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We report on a scale determination with gradient-flow techniques on the Nf ¼ 2þ 1þ 1 highly
improved staggered quark ensembles generated by the MILC Collaboration. The ensembles include four
lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of
the quark masses. The scales

ffiffiffiffi
t0

p
=a and w0=a and their tree-level improvements,

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
and w0;imp, are

computed on each ensemble using Symanzik flow and the cloverleaf definition of the energy density E.
Using a combination of continuum chiral-perturbation theory and a Taylor-series ansatz for the lattice-
spacing and strong-coupling dependence, the results are simultaneously extrapolated to the continuum
and interpolated to physical quark masses. We determine the scales

ffiffiffiffi
t0

p ¼ 0.1416ðþ8
−5Þ fm and

w0 ¼ 0.1714ðþ15
−12Þ fm, where the errors are sums, in quadrature, of statistical and all systematic errors.

The precision of w0 and
ffiffiffiffi
t0

p
is comparable to or more precise than the best previous estimates, respectively.

We then find the continuum mass dependence of
ffiffiffiffi
t0

p
and w0, which will be useful for estimating the scales

of new ensembles. We also estimate the integrated autocorrelation length of hEðtÞi. For long flow times, the
autocorrelation length of hEi appears to be comparable to that of the topological charge.

DOI: 10.1103/PhysRevD.93.094510

I. INTRODUCTION

Scale setting holds central importance in lattice QCD for
two reasons. First, the continuum extrapolation of any

quantity, dimensionful or dimensionless, requires a precise
determination of the relative scale between ensembles with
different bare couplings. Second, the precision to which
one may determine a dimensionful quantity in physical
units is limited by the precision of the scale in physical
units (the absolute scale). Because scale setting limits the
precision of so many calculations, it is important to identify
quantities with the highest level of precision to set the scale.
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To make progress towards this goal a thorough under-
standing of the restrictions on quantities that may be used
for scale setting is required. In principle, any dimensionful
quantity that is finite in the continuum limit may be
employed. The relative scale may be set by calculating a
dimensionful quantity and comparing its value in lattice
units at different lattice spacings for the same quark masses.
For absolute scale setting, one needs to compare the
quantity in lattice units to the physical value. If the quantity
is experimentally accessible the comparison to the physical
value is straightforward. For a quantity that is inaccessible
to experiments, its physical value in the continuum is
inferred by comparison to an experimental quantity. In
other words, an experimental quantity may be used directly
for relative and absolute scale setting, but a quantity that is
inaccessible to experiments requires the lattice measure-
ment of a second, experimentally accessible quantity for
absolute scale setting. The use of a nonexperimental
quantity for scale setting may still be worthwhile if it
can be determined on the lattice with small statistical and
systematic errors for a relatively small computational cost.
This is due to the large gain in control over continuum
extrapolations at the cost of a small decrease in the
precision of absolute scales. This has led to the consid-
eration of theoretically motivated, but not experimentally
measurable, quantities such as r0 and r1 [1,2], Fp4s [3],
and, more recently,

ffiffiffiffi
t0

p
[4] and w0 [5] from gradient

flow [6,7].
The ideal scale-setting quantity has small statistical and

systematic errors. However, since systematic errors arise
from a variety of sources, such as discretization effects,
dependence on the simulation (possibly unphysical) quark
masses, finite-volume effects, and excited states, it is
difficult to reduce all error sources simultaneously. For
example, the scales r0 and r1 are computed from asymp-
totic fits in time t to the heavy-quark potential VðrÞ with
quark separation r, such that r2dV=dr ¼ 1.65 or 1, for r ¼
r0 and r1, respectively [1,2]. The statistical errors in VðrÞ
are generally small, but they grow with t=a and may
become a problem at small lattice spacings where larger
values of t=a are needed to reduce systematic errors from
excited states [3]. As another example, consider Fp4s, the
fictitious pseudoscalar decay constant with degenerate
valence quarks of mass mv ¼ 0.4ms and physical sea-
quark masses [3]. The value of the valence-quark mass is
chosen to be heavy enough to make it not too expensive to
compute the correlators, but light enough for chiral-
perturbation theory to apply. However, Fp4s has strong
dependence on the valence-quark mass. Thus, relatively
small errors in determining ams, the physical value of the
strange-quark mass in lattice units, may lead to significant
errors in aFp4s through the value of the valence mass,
amv ¼ 0.4ams. Further, the required asymptotic fits to
correlators are difficult to automate and usually require
significant human intervention.

Gradient flow [6,7] has received considerable attention
[8–11] over the past few years because it is a theoretically
grounded smoothing operation that is simple to implement
and can be used to obtain precisely determined scales. The
basis for scale setting with gradient flow is the determi-
nation of the flow time for which a dimensionless, precise,
and easily computable quantity is smoothed to a predefined
value. The original quantity proposed by Lüscher, t0, is
defined through the gauge field energy density [4]. Most
modifications focus on reducing discretization errors in the
same underlying flow or observable [5,8,12,13]. All of
these scales can be easily computed to a statistical precision
of 0.1% or less and have small quark-mass dependence.
Finite-volume effects, the only remaining sources of
systematic error for relative scale setting, may also be kept
very small.
Here, we present our computation of the gradient-flow

scales
ffiffiffiffi
t0

p
=a and w0=a on the MILC, (2þ 1þ 1)-flavor,

highly improved staggered quark (HISQ) ensembles [3,14].
The HISQ configurations used in this analysis cover lattice
spacings from a ≈ 0.15 to 0.06fm and include ensembles
with physical, or heavier than physical, light-quark masses,
and physical, or lighter than physical, strange-quark mass.
The charm-quark mass is kept near its physical value. We
perform a continuum extrapolation and interpolation to
physical quark masses of w0Fp4s and

ffiffiffiffi
t0

p
Fp4s to determine

the two scales in physical units, using our previous
determination of Fp4s in physical units [15]. We find

ffiffiffiffi
t0

p ¼
0.1416ð þ8−5Þ fm and w0 ¼ 0.1714ð þ15−12Þ fm, where statisti-
cal and all systematic errors have been added in quadrature.
We start with a review of the relevant theoretical details,

including the gradient-flow equation in Sec. II A, defini-
tions of the scales t0 and w0 in Sec. II B, chiral-perturbation
theory for flow quantities in Sec. II B 1, and lattice-spacing
dependence in Sec. II B 2. The computational setup is
described in Sec. III A. We discuss the raw lattice results in
Sec. III B, include a brief comparison of the results for
different ensemble-generation algorithms in Sec. III B 1,
and estimate the integrated autocorrelation lengths in
Sec. III B 2. Leading-order adjustments for charm-quark-
mass mistuning are performed in Sec. III B 3, and a simple
extrapolation to the continuum of the results on the
physical-mass ensembles is presented in Sec. III B 4.
Section III C then describes the quark-mass interpolation
and continuum extrapolation. We present our results for w0

and
ffiffiffiffi
t0

p
in physical units in Sec. IVA, and include

comparisons with our earlier preliminary results. The
continuum mass dependence of

ffiffiffiffi
t0

p
and w0 is deduced

from our fits in Sec. IV B and used to compare the scales
determined from the gradient flow to those determined
from Fp4s in Ref. [15]; knowing the continuum mass
dependence will be useful in determining the scales of new
ensembles. Section V compares our results to those of other
collaborations, and tabulates the precision of various
methods for relative scale setting.
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Preliminary versions of this analysis have been described
in Refs. [16] and [17].

II. REVIEW OF GRADIENT FLOW

This section summarizes the theoretical details of gra-
dient flow from Refs. [4–7,13,18] that are relevant to the
scale-setting analysis in later sections.

A. Diffusion equation

Gradient flow [6,7] is a smoothing of the original gauge
fields A towards stationary points of the action S. The new,
smoothed gauge fields BðtÞ are functions of the “flow time”
t and are updated according to the diffusionlike equation
below, where g0 is the bare coupling:

dBμ

dt
¼ −g20 ∂S

∂Bμ
¼ DνGνμ; Bμð0Þ ¼ Aμ;

DνX ¼ ∂νXþ ½Bν; X�; Gνμ ¼ ∂νBμ − ∂μBν þ ½Bν; Bμ�:
ð1Þ

On the lattice, the Yang-Mills action is replaced by an
appropriate discretized version. The gauge link VðtÞi;μ at
site i in direction μ is updated in time according to

dVðtÞi;μ
dt

¼ −g20 ∂SðVÞ∂Vi;μ
Vi;μ; Vi;μð0Þ ¼ Ui;μ: ð2Þ

The change of VðtÞ with flow time explicitly follows the
steepest descent of the action with respect to the gauge
field, with an additional factor of Vi;μ in the lattice
formulation to ensure gauge covariance. For more details
on the SU(3)-valued derivative, see the Appendix of
Ref. [4].
As the flow time t increases, the gauge fields diffuse and

short-distance lattice artifacts are removed. After modify-
ing the flow equation with a flow-time-dependent gauge
transformation of the field one can explicitly see the
suppression of high momenta in the leading-order pertur-
bative expansion of the gauge field in powers of the
coupling g0 [4]:

Bμðx; tÞ ≈
1

ð4πtÞ2
Z

d4yAμðyÞe−ðx−yÞ2=ð4tÞ;
~Bμðp; tÞ ≈ ~AμðpÞe−tp2

: ð3Þ

B. Gradient-flow scales

The process of gradient flow introduces a dimensionful,
independent variable, the flow time. Since all quantities
calculated from smoothed gauge links will be functions of
the flow time, one may define a scale by choosing a
reference time at which a chosen dimensionless quantity
reaches a predefined value. If the dimensionless quantity is

also finite in the continuum limit, then the reference time
scale will be independent of the lattice spacing up to
discretization corrections in powers of a2. One of the
easiest dimensionless quantities to calculate with only
gauge fields is the average total energy within a smoothed
volume V ∝ t2. Up to a dimensionless constant, this is
equivalent to calculating the product of the energy density
and squared flow time t2hEðtÞi. Lüscher and Weisz have
shown that the energy density is finite to all orders (when
expressed in terms of renormalized quantities) [19], so
t2hEðtÞi is a suitable candidate for setting the scale. A
fiducial point c is chosen, and the reference scale is defined
to be the flow time t0 where

t20hEðt0Þi ¼ c: ð4Þ

The fiducial point should be chosen so that for simulated
lattice spacings a and volumes V ¼ L3T (with T ≥ L), the
reference time scale t0 falls within a ≪

ffiffiffiffiffiffi
8t0

p
≪ aL. The

value of c ¼ 0.3 has been found, empirically, to satisfy this
relation [4,5]. A larger fiducial point of c ¼ 2=3 has also
been proposed in order to reduce discretization errors, at the
expense of somewhat larger finite-volume effects [8].
The renormalized expansion of hEðtÞi to second order in

g shows t2hEðtÞi is approximately constant [4]. For small
flow times this agrees with computational results, but for
larger flow times (including the scale t0) t2hEðtÞi is found
empirically to be linear in t [4,5]. The transition of hEðtÞi
from t−2 to t−1 dependence is nonperturbative. However,
we expect discretization errors to enter primarily for small
flow times, before the lattice details are smoothed away. In
accordance with this expectation, empirical evidence sug-
gests that discretization effects have less impact on the
slope of t2hEðtÞi at comparatively larger flow times near
the fiducial point than they do on t2hEðtÞi itself [5].
Assuming the property is general, an improvement to
the scale t0 is computed by considering the slope:

�
t
d
dt

t2hEðtÞi
�
t¼w2

0

¼ c; ð5Þ

where w0 is the improved scale. Again, the value of the
fiducial point c ¼ 0.3 or c ¼ 2=3 is chosen to avoid
discretization and finite-volume effects.

