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We explore the possibility of computing fermionic correlators on the lattice by combining a domain
decomposition with a multilevel integration scheme. The quark propagator is expanded in series of terms
with a well-defined hierarchical structure. The higher the order of a term, the (exponentially) smaller its
magnitude, the less local is its dependence on the gauge field. Once inserted in a Wick contraction, the
gauge-field dependence of the terms in the resulting series can be factorized so that it is suitable for
multilevel Monte Carlo integration. We test the strategy in quenched QCD by computing the disconnected
correlator of two flavor-diagonal pseudoscalar densities, and a nucleon two-point function. In either case
we observe a significant exponential increase of the signal-to-noise ratio.
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I. INTRODUCTION

With state of the art techniques, the numerical compu-
tation of hadronic correlation functions in lattice quantum
chromodynamics (QCD) suffers from signal-to-noise ratios
which decrease exponentially with the time separation of
the sources, notable exceptions being the propagators of
nonsinglet pseudoscalar mesons. For connected Wick
contractions, the problem can be traced back to the fact
that, on a typical gauge configuration, the quark propagator
decreases approximately as exp f−Mπjy − xj=2g at asymp-
totically large distances jy − xj, while the expectation value
of a generic hadron correlator decays much faster [1,2]. For
a nucleon two-point function at zero momentum, for
instance, the signal-to-noise ratio decreases proportionally
to exp f−ðMN − 3Mπ=2Þjy0 − x0jg, where jy0 − x0j is the
time-distance of the sources and ðMN − 3Mπ=2Þ is as big as
3.7 fm−1 at the physical point. The number of configura-
tions needed to reach a given statistical precision thus
increases with the square of that exponential factor. For
disconnected contractions, the problem is even worse due
to vacuum contributions to the variance.
Analogous severe problems afflict the computation of

correlators in a large variety of quantum systems, from the
harmonic oscillator to Yang–Mills theory. In some cases,

multilevel algorithms have been proposed which lead to an
impressive acceleration of the simulations [3–8] (for a
recent application see Ref. [9]). They take advantage of the
fact that, when the action and the observables depend
locally on the integration variables, the signal-to-noise
problem can be solved by independent measurements of
the local building blocks of the observables. So far, these
ideas have been restricted to bosonic theories.
It is not straightforward to formulate multilevel algo-

rithms for systems with fermions. Once they have been
analytically integrated out in the path integral, the manifest
locality of the action and of the observables is lost. The
fermion determinant and propagator are nonlocal func-
tionals of the background gauge field. In order to make
lattice computations with fermions amenable for multilevel
algorithms, factorizations of fermionic correlation func-
tions have to be found, where the individual terms depend
only on gauge links confined to certain lattice domains.
This cannot be achieved with the exact inverse of the Dirac
operator, because each of its elements depends on the gauge
field over the all lattice. As we will see, however, a series of
approximations can be found which exhibit the various
degrees of nonlocality in the propagator.
In this paper we will pursue two strategies, adapted to

different types of correlation functions, both based on
domain decomposition techniques [10,11]. In the first,
which we will show to lead to an efficient algorithm for
disconnected correlation functions, we define a succession
of domains Γ0 ⊂ Γ1 ⊂ Γ2;… which are larger and larger
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and which contain the two endpoints x and y of the
propagator. The latter can then be expanded in series as

Sðy; xÞ ¼ Sð0Þðy; xÞ þ ½Sð1Þ − Sð0Þ�ðy; xÞ
þ ½Sð2Þ − Sð1Þ�ðy; xÞ þ � � � ; ð1:1Þ

where SðiÞðy; xÞ is the inverse of the Dirac operator
restricted to the ith domain, and depends on the values
of the gauge field in Γi only. The larger the domain Γi, the
smaller the corresponding term ½Sðiþ1Þ − SðiÞ�, the less local
is its dependence on the gauge field. By inserting Sð0Þ in the
Wick contraction of the disconnected contribution of two
pseudoscalar densities located in different domains, it is
clear that the gauge-field dependence in the product of the
two traces is factorized. The average can then be computed
by a two-level Monte Carlo integration scheme.
The second approach leads one step further, and dem-

onstrates that also connected hadron correlation functions
can be factorized such that multilevel algorithms can be
used. The propagator is approximated by a product of
matrices which depend on the gauge field belonging to
different domains of the lattice. This in turn leads to
factorized correlations and thus to local averaging of them.
In the following sections we present the details of the

proposed computational strategy for the correlation func-
tion of two different flavor-diagonal pseudoscalar densities,
and for the nucleon two-point correlation function. We then
show numerical evidence of the effectiveness of the
strategy in quenched QCD, where only the Wick contrac-
tions need to be reorganized in a factorized form. An
analogous factorization of the fermion determinant is left
for a future publication.

