(M (b,x;¢.y)) =6“G(p?).

(45)

where b and c¢ are color indices and () stands for the path-
integral average. The inversion of the Faddeev-Popov
matrix is obtained by using a conjugate gradient method
with even/odd preconditioning and point sources [88,89].
For the lattice Faddeev-Popov matrix we consider Eq. (22)

094513-4
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TABLE L.

PHYSICAL REVIEW D 93, 094513 (2016)

For each lattice volume V and lattice coupling  we indicate the number of configurations considered, the value of the lattice

spacing a in fermi, the lattice size L (also in fermi), the value of the smallest nonzero momentum p;, = 2sin(z/N)/a (in MeV) and the
coefficient r that allows the largest reduction of the rotational-symmetry-breaking effects [see Eq. (47) and explanation in the text].

vV = N¢ B # confs a (fermi) L = Na (fermi) Prmin MeV) r

1403 3.0 626 0.268 37.5 33.0 0.018
2003 3.0 484 0.268 53.6 23.1 0.006
2403 3.0 343 0.268 64.3 19.2 0.000
320° 3.0 122 0.268 85.8 14.4 0.012
484 2.2 99 0.210 10.1 122.7 0.017
564 2.2 100 0.210 11.8 105.2 0.007
644 2.2 100 0.210 134 92.1 0.047
80* 2.2 97 0.210 16.8 73.7 0.021
1284 2.2 21 0.210 26.9 46.0 0.012
802 10.0 600 0.219 17.5 70.6 0.006
1202 10.0 600 0.219 26.3 47.1 0.005
1602 10.0 600 0.219 35.0 35.3 0.008
2007 10.0 600 0.219 43.8 28.3 0.001
2407 10.0 600 0.219 52.6 23.5 0.015
2807 10.0 600 0.219 61.3 20.2 0.000
3202 10.0 600 0.219 70.1 17.7 0.008

in Ref. [90]. At the same time, the momentum components
p, are given by

p, = 2sin (%) (46)

and i)” takes the values O, 1, ..., N — 1. However, since the
Faddeev-Popov matrix has a trivial null eigenvalue corre-
sponding to a constant eigenvector, one cannot evaluate the
ghost propagator at zero momentum, i.e. with p, = 0 for
all directions p. For the nonzero momenta, we considered in
2D all momenta with components (p,0) and (p, p), plus all
possible permutations of the components. Similarly, in 3D
and in 4D we present results for momenta of the type
(7.0.0), (p.p.0). (p.p.p) and of the type (p.0.0.0),
(P, p.0,0), (p,p, p,0) and (p, p, p, p), respectively.’

Finally, we recall that the best fits for the gluon
propagator data, reported in Refs. [10,18] and used here
as theoretical inputs, were obtained by considering this
propagator as a function of the improved magnitude
squared of the momentum [91]

PP=>_pi+ry ph. (47)
I T

with r =1/12~0.083. This allows a better control of
systematic effects—related to the breaking of rotational
symmetry [91-93]—than the usual unimproved definition

5Again, for each kinematic setup, we consider all possible
permutations of the momentum components. When permutations
of the momentum components were available, the average over
different permutations was taken independently for each con-
figuration.

p? = Zp,% (48)

On the other hand, for the ghost propagator, the data are
generally smoother when using the above unimproved
definition,’ or a very small value of r. In order to verify
this, we have considered the momentum behavior of the
Gribov ghost form factor ¢(p?) [defined in Eq. (2)] as a
function of the improved magnitude squared of the
momenta (47) for 100 different values of the parameter
r, ie. r=0,0.001,0.002,0.003, ...,0.099. For each of
these values, we used a cubic spline interpolation to
obtain a description of the ghost-propagator data along
the diagonal momentum direction,’ i.e. for p,=p and
u=1,...,d. Then we have evaluated the goodness of the
fit, i.e. the reduced chi-squared statistic y”>/d.o.f., by
comparing this interpolated curve with ghost-propagator
data off the diagonal-momentum direction, i.e. with at least
one momentum component equal to zero. In the last
column of Table I, we report, for each lattice volume V
and lattice coupling f, the value of the parameter r that
yields the smallest value for the reduced chi-squared
statistic. As one can clearly see, these values of r are very
small for most of the cases considered. We also show in
Fig. 1 the average value (over all lattice volumes V and f
values considered) of y?/d.o.f. as a function of the
parameter r. Again, we see that for small values of r the

®This is probably related to the fact that the ghost propagator
G(p?) [see Eq. (45)] does not depend explicitly on the Lorentz
index p.