1. Chiral-perturbation theory

Because both scales t0 and w0 are defined in terms of the
energy density hEðtÞi, and the energy density is a local,
gauge-invariant quantity, chiral-perturbation theory can be
applied to determine the quark-mass dependence of the
scales. This is an advantage over some other scales, such as
r0 or r1, for which no chiral-perturbation theory expansion
is available. The mapping of hEðtÞi to the chiral effective
theory has been carried out by Bär and Golterman in
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Ref. [18]. The expansion for
ffiffiffiffi
t0

p
in the Nf ¼ 2þ 1 case in

terms of the pion and kaon mass is

ffiffiffiffi
t0

p ¼ ffiffiffiffiffiffiffiffi
t0;ch

p �
1þ k1

2M2
K þM2

π

ð4πfÞ2

þ 1

ð4πfÞ2
�
ð3k2 − k1ÞM2

πμπ þ 4k2M2
KμK

þ 1

3
k1ðM2

π − 4M2
KÞμη þ k2M2

ημη

�

þ k4
ð2M2

K þM2
πÞ2

ð4πfÞ4 þ k5
ðM2

K −M2
πÞ2

ð4πfÞ4
�
; ð6Þ

where t0;ch is the value of t0 in the chiral limit, the
chiral logarithms are represented with the shorthand
μQ ¼ ðMQ=4πfÞ2 log ðMQ=μÞ2, and the ki are low-energy
constants (LECs) that depend on the flow time. Note that
chiral logarithms enter only at next-to-next-to-leading order
(NNLO). The scale w0 has the same expansion form to
NNLO, but with different coefficients ki. This is because
the flow-time dependence of hEðtÞi appears only in the
LECs, allowing the differences between Eqs. (4) and (5) to
be absorbed into redefinitions of the LECs.
One can generalize Eq. (6) to staggered chiral-

perturbation theory in order to explicitly take into account
discretization effects from staggered taste-symmetry vio-
lations. In this paper, however, we have used simple
polynomial expansions to parametrize lattice-spacing
effects. There are two reasons for this choice. First, the
quark-mass dependence of the gradient-flow scales is
already small, as will be evident in Sec. IV B, and nontrivial
staggered effects would come in only with the chiral
logarithms, which are of NNLO. For HISQ quarks, such
effects are very small. Second, the number of undetermined
coefficients in staggered chiral-perturbation theory expan-
sions would be too large in comparison to the number of
independent data points available for interpolations. Unlike
analyses of pseudoscalar masses or decay constants, here
we have no valence quarks whose masses could be varied to
increase the size of the data set.

2. Discretization effects

In determining the scales t0 and w0, lattice artifacts enter
in three places: the action used to generate the initial
configurations, the action of the gradient flow, and the
choice of observable. Because ensemble generation is
expensive, the action chosen for generating the gauge
configurations is fixed in practice. Therefore, we only
consider improvements to the gradient flow and energy
density.
Empirical results suggest partial improvements of the

flow or the energy density can yield smaller Oða2Þ terms.
By using the tree-level improved Symanzik action instead
of the Wilson action in the flow, the BMW Collaboration

found smaller cutoff effects for both gradient-flow scales on
their Wilson-clover ensembles with 2-HEX smearing (with
scale set by MΩ) [5]. Similarly, using the symmetric,
cloverleaf definition of the field-strength tensor Gμν in
hEi ¼ GμνGμν=4, instead of the simpler sum over the
plaquettes, yielded cutoff effects in

ffiffiffiffi
t0

p
=r0 that were five

times smaller [4]. Of course, applying partial improvements
at different steps is not guaranteed to produce smaller cutoff
effects in the final result. Also, for each case, the lattice-
spacing dependence of the gradient-flow scale cannot be
cleanly separated in the numerical results from the depend-
ence of the additional quantity used to set the scale in the
extrapolation to the continuum.
A detailed examination of the discretization effects on

gradient-flow scales has been recently carried out in
Ref. [13]. The net lattice-spacing dependence from all
three stages of the calculation (dynamical action, flow, and
observable) is determined at tree level in the gauge
coupling from a calculation of hEðtÞi at finite lattice
spacing. For the clover observable chosen in this study,

FðtÞ≡ht2EðtÞi

¼3ðN2−1Þg20
128π2

ð1þC2a2=tþOða4=t2ÞþOðg20ÞÞ; ð7Þ

C2 ¼ 2cf þ
2

3
cg − 1

24
; ð8Þ

where the coefficient cf describes the gradient-flow action,
and cg describes the original gauge action used to generate
the ensembles [13]. For our choices of Symanzik one-loop-
improved gauge action (cg ¼ −1=12 at tree level) and
Symanzik tree-level gradient flow (cf ¼ −1=12), we have
C2 ¼ −19=72. Unfortunately, our choices of actions and
observable lead to larger tree-level discretization terms than
from many other combinations of common choices of
action for the flow and observable. For more details see
Table 1 in Ref. [13].
Utilizing the known a2 dependence of FðtÞ, “improved”

scales are defined in Ref. [13] by canceling the tree-level
contributions to FðtÞ in the implicit definitions of t0 and w0:

�
t2hEðtÞi

ð1þ C2ða2=tÞ þ C4ða2=tÞ2 þ � � �Þ
�
t¼t0;imp

¼ c; ð9Þ

�
t
d
dt

t2hEðtÞi
ð1þ C2ða2=tÞ þ C4ða2=tÞ2 þ � � �Þ

�
t¼w2

0;imp

¼ c: ð10Þ

For clarity, we will use t0;orig and w0;orig from here on to
refer to the original definition of t0 and w0, and reserve the
notations t0 and w0 to refer generically to both the original
and improved versions, or to discuss their continuum limits,
which is of course common to both versions. The tree-level
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improvement in Eqs. (9) and (10) is not obviously an
improvement in the nonperturbative region of flow-time
where the scales are determined. However, the tree-level
improvement may be worthwhile if discretization errors
arise predominantly from the small-t region, as observed by
BMW [5]. We compute the improved scales t0;imp and
w0;imp and compare it to the a2 dependence of the original
scales in Sec. III B.
An additional theoretical handle on the comparison can

be made by expanding the original scales directly as a
power series in a2 and calculating the coefficients. The
lattice-spacing dependence of the gradient-flow scales are
proportional to C2 and depend on the continuum flow-time
dependence of FðtÞ and its derivatives F0ðtÞ ¼ t d

dt FðtÞ and
F00ðtÞ ¼ t2 d2

dt2 FðtÞ evaluated at the corresponding con-
tinuum scale t ¼ t0 or t ¼ w2

0. The next-to-leading-order
coefficients are given by

t0;orig ¼ t0

�
1 − T2

a2

t0

�
;

T2 ¼ C2

F
F0 ≈ −0.3568ð2Þ; ð11Þ

w2
0;orig ¼ w2

0

�
1 −W2

a2

w2
0

�
;

W2 ¼ C2

F0 − F
F00 þ F0 ≈ 0.070ð2Þ: ð12Þ

Note that the coefficients T2 and W2 are identical to those
derived for the improved scale in Ref. [13]; however, the a2

coefficients in the above expression are −T2 and −W2

because Eq. (11) relates the (unimproved) scales at finite
lattice spacing to the continuum scales. The numerical
evaluation of F, F0, and F00 for the estimates of T2 and W2

has been performed on the a ≈ 0.06 fm, physical quark-
mass ensemble (see Table I). No systematic errors are
included in these estimates. Unfortunately, because

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
and w0;orig are defined at flow times outside the perturbative
regime, the systematic error on T2 and W2 from higher
order and nonperturbative contributions to our estimates of
F, F0, and F00 is not known. Since discretization errors for
t0;orig appear to enter primarily at short flow times [5],
nonperturbative contributions to T2 may well be small.
However, there is no corresponding evidence to support a
similar conclusion for W2. This is discussed further in
Sec. III C.

III. DETAILS OF THE COMPUTATION

We compute the scales
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
=a, w0;orig=a,

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
=a,

and w0;imp=a on the MILC Nf ¼ 2þ 1þ 1 HISQ ensem-
bles [3,14]. Before describing the gradient-flow simulation
details, we tabulate the properties of the ensembles and
those quantities needed from prior analyses. Tables I and II
list the parameters and relevant observables for ensembles
with the strange sea-quark mass tuned near its physical
value, and well below its physical value, respectively.
Table III gives the values of aFp4s at physical quark
masses and associated lattice spacings, which are needed
for continuum extrapolations. The lattice spacings are
calculated with a mass-independent scale-setting scheme;
the continuum value Fp4s ¼ 153.90ð9Þðþ21

−28Þ MeV is taken
from Ref. [15], where fπ was used to set the absolute scale.
Physical values of ams at each lattice spacing [15] are also

TABLE I. HISQ ensembles with near-physical strange sea-quark mass. The first three columns list the gauge coupling constant, the
approximate lattice spacing, and the ratio of light- to strange-sea-quark mass. The fourth and fifth columns list the strange and charm
sea-quark masses, respectively. (Quark masses with primes indicate simulation values of the ensemble, whereas unprimed masses
indicate physical values.) All but two ensembles can be uniquely identified by the second and third columns. To differentiate between
the two a ≈ 0.12 fm, m0

l=m
0
s ¼ 1=10 ensembles we use the dimensions of the lattice, N3

s × Nt, given in column 6. The last two columns
give the taste-Goldstone pion and kaon masses in lattice units.

β ≈a (fm) m0
l=m

0
s am0

s am0
c N3

s × Nt aMπ aMK

5.80 0.15 1=5 0.0650 0.838 163 × 48 0.23653(22) 0.40261(25)
5.80 0.15 1=10 0.0640 0.828 243 × 48 0.16614(10) 0.38067(16)
5.80 0.15 1=27 0.0647 0.831 323 × 48 0.10180(09) 0.37093(16)
6.00 0.12 1=5 0.0509 0.635 243 × 64 0.18917(15) 0.32358(20)
6.00 0.12 1=10 0.0507 0.628 323 × 64 0.13424(09) 0.30813(15)
6.00 0.12 1=10 0.0507 0.628 403 × 64 0.13400(06) 0.30821(09)
6.00 0.12 1=27 0.0507 0.628 483 × 64 0.08153(04) 0.29851(11)
6.30 0.09 1=5 0.0370 0.440 323 × 96 0.14055(17) 0.24061(18)
6.30 0.09 1=10 0.0363 0.430 483 × 96 0.09852(08) 0.22688(12)
6.30 0.09 1=27 0.0363 0.432 643 × 96 0.57215(04) 0.21946(09)
6.72 0.06 1=5 0.0240 0.286 483 × 144 0.09438(16) 0.16191(16)
6.72 0.06 1=10 0.0240 0.286 643 × 144 0.06713(06) 0.15452(09)
6.72 0.06 1=27 0.0220 0.260 963 × 192 0.03887(03) 0.14269(06)
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tabulated. Using the physical quark-mass ratio mc=ms ¼
11.747ð19Þðþ59

−43Þ [15], these values of ams determine values
of the physical charm-quark mass for each ensemble in
lattice units, which in turn will be used to adjust for
mistunings of the charm sea-quark mass in Sec. III B 3.
Finally, Table III lists the effective coupling constant αs
calculated from taste violations of the HISQ pions in
Ref. [15]. The couplings are scaled by a constant so that
αs ¼ αVðq� ¼ 1.5=aÞ for β ¼ 5.8, where αV is determined
from the plaquette [3,20]. The values of αs are used below
in continuum extrapolations.

A. Computational setup

We solve the gradient-flow differential equation numeri-
cally using the Runga-Kutta algorithm generalized to SU(3)
matrices, as originally proposed by Lüscher [4]. The
routine discretizes the flow time with a step size ϵ and
computes the gauge configuration at a later flow time t ¼
nϵ by iterating from the initial gauge configuration. The
total error of the integration up to flow time t scales like ϵ3.
For all ensembles analyzed in this paper, we find that the

scales
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
=a and w0;orig=a determined at a step size of

ϵ ¼ 0.07 cannot be differentiated, within statistical errors,
from those at ϵ ¼ 0.03. We therefore consider ϵ ¼ 0.03 to
be a conservative step size, and employ it for all results
presented below.
Both the Wilson and Symanzik tree-level actions for the

gradient flow have been implemented and are publicly
available in the current release of the MILC code [21].
This computation uses the Symanzik tree-level improved
action in the gradient flow and the symmetric, cloverleaf
definition of the field-strength tensor Gμν in hEi ¼
GμνGμν=4.