II. QUARK PROPAGATOR AND LOCALITY

Let us take a lattice Γ with open boundary conditions in
the time direction [12], and define the domains

Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ � � � ⊂ Γ: ð2:1Þ

We adopt here the same block terminology as in Ref. [11].
We choose the Γi to be a hypercubic domain of lattice
points. Its exterior boundary ∂Γi is defined to be the set of
all points that have distance 1 from Γi. Each exterior
boundary point has a closest “partner” point in the block.
The interior boundary ∂Γ�

i of Γi consists of all these points.
The set of points that are not in the block is denoted by

Γ�
i ¼ ΓnΓi: ð2:2Þ

For a given domain decomposition of the lattice, the
Wilson–Dirac operator defined in Appendix A, being a
sparse matrix in position space, assumes the block-diagonal
form

D ¼
�

DΓi
D∂Γi

D∂Γ�
i

DΓ�
i

�
: ð2:3Þ

The operatorDΓi
acts on quark fields on Γi in the same way

as D, except that all terms involving the exterior boundary
points ∂Γi are set to zero (which is equivalent to imposing
Dirichlet boundary conditions on ∂Γi). By using the
decomposition in Eq. (B11), the exact quark propagator
between the points x; y ∈ Γi is given by

Sðy; xÞ ¼ SðiÞðy; xÞ þ
X

w1;w2∈∂Γ�
i

SðiÞðy; w1Þ

× ½D∂Γi
D−1D∂Γ�

i
�ðw1; w2ÞSðiÞðw2; xÞ; ð2:4Þ

where

SðiÞðy; xÞ ¼ D−1
Γi
ðy; xÞ ð2:5Þ

depends on the values of the gauge field in the block Γi
only. It is rather clear at this point that we can generate a
succession of approximations SðiÞ which, by construction,
converges to the exact propagator when Γi gets larger and
larger. For a typical gauge configuration, when the sink and
the source of the two SðiÞ in the sum on the r.h.s. of Eq. (2.4)
are at asymptotically large distances, it holds

trfSðiÞðy; xÞSðiÞðy; xÞ†g1=2 ∼ trfSðy; xÞSðy; xÞ†g1=2
∼ e−

1
2
Mπ jy−xj ð2:6Þ

with Mπ the mass of the corresponding pseudoscalar
meson made of degenerate quarks. A rough estimate of
the distance between the exact and the approximated
propagator is

trfðSðy; xÞ− SðiÞðy; xÞÞðSðy; xÞ† − SðiÞðy; xÞ†Þg1=2 ∼ e−Mπdi ;

ð2:7Þ

with di the average of the distances of x and y from the
interior boundaries of Γi.

III. MULTILEVEL INTEGRATION OF THE
DISCONNECTED PSEUDOSCALAR

PROPAGATOR

The decomposition in Eq. (2.4) calls for a multilevel
integration of disconnected contributions to correlation
functions. We test the idea in SU(3) Yang–Mills theory
with open boundary conditions [12] supplemented with a
doublet of quenched quarks, u and d, degenerate in mass.
Both fermions are discretized with the Wilson–Dirac
operator, so that isospin symmetry is exactly preserved.
We compute the correlator of two different flavor-diagonal
pseudoscalar densities (the generalization to other cases
being straightforward)
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CPd
ðy0; x0Þ ¼

1

L3

X
x;y

hd̄ðyÞγ5dðyÞūðxÞγ5uðxÞi

¼ 1

L3

X
x;y

hWPd
ðy; xÞi; ð3:1Þ

where WPd
ðy; xÞ indicates the Wick contraction of the

fermion fields, and L is the length of the lattice in the spatial
directions.1 In a standard Monte Carlo simulation, the
statistical error of CPd

ðy0; x0Þ is constant as a function of
jy0 − x0j while its expectation value decreases proportion-
ally to exp f−Mπjy0 − x0jg at large time separations. The
number of configurations n0 required to reach a given
relative statistical error thus grows exponentially with the
time distance of the densities, i.e. n0 ∝ exp f2Mπjy0 − x0jg.
The depletion of the signal-to-noise ratio is particularly

severe at large time-distances. To take advantage of the
locality of the theory, it is therefore natural to divide the
lattice Γ in two nonoverlapping thick time-slices Γ0 and Γ�

0.
The first time coordinate of Γ�

0, x
cut
0 , is chosen approx-

imately in the middle between the two densities (see Fig. 1).
The propagator can then be decomposed using the first and
the second diagonal elements in Eqs. (B11) and Eqs. (B10),
respectively, furthermore exploiting the fact that in these
equations S−1Λ0;0

is the exact propagator D−1 restricted to

block Λ0 and analogously for Λ1. The Wick contraction can
therefore be decomposed as

WPd
ðy; xÞ ¼ WðfÞ

Pd
ðy; xÞ þWðrÞ

Pd
ðy; xÞ; ð3:2Þ

where

WðfÞ
Pd
ðy; xÞ ¼ trfγ5D−1

Γ0
ðx; xÞg × trfγ5D−1

Γ�
0
ðy; yÞg; ð3:3Þ

x ∈ Γ0, and y ∈ Γ�
0. The rest of the contraction is given by

WðrÞ
Pd
ðy; xÞ ¼ ½Wðr1Þ

Pd
ðy; xÞ þ ðΓ0; xÞ ↔ ðΓ�

0; yÞ�
þWðr2Þ

Pd
ðy; xÞ ð3:4Þ

with

Wðr1Þ
Pd

ðy; xÞ ¼ trfγ5D−1
Γ0
ðx; ·Þ½D∂Γ0

D−1D∂Γ�
0
�ð·; ·Þ

×D−1
Γ0
ð·; xÞg × trfγ5D−1

Γ�
0
ðy; yÞg; ð3:5Þ

Wðr2Þ
Pd

ðy;xÞ ¼ trfγ5D−1
Γ0
ðx; ·Þ½D∂Γ0

D−1D∂Γ�
0
�ð·; ·ÞD−1

Γ0
ð·; xÞg

× trfγ5D−1
Γ�
0
ðy; ·Þ½D∂Γ�

0
D−1D∂Γ0

�ð·; ·ÞD−1
Γ�
0
ð·;yÞg:
ð3:6Þ

When the spatial gauge links at xcut0 are kept frozen, the

dependence of the action and ofWðfÞ
Pd
ðy; xÞ on the remaining

link variables is factorized, while the full propagator enters

the expressions of Wðr1Þ
Pd

ðy; xÞ and Wðr2Þ
Pd

ðy; xÞ only.