"This direction is usually less affected by rotational-symmetry-
breaking effects [92,93].
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FIG. 1. Plot of the average reduced chi-squared statistic
y%/d.of. as a function of the parameter r [see Eq. (47) and
explanation in the text]. The average is taken over all lattice
volumes V and S values considered.

x*/d.o.f. curve is almost flat, with a minimum value around
r =0.01, and that for » > 0.03 the average value of the
reduced chi-squared increases almost linearly. The effect of
using a large value of the parameter r can also be clearly
visualized in the plots reported in Fig. 2, where we show the
data for # = 2.2 and our largest 4D lattice V = 128* as a
function of unimproved momenta (left plot) and as a
function of “improved” momenta® with r = 1/12 (right
plot). Indeed, the spread of the data points is clearly larger
in the second case. Thus, for simplicity’s sake, we will
consider below all the ghost-propagator data as a function
of the unimproved momenta [see Eq. (48)]. One should, of
course, try to reduce discretization effects in order to obtain
results closer to the continuum formulation of the theory,
but we must note that different lattice quantities are subject
in general to different such effects. Thus, it is not surprising
that gluon and ghost propagator data require different
definitions of the lattice momenta when one tries to
connect lattice data to the continuum analysis carried out
in Ref. [64].

In the next three subsections we present the modeling
of the numerical data for G(p?). In analogy with the
presentation of the one-loop calculations in Sec. II, we
first give our results for the 3D case, then for the 4D case
and, finally, for the 2D case. Let us note that finite-size
effects for G(p?) are generally negligible. This can be

This value of r is usually employed in fits of the gluon
propagator (see e.g. [10]).

PHYSICAL REVIEW D 93, 094513 (2016)

seen in Figs. 3, 4 and 5, where G(p?) is plotted for
three different lattice sizes, respectively, for d = 3, 4 and
2. We also remark that the use of the point-source
method in the evaluation of G(p?) leads to the slight
“wiggling” of the lattice data seen in the three plots
above (see Ref. [89]). Thus, in the following, we
will always use the largest lattice volume available
for each dimension d. Also, in all cases we will show
the data (multiplicatively) normalized to 1/i> for
p=pu=25GeV.

The analytic expression proposed for the ghost propa-
gator will be cast in the form of Eq. (1), using in each
dimension d the corresponding one-loop results [64] for
the Gribov ghost form factor o(p?) listed in Sec. II above.
The parameters in o(p?) will be taken from the gluon-
propagator results obtained in Refs. [10,18]. Then, the
only parameter left is the bare coupling constant g*. As
explained below, ¢> is set in the 3D and 2D cases by
considering its relation to the string tension /o, while in
the 4D case we adopt the value of ¢?(ii?) at the scale j in the
MOM scheme.

In order to normalize the analytic expressions for G(p?)
consistently with the lattice data, we consider two pos-
sibilities. In the first case, we take

_ 1-0o(@)
pll—a(p?)]
Alternatively, as already discussed above in Sec. II B, one

can normalize G(p?) by adding a constant to o(p?), i.e.
considering

Fi(p?) (49)

1
p*1—o(p?) +o(@?)]

Fy(p?) = (50)

Let us stress that, with the parameters fixed as above, these
functions are not fitting forms, but analytic predictions
for G(p?) from previously obtained (gluon-propagator)
results. These will allow a good description of the lattice
data in the ultraviolet (UV) regime only. Nevertheless, by
treating ¢ as a free parameter in the above formulas
and keeping the remaining parameters fixed, one obtains
good-quality fits for the whole range of data in all cases.
We indicate the corresponding fitting forms by F,(p?)
and F,(p?).

A. The three-dimensional case

As discussed above, we now try to describe the ghost-
propagator data in d = 3 by considering the Gribov ghost
form factor o(p?) given by o, (p?) [see Egs. (12)—(22)].
We set the parameters @, @, a, b, v, w to the values
obtained in Refs. [10,18] by fitting the gluon propagator.
In particular, we use the values reported in Table XI of
Ref. [10] (from a Monte Carlo analysis), i.e.
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FIG. 2. Plot of the Gribov ghost form factor o(p?) [see Eq. (2)] for the lattice volume V = 128* at # = 2.2, as a function of
unimproved momenta [see Eq. (48)] (left plot) and of improved momenta [see Eq. (47)] with » = 1/12 (right plot). In both plots, red data
points correspond to momenta along the diagonal direction (p, = p foru = 1, ..., 4), while green data points correspond to off-diagonal
momenta. All momenta are in physical units. Error bars have been estimated using propagation of errors.