B. Measurements of gradient-flow scales

Tables IVand V show the results for
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
=a, w0;orig=a,ffiffiffiffiffiffiffiffiffiffi

t0;imp
p

=a, and w0;imp=a on the HISQ ensembles. The scalesffiffiffiffiffiffiffiffiffiffi
t0;imp

p
=a and w0;imp=a were improved to Oða8Þ at tree

level using Eqs. (9) and (10) and the coefficients calculated
in Ref. [13] for Symanzik-Symanzik-Clover. For the
ensembles with the smallest lattice volumes, all configu-
rations are included in the computation. As the volumes and
cost become larger, a fraction of the configurations are run.
The configurations in each subset are spaced uniformly
across the ensembles, with spacings chosen to help reduce
autocorrelations. The total number of generated configu-
rations, number of configurations in the gradient-flow
calculation, and molecular-dynamics time separation
between the included configurations are also tabulated
for each ensemble in Tables IV and V.
The error shown with each scale is statistical. It is

determined by performing a jackknife analysis over the
included subset of configurations in each ensemble. The
jackknife bin size is set to be at least twice the integrated
autocorrelation length of the energy density, which is
determined in Sec. III B 2. In many cases the bin size is
larger than would be naively estimated by increasing the
bin size until the statistical error plateaus, which is further
evidence for the conservative nature of our estimates of
autocorrelation lengths.

TABLE II. HISQ ensembles with a lighter-than-physical
strange sea-quark mass. All ensembles have gauge coupling
constant β ¼ 6.00 and lattice spacing a ≈ 0.12 fm. The first two
columns list the approximate values of the light sea-quark mass
m0

l and strange sea-quark massm0
s in units of the physical strange-

quark mass ms. All of the ensembles may be uniquely identified
by these two columns. The remaining columns are equivalent to
those in Table I.

≈m0
l=ms ≈m0

s=ms am0
c N3

s × Nt aMπ aMK

0.10 0.10 0.628 323 × 64 0.13181(10) 0.13181(10)
0.10 0.25 0.628 323 × 64 0.13250(09) 0.17385(11)
0.10 0.45 0.628 323 × 64 0.13275(10) 0.21719(12)
0.10 0.60 0.628 323 × 64 0.13324(10) 0.24509(13)
0.175 0.45 0.628 323 × 64 0.17491(10) 0.23199(12)
0.20 0.60 0.635 243 × 64 0.18850(17) 0.26382(18)
0.25 0.25 0.640 243 × 64 0.20903(19) 0.20903(19)

TABLE III. Values of ams, aFp4s, a (in femtometers), and αs adjusted to physical values of the quark masses, for
various couplings β. All results are from the analysis presented in Ref. [15]. The first two columns list the gauge
coupling and the approximate lattice spacing. The next two columns list the strange mass and Fp4s in lattice units.
The lattice spacing from Fp4s ¼ 153.90ð9Þðþ21

−28Þ MeV, in a mass-independent scheme, is listed in the fifth column.
The final column tabulates the strong coupling constant αs determined from the taste splittings (see the text). For
ams and a, the errors are the sum in quadrature of statistical and systematic errors. Only statistical errors are shown
for aFp4s.

β ≈a (fm) ams aFp4s a (fm) αs

5.80 0.15 0.06863ðþ53
−39Þ 0.119376(71) 0.15305ðþ57

−41Þ 0.58801
6.00 0.12 0.05304ðþ41

−30Þ 0.095403(56) 0.12232ðþ45
−33Þ 0.53796

6.30 0.09 0.03631ðþ29
−21Þ 0.068570(38) 0.08791ðþ33

−24Þ 0.43356
6.72 0.06 0.02182ðþ17

−13Þ 0.044237(25) 0.05672ðþ21
−16Þ 0.29985
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Considering the low cost and the ease of computation,
we originally intended to analyze all configurations from
the HISQ ensembles. However, the desired statistical
accuracy is often reached well before an entire ensemble
is analyzed, and the cost, although low compared to
configuration generation, is significant enough that analyz-
ing all configurations would be an inefficient use of
resources at present. If higher-precision scales are needed
in the future, it would be straightforward to complete the
analysis on the full ensembles.

1. Comparison of RHMC and RHMD

As discussed in Ref. [3], two generation algorithms
were employed for the HISQ ensembles: rational hybrid
Monte Carlo (RHMC) and molecular dynamics (RHMD).
As a check of the consistency of these two algorithms, we
compute the ratio of w0 computed on RHMC-generated
configurations divided by w0 computed on RHMD-
generated configurations for the same bare gauge coupling

and quark masses. For a ≈ 0.09 fm, m0
l=m

0
s ≈ 1=27, the

ratio is wRHMC
0 =wRHMD

0 ¼ 1.0009ð12Þ. For a ≈ 0.06 fm,
m0

l=m
0
s ≈ 1=10, the ratio is wRHMC

0 =wRHMD
0 ¼ 1.0002ð26Þ.

For some configuration streams the pattern of fluctuations
of w0=a with molecular-dynamics time is not sufficient to
reliably estimate the mean and standard deviation over that
single stream. However, in the particular cases used for
calculating the ratio, this issue is not evident. Figure 1
shows the fluctuations of the relevant streams for each ratio.
For all fluctuations of w0=a on a single stream, the length of
the fluctuation in molecular-dynamics time units is small
compared to the entire molecular-dynamics time span of
the stream.

2. Autocorrelation lengths

The autocorrelation function TOðτÞ of an observableO is
defined as the normalized correlation function of O with
itself after the elapse of molecular-dynamics time τ. Given
the number of configurations N, the ensemble average of

TABLE IV. Values of the gradient-flow scales on the physical strange-quark HISQ ensembles listed in Table I. The first two columns
are the approximate lattice spacing and the ratio of light- to strange-sea-quark mass, with the lattice dimensions appended as needed to
identify each ensemble uniquely. The next column shows the ratio of the number of configurations included in the gradient-flow
calculation to the number of configurations in the ensemble. The fourth column lists the molecular-dynamics time separation τ between
configurations included in the gradient-flow calculation. Multiple values are listed for cases where independent streams of the same
ensemble did not use the same τ.

≈a (fm) ml
0=m0

s Nsim=Ngen τ
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
=a w0;orig=a

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
=a w0;imp=a

0.15 1=5 1020=1020 5 1.1004(05) 1.1221(08) 0.9857(04) 1.1069(10)
0.15 1=10 1000=1000 5 1.1092(03) 1.1381(05) 0.9932(02) 1.1258(06)
0.15 1=27 999=1000 5 1.1136(02) 1.1468(04) 0.9969(02) 1.1361(04)
0.12 1=5 1040=1040 5 1.3124(06) 1.3835(10) 1.2003(05) 1.3870(11)
0.12 1=10 ð323 × 64Þ 999=1000 5 1.3228(04) 1.4047(09) 1.2100(04) 1.4096(09)
0.12 1=10 ð403 × 64Þ 1000=1028 5 1.3226(03) 1.4041(06) 1.2098(03) 1.4089(06)
0.12 1=27 34=999 140 1.3285(05) 1.4168(10) 1.2152(05) 1.4225(11)
0.09 1=5 102=1011 50,60 1.7227(08) 1.8957(15) 1.6280(08) 1.9053(16)
0.09 1=10 119=1000 36 1.7376(05) 1.9299(12) 1.6423(05) 1.9406(12)
0.09 1=27 67=1031 32,48 1.7435(05) 1.9470(13) 1.6478(05) 1.9583(13)
0.06 1=5 127=1016 48 2.5314(13) 2.8956(33) 2.4618(12) 2.9049(33)
0.06 1=10 38=1166 96 2.5510(14) 2.9478(31) 2.4810(14) 2.9582(30)
0.06 1=27 49=583 48 2.5833(07) 3.0119(19) 2.5133(07) 3.0223(19)

TABLE V. Values of the gradient-flow scales on the HISQ lighter-than-physical strange-quark ensembles listed in Table II. The first
two columns are identical to those in Table II and are used to identify the ensembles. The latter six columns are equivalent to those in
Table IV.

m0
l=ms m0

s=ms Nsim=Ngen τ
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
=a w0;orig=a

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
=a w0;imp=a

0.10 0.10 102=1020 20 1.3596(06) 1.4833(13) 1.2441(06) 1.4932(13)
0.10 0.25 204=1020 20 1.3528(04) 1.4676(10) 1.2378(04) 1.4764(10)
0.10 0.45 205=1020 20 1.3438(05) 1.4470(10) 1.2296(05) 1.4544(11)
0.10 0.60 107=1020 20 1.3384(08) 1.4351(16) 1.2247(07) 1.4418(17)
0.175 0.45 133=1020 20 1.3385(05) 1.4349(13) 1.2248(05) 1.4415(14)
0.20 0.60 255=1020 20 1.3297(06) 1.4170(12) 1.2166(06) 1.4225(12)
0.25 0.25 255=1020 20 1.3374(07) 1.4336(14) 1.2236(06) 1.4402(15)
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the observable Ō, and a measurement of the observable Oi

on configuration i, TOðτÞ is calculated by

TOðτÞ ¼ COðτÞ
COð0Þ

COðτÞ ¼ 1

N − τ

XN−τ

i¼1

ðOi − ŌÞðOiþτ − ŌÞ: ð13Þ

The integrated autocorrelation length l is the integral of
the autocorrelation function for all cases where τ ≥ 0.
This integral is often estimated as a finite sum using the
trapezoidal rule and a cutoff τ < τcut, as shown in
Ref. [22]:

l ¼
Z

∞

0

TOðτÞdτ ≈ 1

2
þ
Xτcut
τ¼0

TOðτÞ: ð14Þ

The cutoff τcut is justified because the autocorrelation
function typically decays to 0 as a function of τ while
the statistical noise increases with τ.
To compute statistical errors in the autocorrelation

function and integrated autocorrelation length, two inde-
pendent methods are employed: jackknife and the approx-
imations outlined by Madras and Sokal in Ref. [22]. For the
jackknife method, the ensemble’s configurations are di-
vided into distinct bins of b adjacent configurations, and the
jth jackknife subensemble Ofjg is defined to be the set of
all configurations not contained in bin j. The autocorre-
lation function TO

j ðτÞ and the integrated autocorrelation
length lj for the jth subensemble is computed exactly as for
the entire ensemble, except that any contributions involving
a configuration from the bin in question are dropped from
the sum, and the factor of N − τ is decreased accordingly.
Finally, the sample variance for TO and l is estimated by
measuring the variance over the set of jackknife suben-
sembles. Defining the number of jackknife subensembles to
be M ¼ N=b, the variance in any quantity x that can be
calculated on individual configurations is, from standard
jackknife analysis,

σ2x ¼
M − 1

M

XM
j¼1

ðxj − x̄Þ2: ð15Þ

In applying Eq. (15) to the autocorrelation function, which
cannot be estimated from an individual configuration, we
neglect complications from pairs of configurations between
different bins. This leads to corrections to Eq. (15) of
Oðτ=bÞ, which can be neglected if the bin size is chosen to
be large enough that b ≫ τcut. Intuitively this makes sense
because, for sufficiently large sample and bin sizes, the
jackknife calculation is similar to breaking one large
experiment into several smaller, mostly independent
experiments. As long as the autocorrelation function can
still be computed over its entire domain within any of the
smaller experiments, the analogy still holds.
As an additional check that the standard jackknife

formulas apply, we used the Metropolis-Hastings algorithm
to generate independent streams of Gaussian-distributed
real numbers at fixed stream size N. By independently
varying the stream size and the number of independent
streams within a set, we verified that for a large N and
b > τcut both the jackknife procedure and the equations of
Madras and Sokal yield approximations of the sample
variance of TO and l that agree, within statistical errors,
with each other and with the true variance of TO and l.
The second method we employ to estimate the statistical

error in TO and l is the one developed in Ref. [22].1 The

FIG. 1. The scale w0=a measured on individual configurations
as a function of the simulation time in molecular-dynamics time
units. Configuration streams generated with RHMC and RHMD
are represented by solid-red and dashed-blue lines, respectively.