A. Two-level integration

When an observable depends only on the link variables
in a given sublattice and the action of the theory is local, it
is useful to define its expectation value restricted to that
domain. This is a function of the link variables at the
boundary of the sublattice only, and do not depend on the
gauge field values elsewhere. For the trace of the Wilson–
Dirac operator that we are interested in, it reads

½trfγ5D−1
Γ0
ðx; xÞg� ¼ 1

ZΓ0

Z
D½U�Γ0

e−S½U�Γ0 trfγ5D−1
Γ0
ðx; xÞg

ð3:7Þ
where D½U�Γ0

and S½U�Γ0
are the invariant Haar measure

and the action restricted to the domain Γ0, and the sublattice
partition function is fixed by requiring that ½1� ¼ 1. By
following the standard line of argumentation in multilevel
integration technique [3–8], it follows that

htrfγ5D−1
Γ0
ðx; xÞgtrfγ5D−1

Γ�
0
ðy; yÞgi

¼ h½trfγ5D−1
Γ0
ðx; xÞg�½trfγ5D−1

Γ�
0
ðy; yÞg�i: ð3:8Þ

This suggests that the mean value of WðfÞ
Pd
ðy; xÞ can be

computed with a two-level algorithm. First, we use n0
level-0 gauge field configurations to define the boundary
fields, i.e. the spatial components of the gauge field on time
slice xcut0 which are kept fixed. For each of them, the two
traces are carried out independently on n1 level-1 configu-
rations generated independently in the two thick time
slices. Then the average over the level-0 configurations

FIG. 1. The three types of contributions to the disconnected pseudoscalar propagator in Eqs. (3.3)–(3.6). Black (single) lines are full
propagators, red (double) ones are those within a domain.

1Throughout the paper dimensionful quantities are always
expressed in units of the lattice spacing a unless explicitly
specified.
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of the product of the two means is performed by updating
the gauge links over the entire lattice. The crucial question,
to be answered numerically in Sec. VI, is whether one can
choose n1 large enough to profit from the level-1 averaging,
or if instead the variance of the factorized contribution is
dominated by the fluctuations of the spatial components of
the gauge field at the boundary. If n1 can be taken large
enough such that the product of the (level-1) mean values is
proportional to exp f−Mπjy0 − x0jg, then a good statistical
precision is reached with a number of updates ðn0 · n1Þ ∝
exp fMπjy0 − x0jg. Notice that the factor in the exponent is
halved with respect to the standard Monte Carlo.
The contribution from Wðr1Þ

Pd
ðy; xÞ is expected to be

suppressed, for a typical configuration, by a factor
expf−Mπjx0 − xcut0 jg at large time separations.
Measuring it over the n0 · n1 configurations generated in
the two-level update, by blocking the results and averaging
over the n0 of them, may be enough to reduce the error at

the same level of the one ofWðfÞ
Pd
ðy; xÞ (up to a prefactor that

has to be quantified numerically). The last contribution,

Wðr2Þ
Pd

ðy; xÞ, is expected to be already proportional to
expf−Mπjy0 − x0jg. This is of the same order of the
expected signal, and therefore the standard level-0 average
is adequate.

IV. FACTORIZATION OF THE APPROXIMATED
QUARK PROPAGATOR

The decomposition discussed in Sec. II can be general-
ized for approximating the propagator between two points
with a large temporal separation. A simple domain decom-
position, where this can be done in practice, is the one
where the lattice is divided in thick time-slices Λi all

2 of

thickness Δ, with i ¼ 0;…; n − 1, n ¼ T=Δ and T being
the time-extension of the lattice (see Fig. 2). The block
structure of the Wilson–Dirac matrix3 is then given by

D ¼

0
BB@

… … DΛi−1;i
0 0 0

0 DΛi;i−1
DΛi;i

DΛi;iþ1
0 0

0 0 DΛiþ1;i
DΛiþ1;iþ1

DΛiþ1;iþ2
0

0 0 0 DΛiþ2;iþ1
… …

1
CCA;

ð4:1Þ

whereDΛi;i
acts on quark fields in Λi in the same way asD,

except that all terms involving the exterior boundary points
are set to zero. The off-diagonal terms on the r.h.s. of
Eq. (4.1) are given by

DΛi;i−1
ðx; yÞ ¼ PþU

†
0ðxi0 − 1; xÞδx;y;

DΛi;iþ1
ðx; yÞ ¼ P−U0ðxiþ1

0 − 1; xÞδx;y; ð4:2Þ

where U0ðxÞ are the temporal links, P� ¼ ð1� γ0Þ=2, and
xj0 ¼ j · Δ is the first time slice of the block Λi. By using
Eq. (A4), it is easy to show that

DΛi;i
¼ γ5D

†
Λi;i

γ5; DΛi;i−1
¼ γ5D

†
Λi−1;i

γ5: ð4:3Þ

The blocking in Eq. (4.1) and the decomposition in
Eq. (B10), or equivalently in Eq. (B11), are the basic
ingredients for constructing an approximated propagator
between two points whose distance is much larger than Δ.
This can be achieved as described in the following
three steps.
Step 1: If x ∈ Λm and y ∈ Λl, with l > m for instance,

choose

FIG. 2. Domain decomposition of the lattice in thick time slices, with the sink and the source of the quark propagator belonging to
blocks distant in time.