a=0216(2) GeV,
v =0.215(5) GeV?,
a = —0.024(5) GeV,

b =0271(3) GeV.
w = 0.580(6) GeV?,
@} = 0.046(4) GeV2.  (51)

10000 | .
1000 | . .
_0f 5 ]
o
R
(O]
10 |
1
0.1 L 1 Il 1
0 0.3 0.6 0.9 12 15
p (GeV)
FIG. 3. Plot of the ghost propagator G(p?) as a function of the

magnitude of the (unimproved) momenta p (both in physical
units) for the lattice volumes V = 140° (symbol * in blue),
V = 240° (symbol x in green) and V = 320° (symbol + in red)
at # = 3.0. Here we show the data corresponding to momenta
with only one component different from zero. The data are
(multiplicatively) normalized to 1 for p = 1.0 GeV. Notice the
logarithmic scale on the y axis.

As for the bare coupling g7, since in 3D it is a constant
(mass) palrametelr,9 we use the SU(2) ratio /o/ 7 =
0.3351(16) [see Eq. (7) of Ref. [94]]. Then, with /o ~
0.44 GeV we find g*> ~ 1.313 GeV. The corresponding plot
of F(p?) (see above) is shown in Fig. 6 (left plot). Let us
point out that for the momentum range spanned by the data
the functions F,(p?) and F,(p?) are numerically indis-
tinguishable (see Fig. 7). Note that ¢, (#*) ~ 0.0252 and
that oy, (p?) takes values'’ in [0.0247, 0.1014] when
p €10.014,2.553] GeV. Let us also mention that the
one-loop expression p?F (p?) does not change appreciably
in the considered momentum range. (It goes from about 1.0
in the UV to about 1.1 in the IR regimes.) Thus, the
momentum dependence of the analytic prediction F; (p?) is
almost entirely due to the factor 1/p?.

One can observe that, modulo a global factor, F;(p?) has
the expected leading UV and IR behaviors. Indeed, as
shown in Fig. 6 (right plot), it agrees with the data in the
IR limit if we consider 3.38353F(p?). This implies that,
in the deep IR limit, G(p?) is enhanced by a finite
multiplicative factor with respect to the UV behavior. As

°Let us recall that, in the general d-dimensional case, we have
that ¢> has mass dimension 4 — d.
A5 shown in Ref. [64], from Eq. (9) one can write

N.pup, [ dig 1
o) =P [ D P s (52)
) @n) (P -a)
and prove that dc(p?)/0p* < 0 if the gluon propagator D(p?) is
positive in momentum space, i.e. o( p?)—evaluated at one loop—
is monotonically decreasing as the momentum p increases.
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FIG. 4. Plot of the ghost propagator G(p?) as a function of the
magnitude of the (unimproved) momenta p (both in physical
units) for the lattice volumes V = 48* (symbol * in blue), V =
64* (symbol x in green) and V = 128* (symbol + in red) at
p = 2.2. Here we show the data corresponding to momenta with
only one component different from zero. The data are (multi-

plicatively) normalized to 1 for p = 1.0 GeV. Notice the loga-
rithmic scale on the y axis.

mentioned above, one can improve the description of the
ghost-propagator data in the whole momentum range by

fitting the values of ¢, instead of using a fixed value. In this
case, we find
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PHYSICAL REVIEW D 93, 094513 (2016)
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FIG. 5.

Plot of the ghost propagator G(p?) as a function of the
magnitude of the (unimproved) momenta p (both in physical
units) for the lattice volumes V = 80? (symbol * in blue), V =
2002 (symbol x in green) and V = 3207 (symbol + in red) at
$ = 10.0. Here we show the data corresponding to momenta with
only one component different from zero. The data are (multi-

plicatively) normalized to 1 for p = 1.0 GeV. Notice the loga-
rithmic scale on the y axis.

7 =10.08 £0.01 GeV (53)

with y?/d.o.f. ~ 4.5 (with 480 data points). The corre-
sponding plot of F, (p?) is shown in Fig. 8 (left plot). Let us
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o
> 100 |
[&)
e
—
Q
S 10F
1}
01 b 1
1 1
0.01 0.1 1
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FIG. 6. Plot of the ghost propagator G(p?) as a function of the magnitude of the (unimproved) momenta p (both in physical units) for
the lattice volume V = 3207 at # = 3.0. The data are (multiplicatively) normalized to 1/f* for p = ji = 2.5 GeV. We also show
the function F (p?) [see Eq. (49)] (normalized in the same way) with the Gribov ghost form factor ¢(p?) given by the one-loop results
(12)—(22); the corresponding parameters are reported in Eq. (51) and we set g> = 1.313 GeV. On the other hand, in the right plot, we fix

