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In this study, we calculated the dependence of thermodynamic observables, namely, pressure, baryon
number density, and baryon susceptibility, on the baryon chemical potential μB through lattice quantum
chromodynamics using the canonical approach. We compare the results with those obtained using the
multiparameter reweighting (MPR) method. The results of these methods were found to be in very good
agreement in the regions where the errors of the MPR method are under control. The canonical method
yields reliable results up to μB=T ¼ 3, where T is the temperature. Multiple precision operations play
important roles in the evaluation of canonical partition functions.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
theory describing strong interactions. It is well known that
QCD has a rich phase structure at finite temperature and
density values [1]. However, regions that can be accessed
with QCD perturbation theory are limited. Currently, the
most promising method to explore phase diagrams is
through a lattice QCD simulation, which is a first-principles
calculation.
Although lattice QCD simulations are very helpful in

analyses of the phase diagram of a finite temperature
system, at finite density they suffer a severe problem called
the sign problem, and the results of the first-principles
calculation are available only within a small chemical
potential range. In finite temperature and density systems,
numerous physically interesting targets such as the early
Universe, neutron stars, and quark matter, have yet to be
explored. Therefore, it is important to explore methods of
investigating finite-density QCD systems from ab initio
calculations; this is an urgent subject in the fields of particle
and nuclear physics.
The canonical approach [2] we study in this paper is a

promising candidate for this purpose. In Ref. [3], a fugacity
expansion was constructed as a winding number expansion
by the hopping parameter expansion method, and the chiral
condensate and thermodynamic quantities were studied. A
more detailed analysis was performed in Ref. [4] for a wide
range of temperatures and chemical potentials. In contrast
with these studies, we address two questions in this work:
(1) Does the canonical approach to lattice QCD produce

results consistent with results of multiparameter
reweighting (MPR) [5] and Taylor expansion [6]?

(2) When obtaining the canonical partition functions
for a large baryon number, what are the roles of the
multiple precision calculations?

As explained in detail later, in this work we adopt a
winding number expansion [7–9] for Wilson fermions
based on the hopping parameter expansion. The major
advantage of this method is to be able to reduce numerical
costs for calculations of fermion determinants as stated in
Appendix A, and this merit is crucial for our work. This is
because in the canonical approach we have to calculate a lot
of fermion determinants at a variety of values of pure
imaginary chemical potentials to calculate canonical par-
tition functions. Numerical costs in the case of using an
exact formula are expensive even if we adopt a kind of
reduction formula for Wilson fermions (see, e.g., [10–13]).
Therefore, in this instance, it is hard to adopt a sufficiently
large lattice size considering recent computational resour-
ces. Moreover, the main aim of this work is to investigate if
the canonical approach works well with our strategy. This
trial can provide us suggestive information because it is
reported that the canonical approach has several numerical
instabilities [8]. Taking these circumstances into consid-
eration, it can be a suitable choice for this work to adopt the
winding number expansion for realizing simple and mean-
ingful numerical analyses as a kind of test.

II. FRAME WORK

A. Basic concept of canonical approach in QCD

For Nf-flavor QCD with degenerate quark masses, the
grand canonical partition function at a finite temperature T
and a finite quark chemical potential μq is given by the path
integral formulation as
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ZGCðT; μqÞ ¼
Z

d½U�fdetΔðμqÞgNfe−Sg ; ð1Þ

where detΔðμqÞ is a one-flavor fermion determinant and Sg
is a gauge action. Because the fermion determinant has the
property

½detΔðμqÞ�� ¼ detΔð−μ�qÞ; ð2Þ

the Monte Carlo measure fdetΔðμqÞgNfe−Sg becomes
complex at a finite real chemical potential, and the standard
Monte Carlo method breaks down. Consequently, we
cannot study finite density thermodynamics with the
standard grand canonical method. This difficulty is usually
called the sign problem [14,15].
A system described by the grand canonical partition

function ZGCðT; μqÞ is equivalent to a system described by
the canonical partition function ZCðn; TÞ with a fugacity
eμq=T in a thermodynamic limit. The relationship between
the two ensembles can be written as a fugacity expansion
[13] using the eigenvectors jni of the number operator N̂
(N̂jni ¼ njni),