1Note, that, unlike Madras and Sokal, we call the lag in
simulation (molecular-dynamics) time τ, rather that t, which is
used here for flow time.
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approximations to the variance neglect Oðl=NÞ effects and,
for TO, are slower to compute than the estimates from
jackknife. However, the jackknife procedure relies on
finding a bin size such that l ≪ b ≪ N, which can be
tricky for small samples with large correlations. In the end,
we decide to employ and compare both methods because
each will introduce different errors as the sample size
decreases and the correlation increases.
We compute the autocorrelation function of hEðt; τÞi as a

function of the flow time t and the number, τ, of molecular-
dynamics time units separating configurations. Figure 2
shows examples of the autocorrelation function of hEðt; τÞi
at fixed flow time t ≈ w2

0 for ensembles at a ≈ 0.12 and
0.09 fm. For the ensembles at a ≈ 0.15 and 0.12 fm, where
the full ensembles have been analyzed, we have a reliable
estimate of the statistical error of the autocorrelation
function for all values of τ. For the finer lattice spacings
a ≈ 0.09, 0.06 fm, estimating the autocorrelation functions
for τ smaller than the separations listed in Tables IV and V
is impossible without calculating the gradient flow on more
configurations. To address this, we have analyzed an
additional 50 equilibrated configurations separated with
τ ¼ 24 from the m0

l=ms ¼ 1=10, a ¼ 0.09 ensemble. Most
of these configurations are not included in the calculation
of the gradient-flow scales; we keep the configurations used
for computing the scales uniformly spread over each
ensemble, with constant separation in τ. With our limited
statistics on the a ≈ 0.06 fm ensembles, we are unable to
get useful information on l, and we therefore drop those
ensembles from further consideration in this subsection.
Once the autocorrelation function of hEðtÞi is computed,

we integrate the function over the separation τ for each step
in flow time t. The statistical error in l is then estimated
either using jackknife or the formulas from Madras and
Sokal. For the coarser a ≈ 0.15 and 0.12 fm ensembles,
where b can be chosen to be bigger than τcut, we find the
two estimates agree well with each other (as implied in the
top plot of Fig. 2). We choose to use the jackknife estimate,
which can be computed more rapidly. To ensure the bin size
used in the jackknife procedure is sufficiently large, we first
use a bin size b large enough that the statistical error in
hEðt; τÞi is (approximately) unchanged with further
increases in bin size. After determining a value for l and
a total error σl, we then repeat the calculation with the
smallest bin size that obeys b ≥ 2l and evenly divides the
sample size. If the new central value and error estimate
leads to values of l that do not satisfy this condition, then
the bin size is further increased, and this procedure is
repeated until the condition is met. For the finer a ≈ 0.09
ensemble, a bin size cannot be chosen that falls well
between τcut and the sample size. So, we choose to use the
method of Ref. [22], which yields slightly larger errors (by
about 20%).
After calculating the statistical error in l, the bias from

introducing τcut must also be accounted for. Here we use a

slight elaboration on the automatic windowing algorithm
mentioned in Ref. [22]: τcut is selected to be the lowest
value possible that satisfies τcut ≥ clðτcutÞ for an appro-
priate choice of c. Once c is chosen, the remaining bias is
approximately equal to TOðτcutÞlðτcutÞ. In Ref. [22] a value
of c ¼ 10 was empirically found to yield an acceptable
balance of statistical noise and bias; however, our samples
are significantly noisier so a smaller value of c is appro-
priate. With this in mind, we use the following strategy to
come up with our final choice of τcut. First, we identify the

FIG. 2. The autocorrelation function of hEðtÞi plotted as a
function of the separation between configurations τ in molecular-
dynamics time units. For both figures the flow time t is fixed near
the value of w2

0. The top plot is for the larger-volume ensemble
with a ≈ 0.12 fm, m0

l ¼ m0
s=10. For visibility, only every fifth

point in τ is shown. The bottom plot is for the a ≈ 0.09 fm, m0
l ¼

m0
s=10 ensemble. Estimates of the standard error using jackknife

and the formulas in Ref. [22] are present for each data point, with
the latter shifted slightly right for visibility. The lower number of
analyzed configurations on the finer ensemble leads to a relatively
larger statistical error and step size in τ. In both plots the vertical
dashed lines correspond to the smallest and largest values of τcut
considered for each ensemble (see the text).
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smallest value of c ¼ cmin where TOðτcutÞ is consistent with
zero within statistical error. We then choose the value of c
within the range cmin ≤ c ≤ 2cmin that yields the highest l.
For the a ≈ 0.15 and 0.12 fm ensembles, we find cmin ¼ 4
and c ¼ 8, because the estimates of the autocorrelation
functions stay small but positive for a significant range of τ
even after they are first consistent with zero. For the a ≈
0.09 fm ensemble, we find cmin ¼ 2 and c ¼ 2. This is
because the estimate of the autocorrelation function in this
case is much noisier and happens to become negative
(although consistent with 0) almost immediately after first
reaching zero.
The integrated autocorrelation lengths with statistical

error and the estimated bias combined in quadrature are
plotted in Fig. 3. Notice the autocorrelation length for
hEðtÞi appears to asymptotically increase for increasing
flow times, as expected for a smoothing operation. The
central estimate of the integrated autocorrelation length at
large flow times is 58 molecular-dynamics time units for
the a ≈ 0.09 fm,m0

l ¼ m0
s=10, physical strange-quark mass

ensemble. In comparison, the integrated autocorrelation
length of the topological charge appears to be roughly 40
molecular-dynamics time units for the a ≈ 0.09 fm,
m0

l ¼ m0
s=5, physical strange-quark mass ensembles [3].

This suggests the autocorrelation length for hEðtÞi at large
flow times is comparable to the autocorrelation length of
the topological charge.

3. Charm-quark mass mistuning

Mistunings of the charm-quark mass on our ensembles
vary between 1% and 11%. It is therefore important to
account for the corrections in the charm-quark mass to the
quantities we consider. Heavy-quark effects on low-energy
quantities come from effects on the scale Λð3Þ

QCD as well as
higher-order, physical corrections in powers of 1=mc.
Applying only the leading-order corrections from the effect

on Λð3Þ
QCD is sufficient for first estimates. However, the

higher precision of the full continuum extrapolation and
quark-mass interpolation requires us to account for the
next-to-leading-order (NLO) contributions, namely the first
power corrections in 1=mc. Since the implementation of
NLO contributions primarily enters in the full analysis, we
defer most of the discussion until Sec. III C and focus here

on leading-order effects from the scale Λð3Þ
QCD.

If a dimensionless ratio is made of any two quantities
evaluated at the same charm-quark mass and with the same
dependence on Λð3Þ

QCD, then this dependence will cancel in
the ratio. However, low-energy quantities may also depend
on the light-quark masses, which means they may have

different dependence onΛð3Þ
QCD, even close to the chiral limit.

Thus, ratios of low-energy quantities may have leading
dependence on mc from the leftover scale dependence. In
this analysis we scale all the gradient-flow scales and the
meson masses aMπ , aMK by the pseudoscalar decay
constant aFp4s, whose values, adjusted to physical sea-
quarkmasses (including physicalmc), are given inRef. [15].
Since, for small light-quark masses, Fp4s is proportional to

Λð3Þ
QCD and the meson masses are proportional to ðΛð3Þ

QCDÞ1=2,
the meson masses must be adjusted to physical mc to
eliminate the leading-order mc dependence through

Λð3Þ
QCD. The gradient-flow scales (in MeV) are also propor-

tional to Λð3Þ
QCD (with quite small sea-quark mass depend-

ence); therefore, scaling by aFp4s evaluated at the same
charm-quark mass will cancel the leading-ordermc depend-

ence through Λð3Þ
QCD. To make sure aFp4s and the gradient-

flow scales are evaluated at the same charm-quark mass
either aFp4s has to be readjusted back to the simulation
value m0

c or the gradient-flow scales have to be adjusted to
physicalmc. In this case, we choose to readjust aFp4s tom0

c,
since its derivative, with respect to m0

c, ∂F2=∂mc ¼
0.00554ð85Þ in p4s units, has already been computed from
the lattice data inRef. [15]. For the ratios ofaMπ andaMK to
aFp4s, we keep the physical-mc values of aFp4s from
Ref. [15] and adjust aMπ and aMK to the physical value
of mc, using the derivative ∂M2=∂mc ¼ 0.0209ð41Þ calcu-
lated in p4s units [15]. The values of aMπ , aMK , and aFp4s

after charm-quark-mass adjustments are listed in Tables VI
and VII.
It is instructive to compare these results to the leading-

ordermc effect on Λ
ð3Þ
QCD expected from perturbation theory.

FIG. 3. The integrated autocorrelation length (in molecular-
dynamics time units) as a function of flow time for ensembles
withm0

l=m
0
s ¼ 0.1 and different lattice spacings. The thickness of

the colored regions show the full range of the 1σ errors, obtained
by adding, in quadrature, the statistical error and bias due to τcut.
Dashed vertical lines denote the flow times that determine w0;orig

on each ensemble where the color of the line matches the color of
the shaded region. For early flow times on the a ≈ 0.09 fm
ensemble the integrated autocorrelation length is not plotted
because the smallest step in τ between configurations is insuffi-
cient to resolve the dominant contributions to the autocorrelation
function.
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Defining the ratio Pðmc=Λ
ð4Þ
QCDÞ ¼ Λð3Þ

QCD=Λ
ð4Þ
QCD, a renorm-

alization-group invariant ηðmcÞ can be constructed from the
logarithmic derivative of P [23],

ηðmcÞ≡ mc

Λð4Þ
QCD

P0

P
; ð16Þ

with P0 being the derivative of P with respect to its
argument. At leading perturbative order, η ≈ η0 ¼ 2=27
[24,25], and

∂Λð3Þ
QCD

∂mc
¼ P0

�
mc

Λð4Þ
QCD

�
≈

2

27

Λð3Þ
QCD

mc
: ð17Þ

Then, given Q ¼ kðΛð3Þ
QCDÞp, where k and p are indepen-

dent of mc, the partial derivative of Q with respect to mc at
leading order in perturbation theory (and neglecting physi-
cal, NLO corrections in 1=mc) is

∂Q
∂mc

¼ kpðΛð3Þ
QCDÞp−1

∂Λð3Þ
QCD

∂mc
≈
2p
27

Q
mc

: ð18Þ

As mentioned in Ref. [15], the results of this formula for
∂F2=∂mc and ∂M2=∂mc agree, within 10%, with the
numerical determination of these derivatives from our
lattice data. Also, we find that the dimensionless product
of aFp4s with the gradient-flow scales is approximately the
same whether aFp4s is readjusted to m0

c using the numeri-
cally estimated derivative or the gradient-flow scales are
adjusted to the physical value of mc using Eq. (18). The
largest difference between the two approaches is 1.7σstat,
where σstat is the statistical error, and occurs on the
a ≈ 0.06 fm, m0

l ¼ m0
s=5 ensemble for the dimensionless

combination
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
Fp4s.

We account for the remaining physical, NLO corrections
in powers of 1=mc by directly including such terms in the
fits to

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
Fp4s, w0;origFp4s,

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
Fp4s, and w0;impFp4s.