the analytic form to match the numerical result at p = p,;, = 14 MeV, the smallest nonzero (lattice) momentum for the pair (V, )
considered, yielding 3.38353F, (p?). Notice the logarithmic scale on both axes.
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FIG. 7. Plot of F,(p?) [see Eq. (49), blue curve] and F,(p?)
[see Eq. (50), magenta curve] as functions of the momentum p for
the 3D case, with (p?) given by o, (p?) [see Eqgs. (12)~(22)
and (51)] with ¢> = 1.313 GeV. For both curves we consider
it = 2.5 GeV. Notice the logarithmic scale on both axes.

stress that, with this fitted value for ¢?, the analytic
prediction p2F, (p?) varies from about 1.0 at large momen-
tum to about 3.6 in the IR limit, a behavior that can be
related to the global rescaling shown in Fig. 6. An
even better fit of the data can be obtained with the fitting
function [15]

10000
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G(p?) (GeV?)

0.01 0.1 1
p (GeV)

PHYSICAL REVIEW D 93, 094513 (2016)

Fo(p?) = L1H P25 oz (1 + p?/5%)
3 pz l+p2/52

. (54)

inspired by Ref. [27], which has 1/p? leading IR and UV
behaviors. Indeed, with the fitting parameters set to

z = 0.958 £ 0.004, (55)
t =3.81£0.02, (56)
s = 0.207 £ 0.003 GeV, (57)

we find a y?/d.o.f.~2.9 (again with 480 data points).
The corresponding plot is shown in Fig. 8 (right plot). Note
that the value of the parameter ¢ is compatible with the
multiplicative constant obtained above when comparing the
IR and UV behaviors of F,(p?) (see Fig. 6).

One can try to estimate what is missing in the RGZ one-
loop analysis for G(p?), e.g. using the expression for
F,(p?) in Eq. (50). More precisely, let us define a function
W(p?) by

G(p?) = 1

Pl =o(p?) +o(@) = W(p?)]

and then use our numerical data for G(p?) [and the one-
loop expression for ¢(p?)] to get an estimate for W(p?). To
this end, we carried out a Monte Carlo analysis (with
10,000 samples) of the quantity

(58)

1

W) = [1 - p*G(p?)

} o (p?) + o). (59)
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FIG. 8. Plot of the ghost propagator G(p?) as a function of the magnitude of the (unimproved) momenta p (both in physical units) for
the lattice volume V = 3203 at # = 3.0 together with the fitting forms discussed in the text. The data are (multiplicatively) normalized to
1/ for p = ji = 2.5 GeV. In the left plot, we show the function F 1(p?) (normalized in the same way) with the Gribov ghost form
factor ¢(p?) given by the one-loop results (12)—(22); the corresponding parameters are reported in Eq. (51) and we use the fitted value
10.0831 GeV for g>. On the other hand, in the right plot, we show the fitting function F5(p?) [see Eq. (54)] with the parameters given in

Egs. (55)—(57). Notice the logarithmic scale on both axes.
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FIG. 9. Plot of the term W(p?) [see Egs. (58) and (59)] as a
function of the (unimproved) momenta p (in physical units) for
the lattice volume V = 3207 at # = 3.0 (data points). We also
show (in red) the fitting function W( p?) [see Eq. (60)] with the
fitting parameters reported in Eq. (61).

where G(p?) represents the numerical (multiplicatively
normalized) ghost propagator result at a given momentum
p and 6, (p?) is the one-loop estimate (12)—~(22) with the
parameters given in Eq. (51) and the value of ¢* set to
1.313 GeV. The corresponding plot is shown in Fig. 9. The
estimated error for W(p?) includes the error in the data
points for G(p?) and the errors in the parameters. Note that
W(p?) goes from approximately zero in the UV regime to
about 0.7 in the IR limit, which is consistent with the small
variation of p?F,(p?) discussed above.

One can parametrize the function W(p?) reasonably well
by using the simple expression

~ A
W(p?) = —— 60
() =55 (60)
with
A ~0.64, B~3.4 GeV2, (61)

yielding a y?/d.o.f. of 2.7 (with 480 data points). The
corresponding plot (red curve) is also shown in Fig. 9.