2We choose this setup for simplicity. The lattice can, of course,
be divided in domains of different sizes if required by a specific
problem.

3The same decomposition applies to the OðaÞ-improved
Wilson-Dirac operator as well.
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Γ0 ¼ Λm−1 ∪ Λm ∪ � � � ∪ Λl ∪ Λlþ1: ð4:4Þ

Thanks to the results in Sec. II

Sðy; xÞ ¼ D−1
Γ0
ðy; xÞ þ � � � : ð4:5Þ

Step 2: Decompose Γ0 in overlapping domains

Ωi ¼ Λm−1 ∪ Λm ∪ � � � ∪ Λi−1; i ¼ mþ 2; � � � ; lþ 1;

ð4:6Þ

and4

Ω�
i ¼ Λi ∪ Λiþ1; ð4:7Þ

with the boundary operators of Ωi given by

D∂Ωi
¼ DΛm−1;m−2

þDΛi−1;i
;

D∂Ω�
i
¼ DΛm−2;m−1

þDΛi;i−1
: ð4:8Þ

By taking the bottom-left off-diagonal element in
Eq. (B10), one arrives at

D−1
Γ0
ðy; xÞ ¼ −

X
w1∈∂Ωl

w2∈∂Ω�
l

D−1
Ω�

l
ðy; w1ÞD∂Ω�

l
ðw1; w2ÞD−1

Γ0
ðw2; xÞ:

ð4:9Þ

Step 3: Since w2 and x in Eq. (4.9) are both at least at a
distance Δ from the exterior boundary of Ωlþ1, one can
replace

D−1
Γ0
ðw2; xÞ ¼ D−1

Ωlþ1
ðw2; xÞ þ � � � ð4:10Þ

and arrive to

D−1
Γ0
ðy; xÞ ¼ −

X
w1∈∂Ωl

w2∈∂Ω�
l

D−1
Ω�

l
ðy; w1ÞDΛl;l−1

ðw1; w2Þ

×D−1
Ωlþ1

ðw2; xÞ þ � � � : ð4:11Þ

The boundary operator D∂Ω�
l
has been replaced by DΛl;l−1

since this is the only component acting on fields in Ω�
l .

By iterating (m − l) times steps 2 and 3, it is easy to show
that one can define an approximated propagator

SðfÞðy; xÞ ¼ ð−1Þm−l
�Ymþ1

i¼l

D−1
Ω�

i
DΛi;i−1

�
ðy; ·ÞD−1

Ωmþ2
ð·; xÞ

ð4:12Þ

which satisfies γ5-hermiticity. Since in each step the
(inverse) matrix factors have been approximated so that
the source and the sink coordinates are at least at a distance
Δ from the Dirichlet boundary conditions, we expect

trfðSðy;xÞ−SðfÞðy;xÞÞðSðy;xÞ†−SðfÞðy;xÞ†Þg1=2∼ e−MπΔ:

ð4:13Þ

The crucial property of the r.h.s. of Eq. (4.12) is that the
dependence on the gauge field is factorized. The various
propagators D−1

Ω�
i
depend on the values taken by the gauge

field in two thick slices only, while the last one D−1
Ωmþ2

on
three. Remarkably the formula (4.12) is a systematic
approximation of the exact formula in Eq. (B7) derived
from the LU decomposition of the Dirac operator, see
Appendix B. A succession of approximations of the type in
Eq. (1.1) can finally be constructed by taking larger and
larger values of Δ.

A. Factorization and baryon symmetry

To insert baryon projectors in the partition function at the
boundaries of the blocks, we can introduce in the action of
the theory a time-dependent Uð1ÞV field θðx0Þ constant in
space

θðx0Þ ¼
�
θi x0 ¼ Δðiþ 1Þ − 1

0 x0 ≠ Δðiþ 1Þ − 1
ð4:14Þ

by replacing

DΛi;iþ1
→ e−iθiDΛi;iþ1

; DΛiþ1;i
→ eiθiDΛiþ1;i

: ð4:15Þ

Since the Ai in Eq. (B2) are θ-independent, the dependence
on θ of the exact propagator can be easily deduced from the
Eq. (B12). It is given by

Sðy; xÞ → exp

�
i
Xl−1
i¼m

θi

�
Sðy; xÞ; x ∈ Λm;

y ∈ Λl; l > m: ð4:16Þ

TheDΛi;i
are also θ-independent, and therefore the approxi-

mated quark propagator SðfÞðy; xÞ in Eq. (4.12) inherits the
very same θ-dependence of the exact one in Eq. (4.16), i.e.
the approximation preserves the baryon symmetry.