ZGCðT; μqÞ ¼ Tre−ðĤ−μqN̂Þ=T

¼
X∞
n¼−∞

hnje−Ĥ=T jnienμq=T

≡ X∞
n¼−∞

ZCðn; TÞenμq=T: ð3Þ

If we obtain the canonical partition function ZCðn; TÞ for
each net quark number n, we can construct the grand
canonical partition function as a polynomial of the fugacity
with coefficients ZC. The Lee-Yang zeros [16], which
reflect a critical nature of a thermodynamic system [17],
can also be obtained from this formula.
The canonical partition functions are constructed through

the Fourier transformation of the grand canonical partition
function at a pure imaginary chemical potential [2]:

ZCðn; TÞ ¼
1

2π

Z
2π

0

d

�
μI
T

�
ZGC

�
iμI
T

�
e−inμI=T; ð4Þ

where μI ∈ R. Eq. (2) demonstrates that the fermion
determinant is real in the case of a pure imaginary chemical
potential. Monte Carlo simulations can then be performed,
and the canonical partition functions can be obtained from
Eq. (4). Equation (4) also requires that the canonical partition
functions are real because the grand canonical partition
function is an even function (charge conjugation invariant) in
terms of a chemical potential.
Once the canonical partition functions ZC are deter-

mined, the grand partition function can be constructed
using Eq. (3) for any real quark chemical potential. This is
because the chemical potential dependence of the grand
canonical partition function ZGC in Eq. (3) appears only in
a fugacity eμq=T, which is the polynomial variable, and not
in the coefficients ZC. An effect of a chemical potential on
the grand canonical partition function appears through the
fugacity, and the canonical partition functions simply play
the role of coefficients in the fugacity expansion of the
grand canonical partition function.

B. Winding number expansion of grand canonical
partition function

In this work, we employ the renormalization group
(RG)-improved gauge action [18]

Sg ¼
β

3

�
c0

X
n;μ<ν

TrPμ;νðnÞ þ c1
X
n;μ<ν

TrRμ;νðnÞ
�
; ð5Þ

Pμ;νðnÞ ¼ UμðnÞUνðnþ μ̂ÞU†
μðnþ ν̂ÞU†

νðnÞ; ð6Þ

Rμ;νðnÞ ¼ UμðnÞUμðnþ μ̂ÞUνðnþ 2μ̂Þ
×U†

μðnþ μ̂þ ν̂ÞU†
μðnþ ν̂ÞU†

νðnÞ; ð7Þ

with the effective coupling constant β ¼ 6=g2 defined
using the gauge coupling constant g, c1 ¼ −0.331, and
c0 ¼ 1 − 8c1, and the clover improved Wilson fermion
action [19] with the quark matrix

Δðn;m; μqÞ ¼ δnm − κCSWδnm
X
μ≤ν

σμνFμνðnÞ − κ
X3
i¼1

½ð1 − γiÞUiðnÞδm;nþî þ ð1þ γiÞU†
i ðmÞδm;n−î�

− κ½eþμqað1 − γ4ÞU4ðnÞδm;nþ4̂ þ e−μqað1þ γ4ÞU†
4ðmÞδm;n−4̂�≡ 1 − κQðμqÞ:

FμνðnÞ ¼ Pμ;νðnÞ þ Pν;−μðnÞ þ P−μ;−νðnÞ þ P−ν;μðnÞ ð8Þ

Here, n and m are space-time coordinates on a lattice; κ is the hopping parameter; and μq is a quark chemical potential,
which is introduced to the temporal part of the link variables. Also, σμν is defined as σμν ¼ i½γμ; γν�=2.
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To obtain the canonical partition functions, the grand
canonical partition functions must be computed at various
pure imaginary chemical potential values using the Fourier
transformation in Eq. (4).
We use a reweighting method to evaluate the grand

canonical partition function,

ZGCðiμIÞ ¼
Z

d½U�
�
detΔðiμIÞ
detΔðμ0Þ

�
NffdetΔðμ0ÞgNfe−Sg

¼
��

detΔðiμIÞ
detΔðμ0Þ

�
Nf
�

μ0

ZGCðμ0Þ; ð9Þ

where μ0 ¼ 0 or pure imaginary values. We can then
evaluate the canonical partition function as