B. The four-dimensional case

For the 4D case we repeat the same type of analysis
carried out in the previous section for the 3D case. In
particular, as explained in Sec. II B above, we consider the
function F,(p?) in Eq. (50) with the one-loop expression

PHYSICAL REVIEW D 93, 094513 (2016)

for o(p?) given by o}5(p?) [see Egs. (23)-(34)] and
i =25 GeV. Again, by using the (gluon-propagator)
results presented in Refs. [10,18], the parameters a, b, v,
w are set to the values reported in Table IV of Ref. [10] and
obtained using a Monte Carlo analysis, i.e.

a=0392(2), b=132(5), v=029(2) GeV?
w =0.66(1) GeV?2. (62)

Here we can estimate the value of g2, at a given scale ji and
in the MOM scheme, by considering the one-loop result

1
o
o)

OM

7 (r) = (63)

with ) = 11N,/ (48%?), which is valid for any SU(N,)
gauge group. Then the value of Ayop can be obtained by
considering the relation [95]

169N .. ) (64)

=+ —LFR
g 92<+ T

between the MOM-scheme coupling ¢> and the MS
coupling g*. This implies (see for example [96])
Apom = Ayise'®%/?%4, which is valid for any value of N..
and with N = 0, where N f is the number of quark flavors.
For the SU(2) case, i.e. for N, = 2, one can use the estimate
Ay #0.752,/c (see Ref. [97]), where /o is the string
tension. Then after setting /o ~0.44 GeV, we find
Ajs ® 331 MeV and Ayoy ~ 628 MeV. For the subtrac-
tion point g = 2.5 GeV, used here, this gives for the
effective MOM coupling a value of ¢*(ji) ~ 7.794, which
yields a (1) = ¢*(it)/(4n) ~ 0.6202. The corresponding
plot of F,(p?) is shown in Fig. 10 (left plot). Also in
this case, the functions F;(p?) in Eq. (49) and F,(p?) in
Eq. (50) are numerically indistinguishable. Note that

oS (#?) ~0.1419 and that 6)(p?) takes values in
[0.06502, 0.5081] when p € [0.046,3.752] GeV, which
is the momentum interval for which we have numerically
evaluated the ghost propagator G(p?). Here, contrary to the
3D case, the one-loop expression p?F,(p?) is not flat with
the momentum p; i.e., it changes from about 0.9 in the UV
to about 1.6 in the IR regimes.

Qualitatively, the situation in the 4D case is very similar
to what we have seen above in the 3D case. In particular,
one can obtain a good description of the numerical data in
the IR limit by rescaling the analytic prediction F,(p?) by
the factor 2.01654 (see right plot of Fig. 10) and a good
description of all the data by fitting the values of ¢°. Indeed,
with

@ =14.62 +0.01, (65)
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FIG. 10. Plot of the ghost propagator G(p?) as a function of the magnitude of the (unimproved) momenta p (both in physical units) for
the lattice volume V = 128* at # = 2.2. The data are (multiplicatively) normalized to 1/j> for p = ji = 2.5 GeV. We also show the
function F,(p?) [see Eq. (50)] (normalized in the same way) with the Gribov ghost form factor (p?) given by the one-loop results
(23)—~(34); the corresponding parameters are reported in Eq. (62) and we set g> = 7.794. On the other hand, in the right plot, we fix the
analytic form to match the numerical result at p = p,;, = 46 MeV, the smallest nonzero (lattice) momentum for the pair (V, )
considered, yielding 2.01654F,(p?). Notice the logarithmic scale on both axes.

we obtain a y?/d.o.f.~ 1.7 (with 256 data points). 7 =0.859 £ 0.006 (66)
The corresponding plot of F,(p?) is shown in Fig. 11
(left plot). An even better fit (see right plot in Fig. 11) is t=3.734+0.02 (67)
obtained with the fitting function (54) and the parameters
set to s = 0.407 4+ 0.005 GeV, (68)
10000 : . 10000 : .
1000 1000
100 ~ 100
€ €
(0] [
e e
N 10 & 10
= RS
15} 15}
1 1
0.1 0.1
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FIG. 11.  Plot of the ghost propagator G(p?) as a function of the magnitude of the (unimproved) momenta p (both in physical units) for
the lattice volume V = 128* at # = 2.2 together with the fitting forms discussed in the text. The data are (multiplicatively) normalized to
1/i? for p = i = 2.5 GeV. In the left plot we show the function F »(p?) (normalized in the same way) with the Gribov ghost form factor
o(p?) given by the one-loop results (23)—(34); the corresponding parameters are reported in Eq. (62) and we use the fitted value 14.6165
for g%. On the other hand, in the right plot, we show the fitting function F5(p?) [see Eq. (54)] with the parameters given in Egs. (66)—
(68). Notice the logarithmic scale on both axes.
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FIG. 12. Plot of the term W(p?) [see Egs. (58) and (59)] as a
function of the (unimproved) momenta p (in physical units) for
the lattice volume V = 128 at # = 2.2 (data points). We also
show (in red) the fitting function W( p?) [see Eq. (60)] with the
fitting parameters reported in Eq. (69).