Specific details of what powers are included and how the
terms are constrained is detailed in Sec. III C. The effects of
the NLO charm-mass corrections to the meson masses
aMπ=aFp4s and aMK=aFp4s on the gradient-flow scales
are negligible because these are quite small corrections and
the dependence of the gradient-flow scales on aMπ=aFp4s

and aMK=aFp4s is already weak.

TABLE VI. Results for adjusted meson masses and aFp4s, on the physical strange-quark ensembles listed in Tables I and IV. The
adjustments correct for leading-order charm-mass effects, as explained in the text. The first two columns are the approximate lattice
spacing and ratio of light-to-strange sea-quark mass, with the lattice dimensions appended as needed to uniquely identify each ensemble.
The next two columns list the masses aMπ and aMK adjusted to the physical charm-quark mass, with the associated statistical error in
parentheses and the change from the data before leading-order charm-quark mass adjustment in square brackets. The last column lists
the decay constant aFp4s (with statistical error) adjusted back to the simulation value am0

c, while the physical values for the two lighter
quark masses are held fixed.

≈a (fm) m0
l=m

0
s aMπ aMK aFp4s

0.15 1=5 0.23619ð22Þ½−34� 0.40204ð25Þ½−57� 0.11976(7)
0.15 1=10 0.16598ð10Þ½−16� 0.38030ð16Þ½−37� 0.11964(7)
0.15 1=27 0.10169ð09Þ½−11� 0.37051ð16Þ½−41� 0.11967(7)
0.12 1=5 0.18904ð15Þ½−13� 0.32335ð20Þ½−22� 0.09555(6)
0.12 1=10 ð323 × 64Þ 0.13420ð09Þ½−04� 0.30804ð15Þ½−09� 0.09546(6)
0.12 1=10 ð403 × 64Þ 0.13396ð06Þ½−04� 0.30812ð09Þ½−09� 0.09546(6)
0.12 1=27 0.08151ð04Þ½−02� 0.29843ð11Þ½−08� 0.09546(6)
0.09 1=5 0.14039ð17Þ½−16� 0.24033ð18Þ½−27� 0.06874(4)
0.09 1=10 0.09849ð08Þ½−03� 0.22681ð12Þ½−07� 0.06861(4)
0.09 1=27 0.05719ð04Þ½−03� 0.21936ð09Þ½−10� 0.06864(4)
0.06 1=5 0.09400ð16Þ½−38� 0.16125ð16Þ½−65� 0.04465(3)
0.06 1=10 0.06686ð06Þ½−27� 0.15390ð09Þ½−62� 0.04465(3)
0.06 1=27 0.03885ð03Þ½−02� 0.14262ð06Þ½−07� 0.04429(3)

TABLE VII. Results for adjusted meson masses and the decay
constant aFp4s, on the lighter-than-physical strange-quark en-
sembles listed in Tables II and V. The adjustments correct for
charm-mass mistunings, as explained in the text. The first two
columns are identical to those in Table II and are used to identify
the ensembles. The latter three columns are equivalent to those in
Table VI.

m0
l=ms m0

s=ms aMπ aMK aFp4s

0.10 0.10 0.13177ð10Þ½−04� 0.13177ð10Þ½−04� 0.09546(6)
0.10 0.25 0.13247ð09Þ½−04� 0.17380ð11Þ½−05� 0.09546(6)
0.10 0.45 0.13271ð10Þ½−04� 0.21713ð12Þ½−06� 0.09546(6)
0.10 0.60 0.13320ð10Þ½−04� 0.24502ð13Þ½−07� 0.09546(6)
0.175 0.45 0.17487ð10Þ½−05� 0.23192ð12Þ½−07� 0.09546(6)
0.20 0.60 0.18837ð17Þ½−13� 0.26364ð18Þ½−18� 0.09555(6)
0.25 0.25 0.20883ð19Þ½−21� 0.20883ð19Þ½−21� 0.09561(6)
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4. Simple continuum extrapolation

A simple continuum extrapolation can be quickly per-
formed by including only the physical quark-mass ensem-
bles. With just these ensembles, light-quark, strange-quark,
and NLO charm-quark-mass mistuning effects cannot be
accounted for, and the statistical error will be larger than
from a fit to the complete data set. Nevertheless, this
extrapolation is useful because it provides a check on the
final value from the more complicated fits and highlights
the degree of improvement in discretization errors of
w0;origFp4s over

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
Fp4s, as well as

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
Fp4s and

w0;impFp4s over the originals
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
Fp4s and w0;origFp4s.

To perform the continuum extrapolation we multiply by
the values of aFp4s listed in Table III to create a dimen-
sionless quantity that is finite in the continuum limit. We
choose aFp4s to keep the statistical errors smaller than what
they would be from an experimentally accessible quantity
such as fπ . To convert the final result to physical units,
however, we must use Fp4s ¼ 153.90ð09Þðþ21

−28Þ MeV,
which was computed with the scale set by afπ. The
advantage of using aFp4s to set the intermediate scale is
that it yields smaller relative scale errors from different
ensembles, and thus aids in the extrapolation to the
continuum.
Plots of

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
Fp4s and w0;origFp4s as a function of a2

are shown in Fig. 4. The discretization improvement of
w0;orig over

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
is immediately evident in the differences

between the coarsest and finest ensembles. This result
holds for many choices of the reference scale, including
afπ , r1=a,

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
=a, and w0;imp=a, in addition to aFp4s,

the choice used in Fig. 4. In addition, the plot shows that the
a2 dependence is not trivial for w0Fp4s. This is not
unexpected because we are using a highly improved
configuration action (which directly affects aFp4s) for a
statistically precise measurement. The importance of
higher-order terms in a2 and αsa2 can be seen directly
in the differences between the improved and original w0, as
well as the difference between

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
and w0;orig. The

situation is further complicated by effects of quark-mass
mistunings between ensembles with approximately the
same ratio ml=ms. This is explored in more detail in the
full fit analysis in Sec. III C 2. For now, we include linear
fits in a2 with or without the coarsest a ≈ 0.15 fm ensemble
and quadratic fits in a2 to all four ensembles.
Figure 5 compares the improved scales

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
and

w0;imp with the original ones
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
and w0;orig. As before,

we consider linear fits with or without the coarsest
(a ≈ 0.15 fm) ensemble, and quadratic fits with all four
ensembles. For the unimproved scales the fit curves are
functions of a2; for the improved scales they are functions
of αsa2, since tree-level discretization errors have been
removed. The improvement at tree level is clear for

ffiffiffiffi
t0

p
,

where the αsa2 dependence of
ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
is close to linear, and

the slope is considerably less steep than for
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
. The

difference between w0;orig and w0;imp is much smaller, and is
contaminated here by mistuning effects, so we postpone
discussion until after we correct for such mistunings.
The continuum values are extracted from the quadratic fit

in αsa2 to the full data set on the improved scales.
The systematic error from the extrapolation is estimated
by the largest differences between this fit and the other
fits considered. This yields the simple estimates for the
gradient-flow scales

ffiffiffiffi
t0

p ¼ 0.1419ð2Þðþ17
−4 Þ fm and

w0 ¼ 0.1710ð4Þð þ7
−12Þ fm. Here we do not include errors

(statistical or systematic) from the determination of Fp4s so
that we can make a cleaner comparison with the extrap-
olations over the full data set (nonphysical quark masses
included) in the next section.

C. Full continuum extrapolation

Using all of the ensembles listed in Tables I and II, we
now perform a combined continuum extrapolation and
interpolation to physical quark masses. Compared with the
simple continuum extrapolation over the physical quark-
mass ensembles only, the full approach has greater
statistics, provides a handle for precise tuning of the
light-quark and strange-quark masses to their physical

FIG. 4. Simple continuum extrapolations for
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
Fp4s and

w0;origFp4s over physical quark-mass ensembles only. Statistical
error bars are present, but they are nearly invisible on this scale.
Three fits to each data set are shown. The red, dot-dashed line is a
linear fit in a2 to the three finer ensembles (a < 0.15 fm), the
blue dashed line is a linear fit in a2 to all four ensembles, and
the green solid line is a quadratic fit in a2 to all four ensembles.
The continuum extrapolation points, calculated from

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
and

w0;imp, are shown in magenta with error bars representing the sum
of statistical and systematic uncertainties in quadrature.
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values, and allows for better control and analysis of the
systematic errors from discretization effects.
We break the analysis into two main sections. First, the

functional forms and parameter variations for controlling
mass and lattice-spacing dependence are outlined. Second,
we present the results from our fits of the lattice data to the
models from the first section.

1. Models of mass and lattice-spacing dependence

To perform the combined continuum extrapolation/
quark-mass interpolation there are three functional forms
that must be chosen: quark-mass terms, lattice-spacing
terms, and terms that combine both (cross terms).
For the light and strange mass dependence we use the

chiral expansion outlined in Sec. [18] with Mπ and MK as
independent variables, standing in for the light- and
strange-quark-mass dependence. For each fit we include
the expansion up to LO (just a constant), NLO (which adds
an analytic term linear in the squared meson masses, but no
chiral logarithms), or NNLO (chiral logarithms and terms
up to quadratic in the squared meson masses). In the fits to
Eq. (6), the rho meson mass is used for μ, fπ is used for f at
NLO, and Fp4s is used for f at NNLO for convenience;
other choices for these quantities would be equivalent up to

redefinitions of ki and the addition of terms of higher than
NNLO order.
For the NLO charm-quark-mass dependence, Ref. [23]

argues that, for a large mc, corrections start at Oð1=m2
cÞ. In

our central fits we therefore add a term proportional to
1=m02

c − 1=m2
c (primes denote simulation values, unprimed

quantities denote physical values). However, in the lighter-
than-charm region where Ref. [23] performed simulations,
their data actually was better described by 1=mc depend-
ence than by 1=m2

c. Although all our values ofm0
c are closer

to mc than those of Ref. [23], we also consider fits that
replace 1=m02

c − 1=m2
c by 1=m0

c − 1=mc in estimating
systematic errors.
For the lattice-spacing dependence we use a Taylor-

series ansatz in powers of a2, αsa2, and α2sa2. We include
powers of αs because the leading errors coming from the
action in a joint expansion in a2 and αs is αsa2 and the
leading taste-violating errors is α2sa2. For the original scalesffiffiffiffiffiffiffiffiffiffi
t0;orig

p
and w0;orig, the first order term in lattice spacing, a2,

is always included. Higher orders are optionally included
up to a6, αsa2, and α2sa2. For the improved scales

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
and w0;imp, the first order in either αsa2 or a4 is always
included. Higher orders are optionally included up to a8,
ðαsa2Þ2, and α2sa2. Even though the scales

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
and

w0;imp are improved to order a8 at tree level, the a4 through
a8 terms are included for fits because aFp4s has leading
corrections of αsa2 and a4. For both scales, the number
of lattice-spacing terms in a single fit is not allowed to
exceed 3. Together with the value of the scale in the
continuum limit, this ensures that at most four parameters
describe the a dependence of the data from our four unique
lattice spacings.
In order to limit the large number of cross terms possible,

we only include products of chiral and lattice-spacing terms
whose total “order” is no higher than the largest noncross
term included in the fit function. Here by order we simply
mean the total power of any of the following factors, which
all have similar magnitudes for the HISQ ensembles:
αs ∼ ðΛQCDaÞ2 ∼ ðM=ð4πfÞÞ2. Also, no cross terms are
constructed from the highest orders of mass or lattice-
spacing terms. For example, a fit including a6 and the
chiral expansion to NNLO would include a term like
a4ðM=ð4πfÞÞ2 but not a2ðM=ð4πfÞÞ4.
Once the functional form is chosen, we also consider

various restrictions of the data set. As already suggested
from the naive fit to the physical quark-mass ensembles
only, the a ≈ 0.15 fm ensembles may require higher orders
of a2 to be included. Sowe consider fits that include or drop
these ensembles. Furthermore, when the a ≈ 0.15 fm
ensembles are dropped, we do not include more than
two lattice spacing terms to ensure the three unique lattice
spacings represented by the data set are parametrized by
three or fewer variables. A second restriction on the data set
is determined by the kaon mass. The lighter-than-physical