V. MULTILEVEL INTEGRATION OF PION
AND BARYON PROPAGATORS

There is no unique way to design a multilevel integration
algorithm by starting from Eqs. (4.9)–(4.12). A simple
possibility to start with is to divide the full lattice Γ in only
two overlapping thick time-slices: Γ̄0 which includes the
time slices ½0; xcut0 þ Δ − 1� (it includes one more thick time4Notice that Ωl ∪ Ω�

l ¼ Γ0 is valid for i ¼ l only.
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slice of thicknessΔwith respect to theΓ0 defined in Sec. III),
wherexcut0 ¼ icΔ, andΓ�

0which include those in ½xcut0 ; T − 1�.
Open boundary conditions in time for the full lattice are
again assumed for simplicity. By taking the bottom-left
off-diagonal element of the decomposition (B10), and by
replacing the full propagator with D−1

Γ̄0
, the approximated

factorized propagator can be written as

SðfÞðy; xÞ ¼ −D−1
Γ�
0
ðy; ·ÞD∂Γ�

0
ð·; ·ÞD−1

Γ̄0
ð·; xÞ ð5:1Þ

where x ∈ Γ̄0 and y ∈ Γ�
0, see Fig. 3. In this setupΔ is simply

the thicknessof Γ̄0∩Γ�
0. Inorder to cut the fermion lines in the

Wick contractions, so to transform the matrix products into
ordinary ones, we introduce the projector

PLðy; xÞ ¼
XNm

i¼1

ϕiðxÞϕ†
i ðyÞ ð5:2Þ

where ϕi are Nm orthonormal vectors. The projector is then
used to define a further approximated propagator

~SðfÞðy; xÞ ¼ −
X
i

½D−1
Γ�
0
D∂Γ�

0
ϕi�ðyÞ½ϕ†

i D
−1
Γ̄0
�ðxÞ: ð5:3Þ

In the following sections we will use two different set of
vectors ϕi: those which span the deflation subspace as
defined inRef. [13], andNm orthonormalvectorsconstructed
by applying 10 inverse iterations of the Wilson-Dirac
operator defined in the domain Ω�

ic−1 ¼ Λic−1 ∪ Λic with
Dirichlet boundary conditions on its exterior boundaries.

A. Connected pseudoscalar propagator

The correlation function of two flavor nondiagonal
pseudoscalar densities is defined as

CPc
ðy0; x0Þ ¼

1

L3

X
x;y

hd̄ðyÞγ5uðyÞūðxÞγ5dðxÞi

¼ −
1

L3

X
x;y

hWPc
ðy; xÞi; ð5:4Þ

whereWPc
ðy; xÞ is the corresponding Wick contraction. By

using the factorized propagator in Eq. (5.1), the approxi-
mated Wick contraction can be written as

WðfÞ
Pc
ðy; xÞ ¼ trfSðfÞðy; xÞSðfÞ†ðy; xÞg: ð5:5Þ

When Γ̄0, or equivalently Δ, gets larger and larger, the
Eq. (5.5) generates a succession of approximations whose
rest

WðrÞ
Pc
ðy; xÞ ¼ WPc

ðy; xÞ −WðfÞ
Pc
ðy; xÞ ð5:6Þ

converges exponentially fast to zero. Even if the gauge field
appears in a factorized form, it is difficult to implement a
multilevel integration scheme by using Eq. (5.5). To this
aim we can use the approximated propagator in Eq. (5.3),
and define

~WðfÞ
Pc
ðy; xÞ ¼

X
i;j

~BijðyÞBjiðxÞ ð5:7Þ

FIG. 3. Sketch of the factorized approximation of the pion and baryon propagators.
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where

BijðxÞ ¼ ½ϕ†
i D

−1
Γ̄0
γ5�ðxÞ½D−1

Γ̄0
γ5ϕj�ðxÞ;

~BijðyÞ ¼ ½ϕ†
i γ5D∂Γ�

0
D−1

Γ�
0
γ5�ðyÞ½D−1

Γ�
0
D∂Γ�

0
ϕj�ðyÞ; ð5:8Þ

and the vectors ϕi depend only on the gauge links
belonging to the thick time slice Ω�

ic−1. When the gauge
links in Ω�

ic−1 are kept frozen, the dependence of the action

and of ~WðfÞ
Pc
ðy; xÞ on the remaining link variables in Γ̄0 and

Γ�
0 is factorized. A multilevel similar to the one designed in

Sec. III can thus be easily implemented.

B. Nucleon propagator

A possible choice for baryon interpolating operators is

N ¼ ½uaTCγ5db�dcϵabc; N̄ ¼ d̄e½d̄fCγ5ūgT �ϵfeg: ð5:9Þ

The corresponding two-point function reads

CNðy0;x0Þ¼
1

L3

X
x;y

tr½hNðyÞN̄ðxÞiP−�

¼ 1

L3

X
x;y

fhWN1ðy;xÞi−hWN2ðy;xÞig; ð5:10Þ

where C ¼ iγ0γ2, and the trace is over the nucleon spinor
indices. The WN1ðy; xÞ and WN2ðy; xÞ are the two Wick
contractions

WN1ðy; xÞ ¼ tr½SagTu ðy; xÞCγ5Sbfd ðy; xÞCγ5�
× tr½Sced ðy; xÞP−�ϵabcϵfeg;

WN2ðx; yÞ ¼ tr½SagTu ðy; xÞCγ5Sbed ðy; xÞP−S
cf
d ðy; xÞ

× Cγ5�ϵabcϵfeg; ð5:11Þ

where again the trace is on the spinor index only. The
factorized approximation of the nucleon Wick contractions

WðfÞ
N1 andW

ðfÞ
N2 are defined analogously toWN1 andWN2 by

replacing on the r.h.s. of Eqs. (5.11) each quark propagator
by its approximated factorized expression in Eq. (5.1).