which vyields a y?/d.o.f.~0.75 (again with 256 data
points). Here the value of ¢ can be related to the global
rescaling shown on the right in Fig. 10 (i.e. approximately a
factor 2) and to the above-mentioned change in p?F,(p?),
yielding a factor 2 x 1.6/0.9 ~ 3.6. The parameter ¢ can
also be related to the variation of p?F,(p?) from about 0.9
at large momentum to about 3.2 in the IR limit, yielding a
factor 3.2/0.9 ~ 3.6.

Finally, in Fig. 12 we present the numerical estimate—
using a Monte Carlo analysis with 10,000 samples—for the
quantity W(p?), defined in Eq. (59) and using the 4D one-
loop expression for o(p?), as well as the fitting function
W(p?), defined in Eq. (60). With the values

A~0.33, B~ 1.7 GeV~ (69)
for the parameters, we find a y?/d.o.f. of 0.97 (with 256
data points). It is also interesting to note that, in this case,
the magnitude of what is missing in the one-loop calcu-
lation of 6(p?) is about 50% smaller than the corresponding
outcome obtained in the 3D case. This is expected since, as
mentioned above, there is a larger change in p*F,(p?) over
the momentum range in the 4D case.

C. The two-dimensional case

Finally, we consider data for the 2D case. As already
stressed in the Introduction, in this case the ghost propa-
gator is IR-enhanced (see also Fig. 13). Thus, the analysis

PHYSICAL REVIEW D 93, 094513 (2016)

%)

0.35 : : : '

0 0.05 0.1 0.15 0.2 0.25
p (GeV)
FIG. 13. Plot of the Gribov ghost form factor o(p?) [see

Eq. (2)] for the lattice volumes V = 3202 at = 10.0 (symbol
+ in red), V = 3203 at # = 3.0 (symbol x in green) and V =
128* at =122 (symbol * in blue), as a function of the
unimproved momenta [see Eq. (48)], for momenta with only
one component different from zero. All momenta are in physical
units and we show the data only in the IR limit, i.e. for
p < 0.25 GeV. Error bars have been estimated using propagation
of errors. One clearly sees that in the 3D and 4D cases o(p?)
becomes almost constant at small momenta, with a value
6(0) < 1, implying a freelike behavior for the ghost propagator
in the IR limit. On the contrary, in the 2D case o(p?) is still
clearly increasing for momenta of the order of 20 MeV.

of the numerical data will be done following the same ideas
presented in the two subsections above, but with a different
fitting function instead of F3(p?) in Eq. (54). Nevertheless,
as a first step, we consider again the one-loop result F, (p?)
[see Eq. (49)] with o(p?) given by o,p(p?) defined in
Egs. (38)—(44) and with g = 2.5 GeV. At the same time,
the parameters a, b, v, w, ¢ and #5 are set considering the
outcomes presented in Refs. [10,18]. In particular, we used
the values reported in Table XIV of Ref. [10] and obtained
using a Monte Carlo analysis, i.e.

a = 0.0550(5) GeV?,
v =0.145(8) GeV?,
¢ = 0.07(1) GeV2,

b = —0.049(7) GeV?,
w = 0.15(1) GeV?,
n=091(5). (70)

Note that the bound # < 2 (see Sec. I C) is respected by
the fitted value. As for the he coupling constant g°, its
value can be estimated by employing the analytic evalu-
ation of the string tension /c. Indeed, for two-dimensional
SU(2) lattice gauge theory in the infinite volume limit,
one has [98]
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FIG. 14. Plot of the ghost propagator G(p?) as a function of the magnitude of the (unimproved) momenta p (both in physical units) for
the lattice volume V = 3202 at # = 10.0. The data are (multiplicatively) normalized to 1/ for p = ji = 2.5 GeV. We also show the
function F; (p?) [see Eq. (49)] (normalized in the same way) with the Gribov ghost form factor (p?) given by the one-loop results (38)—
(44); the corresponding parameters are reported in Eq. (70) and we set ¢ = 0.516 GeV?2. On the other hand, in the right plot, we fix the
analytic form to match the numerical result at p = p.;, = 18 MeV, the smallest nonzero (lattice) momentum for the pair (V, /)
considered, yielding 4.41862F(p?). Notice the logarithmic scale on both axes.