ZCðn; TÞ
ZGCðT; μ0Þ

¼ 1

2π

Z
2π

0

dθ

��
detΔðiθÞ
detΔðμ0Þ

�
Nf
�

μ0

e−inθ: ð10Þ

Now, the evaluation of the grand canonical partition
function is reduced to the calculation of ratios of fermion
determinants in Eq. (9).
In this work, we adopt a winding number expansion [8]

to calculate the fermion determinant assuming that the
hopping parameter is small enough. Therefore, our starting
point is the hopping parameter expansion on a logarithm of
a fermion determinant as follows:

log detΔðiμIÞ ¼ Tr logf1 − κQðiμIÞg

¼ −
X∞
n¼1

κn

n
TrQnðiμIÞ: ð11Þ

The trace in Eq. (11) is taken over space-time, spinor, and
color indices.
Taking into account a feature of the trace in terms of

space-time indices in Eq. (11), we can easily find that all
nonzero contribution of the trace in Eq. (11) comes from
closed loops on a lattice. Moreover, the chemical potential
dependence comes only from closed loops which are
winding along positive or negative time directions through
an antiperiodic boundary condition considering an intro-
duction of the quark chemical potential in Eq. (8). For
example, the trace of a closed loop which is winding along
a positive time direction n times can be evaluated as
CeinμINta ¼ CeinμI=T , where C is a complex constant.
Therefore, if we classify all closed loops in Eq. (11)
according to the “winding number,” which is the number
of net windings along the time direction, as a result, we can
reach the following expression with complex coefficients
Wn and the complex fugacity eiμI=T, where n represents the
winding number:

log detΔðiμIÞ ¼
X∞
n¼−∞

WneinμI=T : ð12Þ

Negative values of the winding number n in Eq. (12) stand
for winding numbers of loops along a negative time
direction. A notable fact is that the coefficient Wn has
no chemical potential dependence at all, and the chemical
potential dependence appears only in the complex fugacity.
This means that we have only to calculate Wn with gauge
configurations given at one chemical potential value
and then using the set of Wn we can evaluate fermion
determinants at all desired chemical potential values tuning
a chemical potential in the fugacity.

C. Constraint on canonical partition function from
symmetry of QCD

Roberge and Weiss noted that the QCD grand canonical
partition function at a pure imaginary chemical potential
has the following periodicity [20]:

ZGC

�
iμI
T

�
¼ ZGC

�
iμI
T

þ 2πik
3

�
; ð13Þ

where k ∈ N. Using Eq. (13), we rewrite the grand
canonical partition function as

ZGC

�
iμI
T

�
¼ 1

3

X2
k¼0

ZGC

�
iμI
T

þ 2πik
3

�
: ð14Þ

We then obtain the relation

ZCðn; TÞ ¼
1

2π

Z
2π

0

d

�
μI
T

�
ZGC

�
iμI
T

�
e−inμI=T

×
�
1þ ei

2π
3
n þ ei

4π
3
n

3

�
ð15Þ

and the following important constraint on the canonical
partition functions [2,20,21]:

ZCðn ≠ 3kÞ ¼ 0: ð16Þ

Note that this constraint holds true in both the confining
and the deconfining phases.
Thus, the grand canonical partition function can be

written as

ZGCðT; μBÞ ¼
X∞
B¼−∞

ZCðB; TÞeBμB=T; ð17Þ

where B ∈ N. Because the quantum number B can be
interpreted as a net baryon number, μB can be regarded as a
baryon chemical potential, which is related to a quark
chemical potential as μB ¼ 3μq.
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D. Thermodynamic observables

In a homogeneous system, a dimensionless equation of
state at ðμB; TÞ is given by

pðμB; TÞ
T4

¼ 1

VsT3
logZGCðμB; TÞ

¼
�
Nt

Ns

�
3

logZGCðμB; TÞ; ð18Þ

where Vs is the three-dimensional spatial volume of a
lattice, Ns ¼ Nx ¼ Ny ¼ Nz, and T−1 ¼ Nta for a lattice
spacing of a. A deviation of the pressure from μB ¼ 0 is
given by