Finally the corresponding ~WðfÞ
N1 and ~WðfÞ

N2 are defined as

~WðfÞ
N1ðy; xÞ ¼ −

X
ijk

B½ξj; ξi; ξk; x�Tγ5P−B½ηi; ηj; ηk; y�

~WðfÞ
N2ðy; xÞ ¼ −

X
ijk

B½ξk; ξi; ξj; x�Tγ5P−B½ηi; ηj; ηk; y�

ð5:12Þ

where

ξTi ¼ ϕ†
i D

−1
Γ̄0
; ηi ¼ D−1

Γ�
0
D∂Γ�

0
ϕi; ð5:13Þ

and the colorless spinors

B½si; sj; sk; x�α ¼ ϵabcf½sTi �aðxÞCγ5½sj�bðxÞg½sk�cαðxÞ
ð5:14Þ

have been introduced. By choosing again the vectors ϕi to
depend only on the gauge links belonging to the thick time
slice Ω�

ic−1, the two colorless spinors on the r.h.s. of
Eqs. (5.12) depend only on the gauge links belonging to
Γ̄0 and Γ�

0 ∪ Ω�
ic−1 respectively. When the links belonging

to Ω�
ic−1 are kept frozen, the dependence of the action and

of the two approximated Wick contractions is factorized.
Also in this case their mean value can then be computed
with a two-level algorithm analogous to what has been
described in Sec. III for the disconnected pseudoscalar
propagator. Contrary to the pion propagator, the signal-
to-noise ratio in the baryon correlator is exponentially
suppressed with the distance of the sources. If it turns out
to be profitable to choose n1 so that the product of the
(level-1) mean value of the two colorless spinors is
significantly reduced, and possibly proportional to
exp f−MN jy0 − x0jg, then a good statistical precision is
reached with a number of updates of the lattice
ðn0 · n1Þ ∝ exp fðMN − 3Mπ=2Þjy0 − x0jg. Notice again
that the factor at the exponent is halved with respect to
the standard Monte Carlo procedure. The remaining cor-
rection can be computed by a two-level algorithm with a
succession of simulations with larger and larger Γ̄0. Also in
this case the real effectiveness of the multilevel can only be
quantified by a realistic numerical test, see below.

VI. NUMERICAL TESTS FOR THE
DISCONNECTED PSEUDOSCALAR

PROPAGATOR

We test the ideas discussed in Sec. III in the quenched
approximation of QCD. We discretize gluons and fermions
with the Wilson action, and we impose open and periodic
boundary conditions in the time and spatial directions
respectively [12,14]. The inverse coupling constant is fixed
to β ¼ 6=g20 ¼ 6.0, the length of each spatial direction to
L ¼ 24, and the time extent to T ¼ 64. The lattice spacing
is a ¼ 0.093 fm as fixed by assuming a physical value of
0.5 fm for the Sommer scale r0=a ¼ 5.368 [15]. The up and
down quarks are degenerate. Their masses are fixed by the
hopping parameter value κ ¼ 0.1560, corresponding to a
pion of approximately 455 MeV [16].
Numerical simulations have been carried out with a

modified version of the openQCD code version 1.4 [14,17].
We have generated n0 ¼ 200 level-0 independent gauge
field configurations spaced by 400 molecular-dynamics
units (MDUs) with the Hybrid Monte Carlo (HMC).
Following Sec. III, the lattice has been split at xcut0 ¼ 32

in two domains of equal size Γ0 and Γ�
0. For all level-0

background gauge fields, n1 ¼ 100 level-1 configurations

DOMAIN DECOMPOSITION, MULTILEVEL INTEGRATION, … PHYSICAL REVIEW D 93, 094507 (2016)

094507-7



were generated by updating the two regions independently
while keeping fixed the spatial links at xcut0 ¼ 32. Also for
these updates we used the HMC by skipping 400 MDUs
between measurements, a very conservative choice for
which the generation of the level-1 configurations is still
cheaper than the computation of the Wick contractions.
Within this setup, the correlator in Eq. (3.1) is naturally
decomposed as

CPd
ðy0; x0Þ ¼ CðfÞ

Pd
ðy0; x0Þ þ Cðr1Þ

Pd
ðy0; x0Þ þ Cðr2Þ

Pd
ðy0; x0Þ:

ð6:1Þ
The fully factorized contribution can be written as

CðfÞ
Pd
ðy0; x0Þ ¼

1

L3

��X
x

trfγ5D−1
Γ0
ðx; xÞg

�

×

�X
y

trfγ5D−1
Γ�
0
ðy; yÞg

�	
: ð6:2Þ

The other two terms are given by

Cðr1Þ
Pd

ðy0; x0Þ ¼
1

L3

X
x;y

hWðr1Þ
Pd

ðy; xÞ þ ðΓ0; xÞ ↔ ðΓ�
0; yÞi;

ð6:3Þ

Cðr2Þ
Pd

ðy0; x0Þ ¼
1

L3

X
x;y

hWðr2Þ
Pd

ðy; xÞi; ð6:4Þ

where Wðr1Þ
Pd

ðy; xÞ and Wðr2Þ
Pd

ðy; xÞ are defined in Eqs. (3.5)
and (3.6). If the Wilson–Dirac operator is written as

2κD ¼ 1 − κDhop; ð6:5Þ

the trace can be reexpressed as5 [18–20].

trfγ5D−1g ¼ κptrfγ5Dp
hopD

−1g p ≤ 8: ð6:6Þ

By choosing p ¼ 8, all the traces appearing in the
contributions (6.2)–(6.4) have been estimated stochasti-
cally, e.g.