FIG. 5. Simple continuum extrapolations for the original
(

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
and w0;orig) and improved (

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
and w0;imp) gra-

dient-flow scale times Fp4s over only physical quark-mass
ensembles. Quadratic fits in a2 or αsa2 over all four physical-
mass ensembles are shown for the original and improved scales,
respectively. The continuum extrapolation points, calculated from
the improved scales, are shown in black with error bars
representing the sum of statistical and systematic uncertainties
in quadrature.
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strange-quark ensembles have strange-quark masses all the
way down to 1=10 the physical strange-quark mass.
Including these ensembles along with the physical-mass
ensembles that comprise most of out data requires more
complex chiral forms to cover the large range in m0

s. We
therefore consider eight different lower bounds for the kaon
masses included in the fit, ranging from just below the
physical strange-quark mass to near zero, which includes
all the ensembles. We do not set an upper bound for the
kaon mass, as would be typical of chiral-perturbation-
theory extrapolations, because this would only leave a ≈
0.12 fm ensembles for the extrapolation.
We add Gaussian priors centered around zero to ensure

the magnitudes of fit parameters are physically plausible;
we refer to the standard deviation of the Gaussian as the
prior width. For discretization terms of the form
kðαps a2Λ2

QCDÞn, the dimensionless coefficient k is presumed
to be of order unity so that the finite Taylor-series
expansion in a2, αsa2, and α2sa2 is justified. When reex-
pressed in terms of the two dimensionless quantities,

χud ¼
2μm0

l

8π2f2π
; χs ¼

2μm0
s

8π2f2π
; ð19Þ

the coefficients of the terms from chiral-perturbation theory
are also expected to be of order unity.2 A prior width of 1 in
these units is in most cases sufficient to ensure that the data,
rather than the prior assumption, is constraining a given
parameter, since the deviation of the parameter from zero is
well within one prior width. Once the priors widths are
increased to 3, this is true for all the discretization and
chiral parameters, and most fit results are negligibly
different from those with no prior constraints at all. The
only exceptions are seven fits to

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
Fp4s whose

continuum results differ by ≈2σstat from those without
prior constraints.
For the NLO charm-quark-mass corrections, the prior

width is based on the results of Ref. [23], which finds that
such heavy-quark effects on the gradient-flow scales are
≲0.3%. For a dimensionless ratio RðmcÞ, we choose the
prior width such that jRðmcÞ − Rð∞Þj=Rð∞Þ < 0.5% or
1.5%. Most fits show a negligible difference between a
prior width of 1.5% and a prior width set to infinity.
However, the prior width does significantly constrain the
mc dependence on a few outlying fits; without any prior
constraints these fits would have shown differences of 4%
to 5% between a physical mc and an infinite mc. We
consider such a large mc dependence unreasonable and we
believewe are justified in removing these few outliers using
the prior constraints. It is probable that these large NLO
1=mc power corrections are mimicking the dependence on
other variables such as ms; we note that the mistunings in

mc are comparable to and correlated with the mistunings in
ms on the physical strange-quark-mass ensembles. Another
possibility is that the power corrections are making up for
errors in the derivatives ∂F2=∂mc and ∂M2=∂mc. We have
checked to see, however, that varying the derivatives by
2σstat does not produce significant variations in the con-
tinuum results. For this reason and others discussed in later
sections, we do not widen the prior on NLO charm-quark-
mass dependence any further than 1.5% in the final
analysis.
This leads us to consider two sets of Gaussian priors in

our final analysis: one set with all prior widths set to the
smaller choice (1 for discretization and chiral terms, and
0.5% for NLO charm-mass dependence) and another set
with all widths set to the larger choice (3 for discretization
and chiral terms, and 1.5% for NLO charm-mass depend-
ence). Both sets of priors are in general wide enough that
the parameters are determined by the data and not the priors
(the deviation of the parameter from zero does not change
an appreciable fraction of the original width when the width
is increased by a factor of 3); the only exceptions are for the
parameters determining NLO charm-mass dependence, and
then only for a few outlying fits, as described earlier.
For all scales, there are three chiral expansions, eight

choices of lower bound for the kaon mass, two choices for
the next-to-leading-order charm-quark-mass correction,
and two sets of priors. For the original scales

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
and w0;orig, there are six lattice-spacing expansions with the
a ≈ 0.15 fm ensembles included and three lattice-spacing
expansions with the a ≈ 0.15 fm ensembles not included.
This produces a total of 3 × 8 × 2 × 2 × ð6þ 3Þ ¼ 864
different fits. For the improved scales

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
and w0;imp,

there are nine lattice-spacing expansions with the a ≈
0.15 fm ensembles included and five lattice-spacing
expansions with the a ≈ 0.15 fm ensembles not included.
This produces a total of 3 × 8 × 2 × 2 × ð9þ 5Þ ¼ 1344
different fits.

2. Fits to the lattice data

We gauge the acceptability of each of the fits outlined in
Sec. III C 1 using the p value of the fit. We also consider the
number of degrees of freedom for each fit and the proximity
of the fit curve to the data from our most important
ensemble, the one with physical quark masses and
a ≈ 0.06 fm. This extra information is not used to restrict
the set of fits, but allows us to better visualize their
properties. Figure 6 shows the acceptability for the original
and improved scales with the p value as the x axis,
deviation from the physical a ≈ 0.06 fm ensemble as the
y axis, and the size (radius) of each data point proportional
to the number of degrees of freedom. We define acceptable
fits as those with p > 0.01. Acceptable fits are those to the
right of the black line in Fig. 6. Note that, for all the scales
considered, fits with acceptable p values are usually close
to the result from the a ≈ 0.06 fm physical-mass ensemble.

2Prior widths on cross terms are set to the product of the widths
associated with each of the factors.
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For all the gradient-flow scales, no acceptable fit deviates
from that result by more than 2σstat.
To determine a central value and systematic error from

the choice of fit we construct histograms in Fig. 7 of the
continuum results from fits with p > 0.01. A histogram
method to determine systematic errors has been used
previously by the BMW Collaboration [26]. A key dis-
tinction is that we do not treat the distribution as a kind of
probability distribution, but simply treat all acceptable fits
as realistic alternatives and take the largest positive and
negative differences from the central fit as the systematic
errors. For

ffiffiffiffi
t0

p
where the tree-level improvement produces

a clear reduction in discretization errors (as discussed later
in this section), we use only the histogram of the improved
scales

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
in the estimate of the systematic error. In

other words, we use the full range of the fits shown in green
in Fig. 7, but do not consider the red outliers at the left of
the histogram. For w0 the tree-level improvement does not
clearly reduce the size of discretization effects, so we
include w0 as well as w0;imp in the systematic error estimate.
Widening the prior on the NLO charm-mass dependence
makes a noticeable shift in the continuum values of some of
the outlying fits on both histograms. However, widening
the prior does not significantly change the continuum
values for the central bulk of the histogram. For this

FIG. 6. The “acceptability” for the various fits considered for
the t0 scales (

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
and

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
, top panel) and w0 scales (w0;orig

and w0;imp, bottom panel). Fit acceptability is determined by the p
value (x axis) and further illustrated by the proximity to the
results from the physical-mass a ≈ 0.06 fm ensemble in units of
σstat (y axis). The size of the points is proportional to the number
of degrees of freedom. The region to the right of the black line
contains fits with 0.01 < p < 1.0 and a deviation of less than
2σstat. This line determines the acceptable subset of fits consid-
ered in the subsequent analysis. The central fit chosen from this
analysis is denoted by the star.

FIG. 7. Histograms of the continuum extrapolations forffiffiffiffi
t0

p
Fp4s (top panel) and w0Fp4s (bottom panel) for all acceptable

fits (see the text). Each histogram is a stacked combination of
continuum extrapolations from the original (

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
and w0;orig)

and improved scales (
ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
and w0;imp), represented by the red,

hashed and green, solid bars, respectively. The box and error bars
along the bottom denote the minimum, mean, maximum, and
central 68% of the distribution. The vertical dashed line for each
distribution marks the continuum result of the associated
central fit.
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reason, and because the widest prior width for NLO charm-
mass corrections included in the histogram is large (∼1.5%,
more than three times what is estimated in Ref. [23]), we do
not widen the prior further.
For both

ffiffiffiffi
t0

p
and w0, the central fit is chosen by locating

fits close to the median and mean with p > 0.1. If there are
several fits that satisfy this criterion, fits with a larger
number of degrees of freedom are chosen. For

ffiffiffiffi
t0

p
, where

there are very few fits with p > 0.1, this criterion is
sufficient to determine the central fit. For w0, there are a
large number of fits satisfying this criterion; thus, we
narrow the choice down by preferring fits with αsa2 over
a4, 1=m02

c − 1=m2
c over 1=m0

c − 1=mc, and the NNLO chiral
expansion over the NLO expansion. The central fits to

ffiffiffiffi
t0

p
and w0 are both to the improved scales, include all but the
three lightest m0

s ensembles, use the 1=m02
c − 1=m2

c NLO
correction in mc, include the αsa2 lattice-spacing term,
exclude the coarsest a ≈ 0.15 fm ensembles, and use the
wider set of priors. The central fit for

ffiffiffiffi
t0

p
only uses the

chiral expansion to NLO and adds in the a4 lattice-spacing
term, resulting in five free parameters (with four priors—
continuum values are never constrained by priors) and 14
data points. The central fit for w0 includes the full NNLO
chiral expansion but does not add in additional lattice-
spacing terms, resulting in seven free parameters (with six
priors) and 14 data points. For

ffiffiffiffi
t0

p
, the central fit has

χ2=d:o:f: ¼ 14.0=9 and p ¼ 0.14 from the data alone (i.e.,
with the standard or “unaugmented” definition of χ2

coming from data, and degrees of freedom equal to the
number of data points minus the number of fit parameters).
Including contributions from priors, the “augmented”
χ2=d:o:f: ¼ 15.2=13 and p ¼ 0.31. The fit is 0.07σ higher
than the result on the physical a ≈ 0.06 fm ensemble. For
w0, the central fit has χ2=d:o:f: ¼ 3.0=7, p ¼ 0.89 unaug-
mented and χ2=d:o:f: ¼ 4.0=13, p ¼ 0.99 augmented, and
is 0.15σ higher than the result on the physical a ≈ 0.06 fm
ensemble. The central fits are shown in Fig. 8. The dashed
lines indicate how well the fit describes the data by showing
the fit function evaluated at the same masses and lattice
spacing as the data points. The three solid bands show the
lattice-spacing dependence at fixed quark masses, tuned to
a physical value for the strange-quark mass and the
indicated ratio of the light-quark to strange-quark mass.
One clearly sees the effects of retuning the quark masses
from their simulation values.
Because there are a wide range of choices for the cental

fit to w0, we include a description of an alternative fit,
which is plotted in Fig. 9. The fit is similar to the central fit
for w0 previously mentioned, except it includes the lattice-
spacing terms a4 and α2sa2 and the coarsest ensembles at
a ≈ 0.15 fm. The fit has χ2=d:o:f: ¼ 7.7=8, p ¼ 0.47
unaugmented and χ2=d:o:f: ¼ 9.64=16, p ¼ 0.89 aug-
mented, and is 0.18σ higher than the physical a ≈
0.06 fm ensemble. The addition of more lattice-spacing

terms and the coarsest ensembles leads to a hook in the
continuum extrapolation near a ≈ 0.06 fm, which signifi-
cantly increases the statistical error in the continuum result.
For this reason we prefer the previously mentioned central
fit for w0 over this alternative.
For the fit to

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
Fp4s, the lattice-spacing dependence

at finer lattice spacings (a ≤ 0.09 fm) is dominated by the
αsa2 contribution. The a4 contributions start to become
comparable to those from αsa2 for a≳ 0.12 and produce
the curvature evident in Fig. 8 (top panel). The chosen
central fit to w0;impFp4s has only one lattice-spacing
dependent term, αsa2, but it excludes the coarsest a ≈
0.15 fm ensembles. So, it is also worthwhile to examine the

FIG. 8. The central fits to the gradient-flow scales
ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
Fp4s

and w0;impFp4s, plotted as a function of αsa2. These are used to
compute

ffiffiffiffi
t0

p
(top panel) and w0 (bottom panel) at physical quark

masses and in the continuum, as indicated by the black stars.
Only m0

s ≈ms ensembles are plotted, but the fits include
0.25ms < m0

s ≤ ms ensembles. Dashed lines represent the fit
through each ensemble’s actual quark masses and lattice spacing,
while the solid bands are for varying lattice spacing at fixed quark
masses retuned to the physical strange-quark mass and the ratio of
m0

l=m
0
s specified in the legend.
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alternative fit’s lattice-spacing dependence since the a ≈
0.15 fm ensembles are included in this fit. The lattice-
spacing dependence of w0;impFp4s in the alternative fit is
milder than for

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
Fp4s, but also more complicated.