ΔpðμB; TÞ
T4

¼ pðμB; TÞ
T4

−
pð0; TÞ
T4

¼
�
Nt

Ns

�
3

log

�
ZGCðμB; TÞ
ZGCð0; TÞ

�
: ð19Þ

A dimensionless baryon number density nB=T3 and a
baryon susceptibility χ=T2 are

nBðμB; TÞ
T3

¼ ∂
∂ðμB=TÞ

pðμB; TÞ
T4

; ð20Þ

χðμB; TÞ
T2

¼ ∂2

∂ðμB=TÞ2
pðμB; TÞ

T4
: ð21Þ

III. NUMERICAL RESULTS

A. Lattice design

We adopted the two-flavor clover-improved Wilson
fermion action with CSW ¼ ð1 − 0.8412=βÞ−3=4 evaluated
by a one-loop perturbation theory and the RG–improved
gauge action. All simulations were performed on a Nx ×
Ny × Nz × Nt ¼ 8 × 8 × 8 × 4 lattice. We considered val-
ues of β ¼ 2.00, 1.95, 1.90, 1.85, 1.80, and 1.70, which
correspond to T=Tc ¼ 1.35ð7Þ, 1.20(6), 1.08(5), 0.99(5),
0.93(5), and 0.84(4), respectively. The values of the
hopping parameter κ were determined for each value of
β by following the line of constant physics for the case of
mπ=mρ ¼ 0.8, as in Ref. [22].
We generated gauge configurations at μ0 ¼ 0 using the

hybrid Monte Carlo (HMC) method. The step size dτ and
number of steps Nτ of HMC were set to dτ ¼ 0.02 and
Nτ ¼ 50 so that the simulation time was dτ × Nτ ¼ 1.
After the first 2000 trajectories for thermalization, for every
200 trajectories we adopted 400 configurations for each
parameter set.

B. Solution to eliminate instability of Fourier
transformation in the canonical approach

Before proceeding to our numerical results, in this
subsection, we discuss an instability of a use of Fourier
transformations in the canonical approach and our strategy
to eliminate it.
Because the fugacity expansion of the grand canonical

partition function given in Eq. (3) converges at a real
baryon chemical potential, the canonical partition function
ZCðn; TÞ must decrease when the absolute value of a net
baryon number n increases. This means that we have to
work with very small values in the Fourier transformation.
This step is quite difficult from the viewpoint of numerical
calculations because the Fourier transformation is an
oscillatory integral.

1. Instability of Fourier transformation

In a numerical calculation, the Fourier transformation
given in Eq. (4) is computed by the discrete Fourier
transform (DFT) as

ZCðn; TÞ ¼
1

N

XN−1

k¼0

ZGC

�
i
μI
T

¼ i
2πk
N

�
ei

2πk
N n; ð22Þ

where N is an interval number of the DFT. Because the
DFT is simply a discretized version of the Fourier transform
in a continuum theory, the instability of the DFT in the
canonical approach is caused by numerical errors, the types
of which are classified as rounding error, truncation error,
cancellation of significant digits, and loss of trailing digits.
The instability of the DFT does not arise from truncation
error because the DFT is not an infinite series. Accordingly,
it is natural to consider that the instability originates from
the cancellation of significant digits, the loss of trailing
digits, or both. In this work, we actually monitored the
behavior of all variables in our DFT program to study the

FIG. 1. Canceled significant digits in the DFT calculations at
temperatures above (upper red points) and below (lower green
points) Tc.
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effects of these two errors. As a result, we found that
the cancellation of significant digits is not negligible in the
DFT program. Figure 1 shows canceled digits in our DFT
program. For example, 80 digits are canceled in the case
where β ¼ 1.80 and B ¼ n=3 ¼ 40. We also found that the
occurrence of the cancellation does not depend on temper-
atures of our system.