X
x

trfγ5D−1ðx;xÞg→ 1

nsrc

Xnsrc
i¼1

X
x

η†i ðxÞ½κ8D8
hopD

−1γ5ηi�ðxÞ;

ð6:7Þ

by inverting the various Dirac operators on the very same
nsrc ¼ 100 Gaussian random sources ηi [21,22], defined on
the whole space-time volume,6 and by contracting the

solution with a time slice of ηi. The hopping parameter
expansion, used in Eq. (6.6), reduces the variance of the
stochastic estimator significantly. Other techniques [23–26]
may further reduce the cost of the computation, but we
prefer to keep it simple and focus on factorization.
The CðfÞ

Pd
contribution is estimated by first averaging, for

each of the level-0 configurations, the two traces inde-
pendently over the n1 level-1 background fields. The
expectation value of the product of the two means is then
computed by averaging over the n0 configurations. The
other two contributions are computed as if the n1 (subset of)
configurations, generated for each of the level-0 boundary

fields, were correlated level-0 ones. The measures of Cðr1Þ
Pd

and Cðr2Þ
Pd

are thus grouped in bins of n1, and the expectation
values and their errors are determined as usual by treating
the bins as n0 independent measurements.

A. Numerical results

The numerical results for CðfÞ
Pd
, Cðr1Þ

Pd
, and Cðr2Þ

Pd
are plotted

in Fig. 4 as a function of the time separation of the
pseudoscalar densities. The central values and their errors
are shown in the plots on the left and right columns
respectively. The best estimate of CPd

(the sum of the
three) is also shown in each plot on the left for comparison.
In all cases x0 and y0 belong to different domains, y0 > x0,
and they are chosen to be as much as possible equidistant
from xcut0 .
The statistical error on CðfÞ

Pd
, top-right plot of Fig. 4, is a

flat function of jy0 − x0j with sizeable deviations near the
boundaries of the domains. Error bars are smaller than the
symbols. Up to the largest value that we have, n1 ¼ 100,
the error decreases as n−11 , i.e. the two-level Monte Carlo

works at full potentiality. The mean value of CðfÞ
Pd
, top-left

plot, is compatible with zero. The correlation between CPd

and CðfÞ
Pd

goes from 0.9 to 1.0 when jy0 − x0j varies from 15
to 50, a value which collapses toward zero when the
multilevel is switched on.
The statistical error on Cðr1Þ

Pd
, middle-right plot of Fig. 4,

shows a strong dependence on jy0 − x0j. It is compatible
with an exponential behavior of the form expf−Mjy0 −
x0j=2g as expected from Eq. (3.5) by taking into account
that in our setup jy0 − x0j ∼ jy0 − xcut0 j=2, but with an
effective massM ¼ 0.14 lighter than expected and roughly
2=3 of the pion mass.7 It decreases as n−1=21 up to n1 ¼ 100

and, at fixed time distance, it becomes the dominant
contribution to the error of CPd

once a large enough
number n1 of level-1 updates have been carried out. The

mean value of Cðr1Þ
Pd

is roughly 2=3 of the full correlator at
jy0 − x0j ¼ 15, and it becomes the dominant contribution

5For the OðaÞ-improved Wilson-Dirac operator p ≤ 2.
6For the factorized contribution the ηi acts effectively as two

independent random sources, one for each domain. The estimate
of the two traces is thus obtained with a single global inversion
per random source.

7We did not attempt to study the dependence of this parameter
on the finite size or other sources of systematics.
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up to jy0 − x0j ¼ 33, after which the signal is lost. The

statistical errors of Cðr2Þ
Pd

decreases exponentially as
expf−Mjy0 − x0jg as expected from Eq. (3.6), and it scales
as n−1=21 .
A clear picture emerges from the above analysis. At large

time distances, the statistical error on the standard estimate
of the disconnected pseudoscalar propagator is dominated
by the one on CðfÞ

Pd
. The second largest contribution is the

statistical error on Cðr1Þ
Pd

which, however, is exponentially

suppressed as expf−Mjy0 − x0j=2g. Once the two-level

integration is switched on, the error on CðfÞ
Pd

decreases as

n−11 , while the one on Cðr1Þ
Pd

continues to scale as8 n−1=21 . The

FIG. 4. Left-column plots: the three contributions on the r.h.s. of Eq. (6.1) are shown, together with the best estimate of the full
correlator (the sum of the three), as a function of the time separation jy0 − x0j. Right-column plots: the errors of the various contributions
are shown as a function of the time distance for various values of n1.