(71)

o1 = —In [lz(ﬂ)} 7

11 (p)

where [,(f) is the modified Bessel function [73].
For large f values (in our case we have S = 10),
this yields o1,4 ~3/(28). Then, using the relation
B =2N./(g*a*"%), where a is the lattice spacing and
which is valid for the SU(N,.) gauge group in d dimensions,
we find in the 2D case

2 AN 014
3a?

For N. =2 and using the continuum value m/a ~
0.44 GeV we obtain ¢* ~0.516 GeV?.

One can check that, in the 2D case, the functions
Fi(p?)in Eq. (49) and F,(p?) in Eq. (50) are again nume-
rically indistinguishable. Note that o,p(fi%)~0.00179
and o,p(p?) takes values in [0.00173, 0.0334] when
p € [0.018,2.553] GeV, which is the momentum interval
for which we have numerically evaluated the ghost
propagator G(p?). Thus, also in this case, the one-loop
expression p?F(p?) does not change appreciably in
the considered momentum range. (It goes from 1.00 in
the UV to 1.03 in the IR regimes.) As a consequence, the
momentum dependence of the analytic prediction is
entirely due to the factor 1/p? and in this case we should
not expect a good description of the data in the IR region.

As in the 3D and 4D cases, the analytic prediction gives a
good description of the data in the UV limit (see left plot in
Fig. 14). However, since the value obtained for ¢ is smaller
than the critical value g>—i.e. the one-loop result is

g (72)

freelike at small momenta, while the numerical data are
IR-enhanced—in the 2D case one cannot indeed describe
well the IR data by a simple global rescaling of the function
F\(p?) (see right plot in Fig. 14). On the other hand,
by fitting g>—i.e. considering the function F,(p*)—one
finds that the value ¢g* = 13.46(2)GeV? allows a good
description of the lattice data (see left plot in Fig. 15) with
y*/d.of. ~ 1.6 and 320 data points. Let us stress that for
d =2 choosing the fitted value for ¢ over the fixed
theoretical one has a dramatic effect on the behavior of
p2F,(p?). Indeed, this quantity goes from about 1.0 at the
largest momenta to about 9.0 in the IR limit.

Also, a slightly better fit can be obtained with the

function''
272\t
FzD(PZ) = % (%) . (73)
Indeed, with the fitting parameters set to
7z =0.963 £0.002, (74)
r =0.188 £+ 0.002, (75)
s = 1.08 £ 0.04 GeV, (76)

""This fitting function is inspired by the one considered in
Ref. [15] for the 2D case, but with one less parameter. We have
checked that the function employed in Ref. [15] allows only a
modest improvement in the description of the data when
compared to the simpler fitting function F,p(p?) considered
here.

094513-13



CUCCHIERI, DUDAL, MENDES, and VANDERSICKEL
100000 T T

10000

1000

100

G(pY) (GeV?d)

0'1 1 1
0.01 0.1 1

P (GeV)

PHYSICAL REVIEW D 93, 094513 (2016)
100000 . T

10000

1000

100

G(p?) (GeV?)

0.1 1 1
0.01 0.1 1

p (GeV)

FIG. 15. Plot of the ghost propagator G(p?) as a function of the magnitude of the (unimproved) momenta p (both in physical units) for
the lattice volume V = 3207 at # = 10.0 together with the fitting forms discussed in the text. The data are (multiplicatively) normalized
to 1/i? for p = ji = 2.5 GeV. In the left plot we show the function F 1(p?) (normalized in the same way) with the Gribov ghost form
factor ¢( p?) given by the one-loop results (38)—(44); the corresponding parameters are reported in Eq. (70) and we use the fitted value
13.4556 GeV? for ¢°. On the other hand, in the right plot, we show the fitting function F,p(p?) [see Eq. (73)] with the parameters given

in Egs. (74)-(76). Notice the logarithmic scale on both axes.

we find y?/d.o.f. ~ 1.2 (again with 320 data points). The
corresponding plot is shown in Fig. 15 (right plot). Note
that the factor (s?/p2. ) ~4.7 is compatible with the
multiplicative constant obtained above when comparing

W(p?)

-0.2 L 1 I L L

p (GeV)

FIG. 16. Plot of the term W(p?) [see Egs. (58) and (59)] as a
function of the (unimproved) momenta p (in physical units) for
the lattice volume V = 320? at # = 10.0 (data points). We also
show (in red) the fitting function W( p?) [see Eq. (60)] with the
fitting parameters reported in Eq. (77).

the IR and UV behaviors of F;(p?) (see right plot in
Fig. 14).