2. Solution to eliminate instability by multiple
precision calculation

A cancellation of significant digits occurs in the follow-
ing type of calculation:

1.234567 − 1.234566 ¼ 0.000001

ð7 significant digitsÞ ð1 significant digitÞ: ð23Þ

In this case, six significant digits are lost.
To reduce the effect of this cancellation, the number of

significant digits should be increased. Let us consider the
following calculation with 22 significant digits:

1.234567444444444444444 − 1.234566111111111111111

ð22 significant digitsÞ
¼ 0.000000133333333333333ð16 significant digitsÞ:

ð24Þ

Although six significant digits are still lost in this calcu-
lation, 16 significant digits remain in the final result.
Summarizing the above process, precision of a calcu-

lation result can be retained by increasing the number of
significant digits of input variables in this way. Figure 2
shows the effect of canceled digits in the calculation of
ZCðB; TÞ with 16, 32, 48, and 64 significant digits.
According to this figure, when evaluating ZCðB; TÞ for a
large baryon number B, it is essential to increase the
number of significant digits of the variables in the DFT.

C. Thermodynamic observables at finite real
baryon chemical potential

1. Calculation procedure

First, the coefficients of the winding number expansion
Wn in Eq. (12) were approximately computed up to n ¼
120 using the hopping parameter expansion up to the
120Nt-th order in Eq. (11) with 400 configurations in all
temperature cases. Detailed numerical algorithm to cal-
culate a set of Wn making use of the hopping parameter
expansion is explained in Ref. [23]. We used 64 and 128
noise vectors for temperatures above and below Tc,
respectively, to calculate the trace in the fermion deter-
minant given in Eq. (11). Validity of the noise method for
the trace is briefly discussed in Appendix B. We then
evaluated the grand canonical partition functions at
various pure imaginary chemical potentials using the
winding number expansion with sets of fWng. After that,
we evaluated the canonical partition function through the
Fourier transformation and thermodynamic observables.
Except in a generation of gauge configurations and a
calculation of Wn, a multiple precision calculation [24]
was adopted with 400 significant digits to ensure suffi-
cient precision. Gauge configurations and sets ofWn were
computed with double precision, i.e., approximately 16
significant digits.
In general, the canonical partition functions can be

obtained as a complex number in numerical calculations
because of the numerical errors. Therefore, we adopt only
the real part of the canonical partition function. If the first
time the real part of the canonical partition function is
negative is at a baryon number of nB, the results up to
nB − 1 are adopted as reliable canonical partition functions.
In the following section, we compare our canonical

results with MPR results in Ref. [13] adopting the same
numerical setup as Ref. [13].
In the MPR method, an expectation value of an

observable O at a finite chemical potential can be calcu-
lated as

FIG. 2. Relationship between the behavior of ZCðB; TÞ and the precision of the variables in the DFT at temperatures above (right) and
below (left) Tc. Both include 16 (double precision, upper red points), 32 (second green points), 48 (third blue points), and 64 (lowest
cyan points) significant figures. Errors are estimated by the Jackknife method.
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hOðμÞi ¼ 1

ZGCðμÞ
Z

½dU�
�
OðμÞ detΔðμÞ

detΔð0Þ e
−ðβ−β0ÞSg

�

× detΔð0Þe−β0Sg

¼
hOðμÞ detΔðμÞdetΔð0Þ e

−ðβ−β0ÞSgi
0

hdetΔðμÞdetΔð0Þ e
−ðβ−β0ÞSgi

0

; ð25Þ

where h� � �i0 stands for an average with configurations
generated at ðβ0; μ ¼ 0Þ. This procedure helps us to
improve the overlap problem in the importance sampling
at finite density, and we can get better signals. Nowadays, it
is found that the MPR method is valid for a low density
system, and this method is frequently used for analyzing
such a system.
In Ref. [13], the authors also discussed the consistency

between the MPR and Taylor expansion methods with
Wilson-clover fermions and concluded that both methods
produced consistent results in a small chemical potential
region where errors of both methods could be under
control. Therefore, our work enables us to check consis-
tency among our canonical approach, MPR method, and
Taylor expansion method.