The majority contribution for all a is from α2sa2, but only by
a slim margin; the α2sa2 term is approximately 53%–57% of
the sum of the absolute value of all discretization terms.
The contributions from αsa2 and a4 have comparable
magnitudes and add together, canceling some of the
contribution from α2sa2. The cancellations are larger for
a ≤ 0.06 fm and a > 0.12 fm, causing the curvature seen
in Fig. 9. Because the central fit to

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
Fp4s and the

alternative fit to w0;impFp4s have multiple discretization
terms of comparable magnitudes for a > 0.12 fm, we
ensure higher-order terms are negligible by repeating these
fits with the addition of the next highest terms in a2 or αsa2.
The continuum results for these modified fits do not
significantly differ from the original fits.
It is revealing to examine the central extrapolations

plotted through only the physical-mass ensembles for all
four gradient-flow scales, as was done in Fig. 5 for the naive
extrapolation. This plot is presented in Fig. 10. Compared to
the simpler fits to just the physical-mass ensembles in
Sec. III B 4, quark-mass mistunings in the physical
quark-mass ensembles are accounted for here. This leads
the two coarsest physical-mass ensembles (a ¼ 0.12 and
a ¼ 0.15 fm) to shift downwhen retuned to the precise ratio
ml=ms ¼ 1=27. For the fits to

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
Fp4s and

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
Fp4s

the difference is visible but has only a small effect on the

continuum extrapolation. For the fits to w0;origFp4s and
w0;impFp4s the shift is very important, as the fluctuation in
the data points across the range of a2 is comparable to the
size of the effect of the mass retuning.
For both

ffiffiffiffi
t0

p
and w0, the tree-level improved version of

each scale eliminates a2 errors (but not αsa2) and reduces
a4 and a6 contributions. The improvement in

ffiffiffiffi
t0

p
Fp4s is

obvious in Fig. 10. For w0, even after quark-mass retuning,
the size of discretization effects for a≲ 0.06 fm in
w0;impFp4s is at best marginally smaller than in
w0;origFp4s. Although numerical results cannot separate
the effects of Fp4s from w0, the lack of clear improvement
between w0 and w0;imp suggests that the dominant lattice
artifacts in w0 may not arise at tree level. Alternatively, the
lattice artifacts from Fp4s may be dominating the con-
tinuum extrapolation, making it difficult to resolve the
differences between w0;orig and w0;imp.

IV. RESULTS

A. Scales in physical units

We compute our final estimate of the gradient-flow
scales in physical units by evaluating the continuum-
extrapolated, physical-quark-mass-interpolated value of

FIG. 9. An alternative fit to the gradient-flow scale w0;impFp4s,
plotted as a function of αsa2. The value of w0 at physical quark
masses and in the continuum estimated from this fit is indicated
by the black star. Only m0

s ≈ms ensembles are plotted, but the fit
includes 0.25ms < m0

s ≤ ms ensembles. Dashed lines represent
the fit through each ensemble’s actual quark masses and lattice
spacing, while the solid bands are for varying lattice spacing at
fixed quark masses retuned to the physical strange-quark mass
and the ratio of m0

l=m
0
s specified in the legend.

FIG. 10. Continuum extrapolations for the original (
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
and

w0;orig) and improved (
ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
and w0;imp) gradient-flow scale

times Fp4s plotted for physical quark-mass ensembles only. All
fits to the original, unimproved scales include the chiral ex-
pansion to NNLO, 1=m2

c NLO charm-quark corrections, the
wider set of priors, all four lattice spacings, and all but the three
lightest m0

s ensembles. For
ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
Fp4s the fit is quadratic in a2.

For w0;origFp4s the fit is linear in a2 and αsa2. For the improved
scales the plotted lines are from the central fits discussed in this
section. The continuum-extrapolation points are shown in black
with error bars representing the statistical error only.
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ffiffiffiffi
t0

p
Fp4s and w0Fp4s for the best fit in Sec. III C 2 and

dividing by the physical value of Fp4s (see Sec. III):

ffiffiffiffi
t0

p ¼ 0.1416ð2Þstat
�þ6

−3
�
t0;extrap

�þ3

−2
�
Fp4s;extrap

× ð2ÞFVð3ÞfπPDG fm; ð20Þ

w0 ¼ 0.1714ð2Þstat
�þ15

−11
�
w0;extrap

�þ3

−2
�
Fp4s;extrap

× ð2ÞFVð3ÞfπPDG fm: ð21Þ

The first error is statistical and is from the corresponding
central fit discussed in Sec. III C 2. The remaining, sys-
tematic, errors are from continuum extrapolation/chiral
interpolation (estimated by variations among fits), corre-
sponding continuum and chiral errors on Fp4s in physical
units, residual finite-volume effects on Fp4s, and the error
in Fp4s from the experimental error in fπ [27], respectively.
The error from the choice of fit for the gradient-flow scale is
estimated using the histograms in Fig. 7. We use the full
range of fits to t0;impFp4s for t0 and the full range of all fits
for w0. The remaining extrapolation errors, residual finite-
volume effects, and error from the experimental value of fπ
come directly from the analysis of Fp4s [15].
The results in Eqs. (20) and (21) may be compared to the

earlier, simple estimates of
ffiffiffiffi
t0

p ¼ 0.1419ð1Þðþ17
−4 Þ fm and

w0 ¼ 0.1710ð4Þð þ7
−12Þ fm from the physical quark-mass

ensembles in Sec. III B 4. For both
ffiffiffiffi
t0

p
and w0, the

extrapolated values agree, within the earlier systematic
errors. [Note that the earlier result did not include the
uncertainties from Fp4s and fπ , which give the last three
errors in Eqs. (20) and (21).] For

ffiffiffiffi
t0

p
, the central value from

the simpler fit is slightly higher and both extrapolations
lead to similar statistical uncertainties. The main improve-
ment of extrapolating

ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
Fp4s over the full set of

ensembles is the narrower systematic uncertainty in the
continuum, physical-mass extrapolation. For w0, the central
value from the simpler fit is slightly lower. This shift is
attributable to the quark-mass retuning and higher-order
discretization terms only accessible to the full extrapola-
tion. This additional systematic control leads us to prefer
this full analysis over the simple one, even though the total
errors for w0Fp4s are slightly larger in the full analysis.
Overall, the addition of nonphysical quark-mass ensembles
reduces some uncertainties and improves control over the
continuum extrapolation without significantly deviating
from our initial estimate.
The results presented in this work have evolved from

preliminary results presented previously. In chronological
order, the estimates from two earlier proceedings are w0 ¼
0.1711ð2Þð8Þ fm in Ref. [16], and

ffiffiffiffi
t0

p ¼ 0.1422ð2Þð5Þ fm
and w0 ¼ 0.1732ð4Þð8Þ fm in Ref. [17]. For comparison to
the results in this work, we have altered the original results

by keeping only the statistical and systematic error from the
choice of fit form to

ffiffiffiffi
t0

p
Fp4s or w0Fp4s. We have dropped

all other systematic errors, which are shared across all
results. For both scales, all results agree within 2σ of the
current results. Compared to the result in Ref. [16], those in
Ref. [17] account for leading-order charm-quark-mass
mistunings, use aFp4s, instead of afπ, to set the scale,
and consider a larger selection of discretization terms.
However Ref. [17] uses an incorrect value of amc for the
physical quark mass, a ≈ 0.06 fm ensemble when adjusting
for charm-quark-mass mistunings. The mistake is fixed in

FIG. 11. The continuum mass dependence of
ffiffiffiffi
t0

p
and w0 as a

function of P ¼ ðw0MπÞ2 for fixed values of K ¼ ðw0MKÞ2. The
black points and the star illustrate the values of the pion and kaon
masses that correspond to various HISQ ensembles and to the
physical point, respectively. The three boxes on the plot of w0

enclose the physical strange mass ensembles with different ratios
of m0

l=m
0
s. From the left- to the rightmost box the ratios are

m0
l=m

0
s ¼ 1=27, 1=10, and 1=5. Similar boxes are not drawn forffiffiffiffi

t0
p

due to the large discretization effects separating the points
that would go in each box. The lines corresponding to K ¼
0.1Kphys do not extend over the full domain of P because we
restrict ðw0MηÞ2 ≈ ð4K2 − P2Þ=3 ≥ 0.
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the current work and is responsible for most of the
downward shift relative to the scales presented in
Ref. [17]. We have also updated the statistical errors from
aFp4s and now include the induced correlations from aF4ps

among ensembles at the same β. Finally, compared to
Ref. [17], the current work incorporates the tree-level
improved versions of each scale, refines the selection of
discretization terms, includes next-to-leading-order charm-
quark-mass corrections, and uses priors to constrain the fit
parameters.

B. Continuum meson-mass dependence

Using the best fits and data sets chosen in Sec. III C 2, we
determine the continuum meson-mass dependence of w0

under a mass-independent scale-setting scheme. The result-
ing function is useful for a prediction of the scales on future
ensembles, as well as for explicit comparison of the mass
dependence of w0 to that of other scale-setting quantities.
To predict a scale one measures w0;orig=a (or w0;imp=a),
aMπ , and aMK on a subset of the ensemble to be generated.
Then, by evaluating the function at the corresponding
dimensionless variables P¼ðw0MπÞ2 and K ¼ ðw0MKÞ2,
one can determine the continuum value of w0 in physical
units at those masses, w0ðP;KÞ, and compute the resulting
scale a ¼ w0ðP;KÞ=ðw0=aÞ. This procedure was originally
suggested in Ref. [5].
The functional form of the meson-mass dependence

w0ðP;KÞ is chosen to be the same as the chiral expansion to
NNLO, in agreement with the best fit chosen in Sec. III C 2.
The coefficients are determined by solving the implicit
equation

w0 ¼ fðP ¼ ðw0MπÞ2; K ¼ ðw0MKÞ2Þ ð22Þ

numerically for w0 ¼ w0ðP;KÞ. Using the best fit
hða; ðMπ=Fp4sÞ2; ðMK=Fp4sÞ2Þ ¼ w0Fp4s of Sec. III C 2,
the implicit function is defined as

w0ðP;KÞ ¼ hð0; P=ðw0Fp4sÞ2; K=ðw0Fp4sÞ2Þ=Fp4s; ð23Þ

where Fp4s is evaluated at physical quark masses and in the
continuum. Note, the first parameter is set to 0, denoting the
continuum limit. We find

w0ðP;KÞ ¼ 0.1809− 0.0055ð2K þ PÞ þ 0.0766PμP

þ 0.0948KμK − 0.0018ðP − 4KÞμη
þ 0.0237ημη − 0.0363ð2K þ PÞ2
þ 0.0063ðK − PÞ2; ð24Þ

where μz¼zlogðz=ΛÞ, with Λ¼ðMρ=
ffiffiffi
8

p
πFp4sÞ2≈0.3170,

and η ¼ ð4K − PÞ=3. The fractional error in w0ðP;KÞ is
approximately the same as for our continuum determina-
tion of w0 at physical masses, given in Eq. (21). Figure 11
plots this function over a large range of values of P and K.
Values corresponding to the HISQ ensembles and to the
physical-mass point are overlaid to give a sense of the
range of meson masses for which this function is valid.
The leading ð2K þ PÞ dependence can be observed in the
roughly linear shape for each line of constant K and the
approximately constant vertical gap between lines of fixed
K, independent of P. The separation of points within the

TABLE VIII. Values of the lattice spacing determined from aFp4s [15], w0;imp=a, and
ffiffiffiffiffiffiffiffiffiffi
t0;imp

p
=a on the physical strange-quark HISQ

ensembles listed in Table I. The first two columns list the coupling β and the ratio of light- to strange-sea-quark mass, with the lattice
dimensions appended as needed to uniquely identify each ensemble. Since we do not have a function corresponding to Eqs. (24) and
(25) for Fp4s, a mass-independent scale setting with Fp4s is performed on the physical quark-mass ensembles only. The error listed with
each estimate of a from the gradient-flow scales comes from the full error of w0ðP;KÞ or ffiffiffiffi

t0
p ðP;KÞ. Errors from quark-mass mistunings

are not included; in other words we are finding the scale at the actual simulation values of the quark masses, rather than at the intended
values.