As in the 3D and 4D cases, one can also estimate what
is missing in the one-loop analysis, i.e. we can evaluate
W(p?) [see Egs. (58) and (59), using a Monte Carlo
analysis with 10,000 samples] as a function of the (unim-
proved) momenta p. The corresponding data (see Fig. 16)
can be reasonably described by the fitting function W (p?)
[see Eq. (60)] with the fitting parameters

A ~0.68, B~12.0 GeV~2, (77)

which yields a y?/d.o.f. of 2.5 (with 320 data points).
It is also interesting to note that, in this case, as for d = 3,
the magnitude of what is missing in the one-loop calcu-
lation of ¢(p?) is quite large since p*F,(p?) is essentially
constant.

IV. CONCLUSIONS

We have presented the final step of our analysis of large-
lattice Landau-gauge propagators as compared to predic-
tions of the RGZ approach. Our data for the SU(2) ghost
propagator G(p?) in d = 3, 4 and 2 have been compared
first to the “direct” one-loop formulas, using the parameters
from the gluon-propagator fits reported in [10] and a fixed
(theoretical) value for the bare coupling ¢*. This compari-
son is shown in Figs. 6, 10 and 14, respectively, ford = 3,4
and 2. In all cases, we show the data (multiplicatively)
normalized to 1/ for p = ji = 2.5 GeV. The proposed
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(one-loop) behavior is shown with the same normalization
on the left side of the figures and, in all cases, there is a
good description in the UV limit. On the right side of these
figures, we have fixed the analytic form to match the
numerical result at the smallest nonzero (lattice) momen-
tum for the considered lattice volume and S value, i.e. we
plot a global rescaling of the one-loop prediction. We find
that a good description of the IR region is obtained in 3D
and 4D, confirming that the IR behavior of G(p?) in these
cases is simply enhanced by a factor with respect to the
UV one. On the contrary, such a rescaling does not hold
in d =2, since G(p?) is IR-enhanced in this case. This
difference in IR behavior is clearly seen in Fig. 13, where
we show the Gribov ghost form factor o(p?) [see Eq. (2)]
for the lattice volumes V = 3207, 320° and 128* (respec-
tively, the largest volumes for each dimension d) as a
function of the unimproved momenta [see Eq. (48)]. In
particular, one clearly sees that, in the 3D and 4D cases, the
Gribov ghost form factor becomes almost constant at small
momenta.

Next, we have shown the data as compared to the
fitted one-loop prediction; i.e. we have used the same
parameters as above, but fitting the value of the bare
coupling ¢” to the data. A good description is obtained,
with reasonable values of y?/d.o.f.. (respectively, 4.5, 1.7
and 1.6 for d = 3, 4 and 2), as seen in the left-hand side of
Figs. 8, 11 and 15, respectively, for d = 3, 4 and 2. We note
that an even better description (respectively, with y?/d.o.f.
0f2.9,0.75 and 1.2 for d = 3, 4 and 2) is obtained by fitting
the function in Eq. (54) for d = 3, 4 and in Eq. (73) for
d =2, as can be seen in the plots on the right in the same
figures. The fact that one can describe well the whole range
of data by using the analytic prediction for G(p?) with a
fitted value for ¢” is an indication of the importance of
having a one-parameter family of solutions for the propa-
gators in SU(N,) Yang-Mills theories (see Sec. I). We
remark that the ratio between the fitted value of ¢g> and the
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fixed theoretical value is found to be quite large12 in all
three cases considered; namely, it is about 7.7, 1.9 and 26,
respectively, for d = 3, 4 and 2.

Finally, we have isolated the difference between the
nonperturbative data and the one-loop results, by defining
the function W(p?) in Eq. (58). As seen in Figs. 9, 12 and
16, respectively, for d = 3, 4 and 2, this difference is small
in the UV region and grows in the IR region. Moreover, the
behavior of W(p?) is very similar in the three cases and,
indeed, it may be reasonably well parametrized by a simple
function of the momentum [see Eq. (60)]. This supports a
unified explanation for the inaccuracy of the one-loop
predictions in the IR region for the three cases. By
considering the similar studies carried out in Refs. [69-71]
in d = 4, it is reasonable to assume that the use of a fully
nonperturbative gluon propagator D(p?) in the one-loop
analysis for G(p?) is not sufficient if one does not also use
an improved ghost-gluon vertex. A detailed study of this
vertex will be presented elsewhere [100].
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