2. Estimation of truncation error in
fugacity expansion

In our numerical calculations, the fugacity expansion of
the grand canonical partition function must be considered
as a finite series

ZGCðT; μBÞ ¼
XNmax

B¼−Nmax

ZCðB; TÞeBμB=T: ð26Þ

Therefore, we have to judge the baryon chemical potential
region in which the results are free from truncation error.
There may be several possible methods of analyzing the
effect of the truncation error; the method used in this study
is as follows.
First, we evaluate expectation values hOðμBÞiNmax

of a
thermodynamic observable using Eq. (26). Next, we
calculate expectation values hOðμBÞiNmax−1

by subtracting
1 from Nmax in Eq. (26). We then evaluate the relative error
RobðμBÞ from these expectation values as

RobðμBÞ≡ 1 −
hOiNmax−1

hOiNmax

< 10−3: ð27Þ

In this study, we consider the expectation values to be
reliable if the relative error is less than 10−3. Using this
approach, we can ensure that the expectation values of the
thermodynamic observables in the baryon chemical poten-
tial region determined by the above analysis method have at
least two significant digits against the truncation error.

FIG. 3. Chemical potential dependence of pressure. The red,
green, blue, cyan, magenta, and brown points are the results at
T=Tc ¼ 1.35, 1.20, 1.08, 0.99, 0.93, and 0.83, respectively. The
upper bound of the baryon chemical potential is determined by
Eq. (27).

FIG. 4. Comparison of pressure calculated by the canonical
approach and the MPR method. The colors of the data points are
the same as in Fig. 3 with some additional colors. The data points
plotted in the additional colors of dark red, dark green, dark blue,
dark cyan, dark magenta, and dark brown points are the results at
T=Tc ¼ 1.35, 1.20, 1.08, 0.99, 0.93, and 0.83, respectively, as
calculated by the MPR method.

FIG. 5. Chemical potential dependence of baryon number
density. The colors of the data points are the same as in Fig. 3.
The upper bound of the baryon chemical potential is determined
by Eq. (27).
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3. Thermodynamic observables

Using the error estimation method described in the
previous subsection, we analyze the chemical potential
dependence of the thermodynamic observables and study
the validity range of our canonical approach. First, we

examine the pressure. Figure 3 shows that the pressure
results at temperatures above Tc do not suffer from large
errors up to a ratio μB=T of approximately 5, and the results
at temperatures below Tc are reliable up to a ratio μB=T of
approximately 3.5–4. Conversely, the results at temper-
atures just below Tc are reliable only up to a ratio μB=T of
approximately 3. This may be because we generated
configurations at μ0 ¼ 0, and they suffered from fluctua-
tions caused by the phase transition at zero density. We may
obtain clearer signals if we generate configurations at pure
imaginary chemical potentials because Tc at a pure
imaginary chemical potential is higher than Tc at a zero
chemical potential. Figure 4 shows that the pressure
calculated by the canonical approach is consistent with
the pressure results obtained using MPR method.
Next, we consider the expectation value of the baryon

number density. Figure 5 demonstrates that for temper-
atures above and below Tc, the results are reliable up to
ratios μB=T of approximately 4 and 3–3.5, respectively,
whereas the reliable baryon chemical potential range of the
results for temperatures just below Tc are limited for ratios
μB=T of up to 2.4. This may be for the same reason
described in the pressure analysis.
Figure 6 demonstrates good agreement between the

results of the canonical approach and those of the MPR
method in the baryon number density case. Moreover, the
gradient of the baryon number density nB=T3 as a function
of a baryon chemical potential becomes smaller as the
temperature decreases. In a zero temperature case, nB is
expected to be zero up to μB=T ¼ mB=T, where mB is the
lightest baryon mass of a system, and becomes a finite
value at this point. The data at T=Tc ¼ 0.84 in Fig. 5 does
in fact show such a feature.
Finally, we investigate the baryon susceptibility. Figure 7

shows that the results at temperatures above Tc are reliable
up to a ratio μB=T of approximately 3.5, whereas those at
temperatures below Tc are reliable up to Tc ¼ 2.4 − 2.9.
From Fig. 8, we find that the susceptibility results of the
canonical approach are in very good agreement with those

FIG. 6. Comparison of the baryon number densities calculated
by the canonical approach and the MPR method. The colors of
the data points are the same as in Fig. 4.