β m0
l=m

0
s ðaFp4sÞ=Fp4s (fm) w0=ðw0;imp=aÞ (fm)

ffiffiffiffi
t0

p
=ð ffiffiffiffiffiffiffiffiffiffi

t0;imp
p

=aÞ (fm)

5.80 1=5 � � � 0.1511ðþ18
−15Þ 0.1410ðþ15

−12Þ
5.80 1=10 � � � 0.1511ðþ14

−11Þ 0.1413ðþ9
−6Þ

5.80 1=27 0.15305ðþ57
−41Þ 0.1509ðþ14

−11Þ 0.1413ðþ9
−6Þ

6.00 1=5 � � � 0.1206ðþ14
−12Þ 0.1162ðþ11

−9 Þ
6.00 1=10 ð323 × 64Þ � � � 0.1206ðþ11

−9 Þ 0.1163ðþ8
−5Þ

6.00 1=10 ð403 × 64Þ � � � 0.1207ðþ11
−9 Þ 0.1163ðþ8

−5Þ
6.00 1=27 0.12232ðþ45

−33Þ 0.1206ðþ11
−9 Þ 0.1163ðþ7

−5Þ
6.30 1=5 � � � 0.0873ðþ11

−9 Þ 0.0855ðþ8
−7Þ

6.30 1=10 � � � 0.0874ðþ8
−7Þ 0.0857ðþ6

−4Þ
6.30 1=27 0.08791ðþ33

−24Þ 0.0875ðþ8
−7Þ 0.0858ðþ5

−3Þ
6.72 1=5 � � � 0.0566ðþ7

−6Þ 0.0561ðþ6
−5Þ

6.72 1=10 � � � 0.0565ðþ6
−5Þ 0.0561ðþ4

−3Þ
6.72 1=27 0.05672ðþ21

−16Þ 0.0566ðþ5
−4Þ 0.0562ðþ3

−2Þ
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clusters of physical strange-quark mass ensembles that
were simulated close to the physical ratios ml=ms ¼
1=5; 1=10, and 1=27 is due to quark-mass mistunings
and discretization errors.
Using Eq. (24) and the results for w0;imp=a on the HISQ

ensembles, we recalculate að fmÞ for each ensemble and
check to see that the results are consistent with the original
lattice spacings set through Fp4s. Table VIII lists the lattice
spacings determined through Fp4s in Ref. [15] and w0 in
this work. The scales determined from w0;imp are almost
independent of quark masses for fixed β, showing that the
procedure is working as designed, and can be used to find
consistent scales of new ensembles, even if they do not
have physical quark masses. Lattice spacings determined
from Fp4s and w0;imp on the physical quark-mass ensembles
agree as the continuum limit is approached, and are close
over the whole range of lattice spacings. This fitting
procedure may be repeated to find

ffiffiffiffi
t0

p
as a function of

P0 ¼ ð ffiffiffiffi
t0

p
MπÞ2 and K0 ¼ ð ffiffiffiffi

t0
p

MKÞ2. Because the central
fit for

ffiffiffiffi
t0

p
Fp4s does not include NNLO terms from chiral-

perturbation theory, we redo the fit with NNLO terms
added. We find

ffiffiffiffi
t0

p ðP;KÞ ¼ 0.1455þ 0.0007ð2K þ PÞ þ 0.0994PμP

þ 0.1336KμK þ 0.0002ðP − 4KÞμη
þ 0.0334ημη − 0.0214ð2K þ PÞ2
− 0.0040ðK − PÞ2; ð25Þ

where the notation and error determination are the same as
for w0, and the fractional error of

ffiffiffiffi
t0

p ðP;KÞ is approx-
imately that of t0 in Eq. (20). The corresponding mass-
dependence and lattice-spacing estimates are shown in
Fig. 11 and Table VIII. As might be expected from the large
slope seen for

ffiffiffiffi
t0

p
in Fig. 5, the lattice-spacing estimates

show large discretization effects for the coarser ensembles.

V. DISCUSSION AND CONCLUSIONS

With the continuum results complete, we compare with
computations of gradient-flow scales performed by other

collaborations. Table IX shows a selection of those calcu-
lations and their final results in comparison with our own.
The same results are also plotted in Fig. 12. Differences are
shown divided by the joint error, except for the HPQCD
Collaboration data. Because HPQCD uses a subset of the
HISQ ensembles employed here, we do not use the joint
sigma, which would double count several sources of error;
instead, we use the larger of the two collaborations’ total
error. Our results for both scales are compatible with those
of the three other published continuum-limit calculations
by HPQCD, HotQCD, and BMW; the largest difference is
1.9σ. Our best agreement is with HPQCD, the latter of
which performed an independent analysis on the same
HISQ configurations but without the a ¼ 0.06 fm ensem-
bles. We also agree with the published, single-lattice-
spacing result for

ffiffiffiffi
t0

p ¼ 0.1414ð7Þð5Þ fm from TWQCD
[28]. Furthermore, we agree within 2σ with all but one
collaboration’s preliminary results:

ffiffiffiffi
t0

p
and w0 calculated

by the ALPHA Collaboration with Nf ¼ 2. This may be
due to the difference in the number of flavors: Ref. [29] has
found strongerNf dependence for

ffiffiffiffi
t0

p
than for w0, which is

consistent with the observed deviations between the
ALPHA Collaboration’s preliminary results and those of
this paper [29].
Finally, we compare the relative lattice scale found fromffiffiffiffiffiffiffiffiffiffi
t0;orig

p
, w0;orig, and other quantities used for scale setting.

Here, we assume that the scale setting is being performed
on ensembles with physical quark masses, so that extrapo-
lation in quark mass is not required for any quantity. In that
case, the systematic errors associated with extracting any of
these scales on a given, physical-mass ensemble are
generally significantly smaller than the statistical errors,
with the possible exception of r1=a at finer lattice spacings,
for which errors in extracting asymptotic energies may
become significant. Table X compares the percent statis-
tical error for various scale-setting quantities in lattice units
measured on the HISQ physical quark-mass ensembles.
Both gradient-flow scales are determined more precisely
than r1=a and afπ . The precision of

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
=a is higher

than, and the precision of w0;orig=a is on par with, the most
precise of the other scales, aFp4s. This small statistical error

TABLE IX. Continuum results for the gradient-flow scales
ffiffiffiffi
t0

p
and w0 from different collaborations [5,29–33]. The last two columns

tabulate the difference between the results of other collaborations and this work, relative to one joint sigma. For HPQCD, whose errors
are not independent of ours, we simply use the larger error for the comparison. Results of the three collaborations marked with an
asterisk are the preliminary conference results.

Collaboration Nf
ffiffiffiffi
t0

p
(fm) Δ

ffiffiffiffi
t0

p
=σ w0 (fm) Δw0=σ

MILC (this work) 2þ 1þ 1 0.1416ð1Þðþ8
−5Þ � � � 0.1714ð2Þðþ15

−12Þ � � �
HPQCD [30] 2þ 1þ 1 0.1420(8) þ0.4 0.1715(9) þ0.1
ETMC* [31] 2þ 1þ 1 � � � � � � 0.1782 � � �
HotQCD [33] 2þ 1 � � � � � � 0.1749(14) þ1.8
BMW [5] 2þ 1 0.1465(21)(13) þ1.9 0.1755(18)(04) þ1.7
QCDSF-UKQCD* [32] 2þ 1 0.153(7) þ1.6 0.179(6) þ1.2
ALPHA* [29] 2 0.1535(12) þ8.3 0.1757(13) þ2.2
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was an original motivation for computing the scale from
gradient flow. Note further that

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
=a and w0;orig=a

have only been determined on a small subset of the
configurations at finer lattice spacings, while the aFp4s

values come from the entire ensembles, so there is con-
siderable room for improvement for the gradient-flow
scales. In addition, lower systematic errors—in particular,
low dependence on quark masses—may make the gradient-
flow scales preferable to aFp4s for relative scale setting,
especially when scales are needed for ensembles with
unphysical quark masses or with significant quark-mass
tuning errors. Statistical errors for w0;orig=a are larger than
those of

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
=a. This is one factor, although not the

dominant factor, that leads to our slightly more precise
continuum extrapolated value for

ffiffiffiffi
t0

p
compared to w0. On

the other hand, Fig. 10 illustrates that the discretization
effects for w0;orig are much smaller than those for

ffiffiffiffiffiffiffiffiffiffi
t0;orig

p
when compared with the reference scale aFp4s. It is
conceivable that the small slope for w0;orig and w0;imp is
due to an accidental cancellation between their discretiza-
tion errors and those of Fp4s. However, when combined
with the empirical evidence given in Ref. [5], it appears
more likely that w0 has “intrinsically” smaller a2 depend-
ence than

ffiffiffiffi
t0

p
in the sense that the ratio of w0 to most

common reference scales will have smaller discretization
errors than the corresponding ratio for

ffiffiffiffi
t0

p
. Finally, we

remark that the small error of aFp4s, in comparison with
that of afπ , is what motivates us to use aFp4s for our
continuum extrapolations of the gradient-flow scales, as
discussed in Sec. III B 4.
In conclusion, we have computed the continuum,

physical-mass values of
ffiffiffiffi
t0

p
and w0, and find

ffiffiffiffi
t0

p ¼
0.1416ðþ8

−5Þ fm and w0 ¼ 0.1714ðþ15
−12Þ fm, in reasonable

agreement with most independent calculations, and in
excellent agreement with the results of HPQCD, who used
a subset of the same HISQ ensembles employed here. We
have estimated the integrated autocorrelation lengths at
different lattice spacings and found autocorrelation lengths
comparable to that of the topological charge, although the
errors at the finer lattice spacing (a ≈ 0.09 fm) are quite
large. Compared to our preliminary work, the continuum
extrapolation here is better controlled through the removal
of tree-level discretization errors, the use of aFp4s over afπ
to set the scale, and the use of priors to suppress outlying
fits that have unreasonable lattice-spacing or charm-mass
dependence. Further, the quark-mass interpolation has been
constrained using chiral-perturbation theory, and the effect
of charm-mass mistunings have been taken into account up
to next-to-leading order. Finally, we have calculated the
continuum meson-mass dependence for use in future scale-
setting applications.
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