FIG. 8. Comparison of baryon susceptibilities calculated by the canonical approach and the MPRmethod. The colors of the data points
are the same as in Fig. 4.

FIG. 7. Chemical potential dependence of baryon susceptibil-
ity. The colors of the data points are the same as in Fig. 3. The
upper bound of the baryon chemical potential is determined by
Eq. (27).
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of the MPRmethod. The baryon susceptibility as a function
of the ratio μB=T does not show a clear peak, and thus,
signals of the transition between the confining and decon-
fining phases at finite density cannot yet be observed.

IV. SUMMARY AND OUTLOOK

In this paper, the canonical approach was shown to be
consistent with the MPR method. Moreover, the canonical
approach provides reliable results beyond μB=T ¼ 3 for
almost all observables. This is very encouraging for the
first-principles calculation of finite density QCD because
other methods, such as MPR, Taylor expansion, and
imaginary chemical potential [25], yield reliable informa-
tion in practical situations only up to μB=T ¼ 3. A multiple
precision calculation contributes to this conclusion.
Getting more reliable signals of thermodynamic quan-

tities in a large baryon chemical potential region, we need
to calculate the canonical partition functions more accu-
rately at large baryon numbers. As shown in Fig. 2, our
canonical partition functions currently have inadequate
phases at some baryon numbers, although these should
have a real positive value in principle. Considering the
errors determined by the Jackknife analysis, we can
conclude that these phases are not caused by the statistical
error. In our opinion, this may originate in the overlap
problem [14]. In this work, we calculate the grand
canonical partition functions at all pure imaginary chemical
potential with gauge configurations generated at zero
chemical potential through the simplest reweighting
method. However, practically speaking, we have to calcu-
late them with gauge configurations generated at suitable
pure imaginary chemical potentials to realize the appro-
priate importance sampling. This point is a lack of our
work, and we need to improve it next time.
The canonical approach has been investigated in several

previous studies [2,8,21,26–30]. We can also find through
our work that it is a useful and promising method; however,
our method may be improved further to obtain results under
more realistic conditions, i.e., lighter quark mass, larger
volume, finer lattice spacing, and higher density. Although
the hopping parameter expansion yielded very interesting
results in this study, the next step is to calculate the fermion
determinant without this approximation; we have learned
from this study that the key point is to calculate the
determinant at imaginary chemical potential values that
can undergo the Fourier transformation with high accuracy
in Eq. (4). This requires more computational resources than
what has been reported here but is within the scope of the
next-generation high-performance era.
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APPENDIX A: WINDING NUMBER EXPANSION

In this appendix, we summarize essential features to
construct the winding number expansion. An algorithm to
compute these steps are described in [23].

(i) fermion matrix: ΔðμÞ ¼ I − κQðμÞ.
(ii) log detΔ ¼ Tr logð1 − κQÞ ¼ −

P
k
1
k κ

kTrQk.
(iii) All of Qk makes lines, but only closed lines remain

in TrQk.
(iv) Wilson loops have no μ dependence (Loop W

in Fig. 9).
(v) Only loops which wind along the t direction have μ

dependence: expð�kμaNtÞ ¼ ðexpðμ=TÞÞ�k (Loop
P1 and P2 in Fig. 9).

(vi) In calculating TrQk, we use the noise method,

TrQk ¼
X
a;α;x

ha; α; xjQkja; α; xi

∼
1

Nnoise

XNnoise

r¼1

hηðrÞjQkjηðrÞi;

where a, α, and x are color, spinor, and coordinate
indices, respectively. Here, ηl are random numbers
which satisfy

1

Nnoise

X
r

ðηðrÞa;α;xÞ�ηðrÞb;β;y ¼ δa;bδα;βδx;y;

as Nnoise → ∞.
(vii) Then, we construct detΔ from these Wn,

detΔ ¼ exp

� XNmax

n¼−Nmax

Wnξ
n

�
; ðA1Þ

where ξ≡ expðμ=TÞ.
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APPENDIX B: COMPLEXITY OF REDUCTION
FORMULA AND WINDING NUMBER

EXPANSION FOR FERMION DETERMINANT

To come right to the point, time complexities for the
reduction formula [16] and the winding number expan-
sion can be estimated to OððNxNyNzÞ3 × NtÞ and
OðNxNyNz × N3

t Þ, respectively. Therefore, in an actual
finite temperature-density system, numerical cost for the
reduction formula is much higher than the winding number
expansion in a large lattice. Moreover, the reduction
formula needs much main memory because eigenvalues
of a large-scale dense matrix must be calculated directly.
In the reduction formula, first of all, we construct
4NcNxNyNz × 4NcNxNyNz matrices αðtiÞ, βðtiÞ on each
time slice from the original fermion matrix Δ whose rank is
N ¼ 4NcNxNyNzNt, where Nc is the number of color
degrees of freedom. The fermion determinant can be
calculated using these matrices as follows:

detΔðμÞ ¼ eμN=2

�YNt

i¼1

det αðtiÞ
�
det ðe−μ=T þQÞ; ðB1Þ

Q ¼
YNt

i¼1

α−1ðtiÞβðtiÞ: ðB2Þ

We need to calculate eigenvalues ofQ to obtain the fermion
determinant as the following form of a fugacity expansion:

detΔðμÞ ¼
X4NcNxNyNz=2

n¼−4NcNxNyNz=2

Cnenμ=T: ðB3Þ

The matrix Q is a dense matrix because it includes inverse
matrices of αðtiÞ. Consequently, we need main memory of
approximately ð4NcNxNyNzÞ2 × 16 bytes at least in case
of a double precision calculation. This procedure also
hinders us a numerical simulation on the large size of a
lattice at this stage.

APPENDIX C: VALIDITY OF NOISE METHOD
FOR CALCULATION OF TRACE

As explained in Sec. III C 1, we adopt a noise method to
calculate the trace in Eq. (11). Therefore, the problem we
have to verify is if fermion determinants obtained through
the noise method are consistent with these calculated
exactly by LU decomposition.
To check this, we calculate fermion determinants at

various values of purely imaginary chemical potential using
both a noise method and LU decomposition at T=Tc ¼
1.08 as a test.
In this analysis, we adopt the RG-improved gauge action

and the standard Wilson fermion action on a 44 lattice, and
fermion determinants are averaged over 100 configurations
generated at μ ¼ 0. We use 16 noise vectors for the traces
appearing in the winding number expansion. Figure 10
shows that the noise method can produce consistent results
with these obtained by LU decomposition within a range of
statistical errors. Consequently, our winding number

Loop W Loop P1 Loop P2
(Winding Number=0) (Winding Number=+1) (Winding Number=-1)

FIG. 9. Calculation of winding number coefficients, Wn:
Schematical overview.

FIG. 10. Pure imaginary chemical potential dependence of
fermion determinants. Red and blue points are calculated by
the winding number expansion with 16 noise vectors and LU
decomposition, respectively.

FIG. 11. The baryon number density as a function of its real
baryon chemical potential for several Nmax. Here, Nmax indicates
the truncation of the fugacity expansion in Eq. (A1). Also, β ¼
1.90 ðT=Tc ¼ 1.08). The line with Nmax ¼ 120 corresponds to
the data in Fig. 6.
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expansion method with noise vectors works reliably in our
analyses.
As jnj increases, Wn values drop rapidly, and their

accuracy is, in general, worse since we use the stochastic
method. The contribution of Wnξ

n for large jnj with ξ ¼
expðμ=TÞ becomes prominent for real μ. Therefore, physi-
cal quantities investigated in this paper may suffer from
noisyWn with large jnj. In order to see the limitation of the

canonical approach, we show in Fig. 11 the behavior of the
baryon number density at real μ regions when changing
Nmax in Eq. (A1). The terms Wnξ

n for jnj ≥ Nmax þ 1
are set to be zero. By this test, therefore, we can see
the effects of Wn with large jnj. We see that for μB=T < 3,
the result is not sensitive for Nmax, namely, in these regions,
Wn values with large jnj do not contribute physical
quantity.
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