8A two-level algorithm can be used to further reduce the
statistical error on Cðr1Þ

Pd
by a domain decomposition of the exact

inverse D−1 in Eq. (3.5) with the cut at, for instance, x0 ¼ 40.
This is an improvement which goes beyond the exploratory
numerical study of this work.
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parameter n1 can thus be tuned, up to a prefactor of
Oð1Þ, so that n1 ∼ exp fMdg with d being the maximum
temporal distance in which one is interested in.9 This way
the error on the factorized contribution is reduced to the

level of (or below) the uncertainty on Cðr1Þ
Pd

at the same cost
of generating n0 · n1 global configurations. The net com-
putational gain is therefore ∼n1, and a good statistical
precision is reached with a number of updates ðn0 · n1Þ ∝
exp fMπjy0 − x0jg. Notice that the factor at the exponent is
halved with respect to the standard Monte Carlo.
Our best estimate of the disconnected pseudoscalar

propagator is shown in Fig. 5, where also the result without
the multilevel is reported for comparison. Using the two-
level algorithm, the signal-to-noise ratio remains larger than
1 for ten additional time slices. This is better seen in the
right plot, where the statistical error is shown in the two
cases. With the standard Monte Carlo the error is approx-
imately flat, while for the two-level algorithm it decreases
exponentially. The reduction is evident from distance 15,
and becomes approximately n1=21 ¼ 10 at the point x0 ¼ 30
that was taken to fix n1. For n1 ¼ 100, the overall gain in
the computational cost is approximately 50 since we have
to invert two time the Wilson–Dirac operator on each
random source.

VII. NUMERICAL TESTS FOR THE PION
PROPAGATOR

We have tested the factorized approximation of the quark
propagator within the same lattice setup of the previous
section. The number of independent gauge configurations
has been increased to 1000. For each of them 10 Gaussian

random sources have been generated on the time slice at
x0 ¼ 4, and the exact and the approximated quark propa-
gators, as defined in Eqs. (5.1) and (5.3), have been
computed on the sources. The corresponding pion propa-
gators have then been calculated by contracting the indices
and averaging over the random sources as usual. The very
same sources have been used forCPc

ðy0; x0Þ in Eq. (5.4), for

CðXÞ
Pc

ðy0; x0Þ ¼ −
1

L3

X
x;y

hWðXÞ
Pc

ðy; xÞi X ¼ f; r; ð7:1Þ

and for the analogous correlators ~CðfÞ
Pc

and ~CðrÞ
Pc
. Similarly to

Eq. (1.1), the pion propagator can be expanded as

CPc
¼ Cð0Þ

Pc
þ ½Cð1Þ

Pc
− Cð0Þ

Pc
� þ ½Cð2Þ

Pc
− Cð1Þ

Pc
� þ CðrestÞ

Pc
: ð7:2Þ

where CðiÞ
Pc

for i ¼ 0, 1, 2 is a succession of factorized

propagatorsCðfÞ
Pc

as defined in Eq. (7.1) for xcut0 ¼ 24 and for

Δ ¼ 8, 12, 16 respectively, while CðrestÞ
Pc

¼ CðrÞ
Pc

for Δ ¼ 16.

The correlation between CPc
ðy0; 4Þ and CðfÞ

Pc
ðy0; 4Þ turns

out to be practically 1 for all y0 and for all three values ofΔ.
In the plots on the top of Fig. 6 we show the central values
and the statistical errors of the five terms appearing on both
sides of Eq. (7.2) as a function of y0. The statistical errors
are normalized to CPc

ðy0; 4Þ. If we pick up a typical point,
y0 ¼ 40, we get

Cð0Þ
Pc

¼ ð101.1� 1.3Þ × 10−7;

½Cð1Þ
Pc

− Cð0Þ
Pc
� ¼ ð5.22� 0.15Þ × 10−7;

½Cð2Þ
Pc

− Cð1Þ
Pc
� ¼ ð1.59� 0.07Þ × 10−7;

CðrestÞ
Pc

¼ ð0.48� 0.05Þ × 10−7: ð7:3Þ

FIG. 5. The best estimate ofCPd
ðy0; x0Þ (left) and of its error (right) are shown as a function of the time distance, with and without two-

level integration of the factorized contribution. In the latter case the n1 (subset of) configurations, generated for each of the level-0
boundary fields, are treated as if they were correlated level-0 ones. The n1 measures are thus binned together, and the mean and its error
are computed as usual by treating the bins as independent.

9The contributions CðfÞ
Pd

and Cðr1Þ
Pd

can be computed with
different number of sources, different value of p for the HPE,
etc. The prefactor of this estimate can thus change depending on
the details of the computation.
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All these results show that, for this quark mass, the
factorized correlator approximates the exact one at the
level of 5% already for Δ ¼ 8, a precision which increases
by one order of magnitude forΔ ¼ 16. The reduction of the

central value of ½CðiÞ
Pc

− Cði−1Þ
Pc

� is in line (even a bit faster)
with the expectations from Eq. (4.13), while the decreasing
of its statistical error is a bit slower.

The two plots in the middle of Fig. 6 show analogous
results but with the factorized propagators computed by
inserting ~SðfÞðy; xÞ, as defined in Eq. (5.3), in the contrac-
tion. The set of orthonormal vectors ϕi are chosen to be
those which form the deflation subspace generated from
Ns ¼ 60 global modes as defined in Ref. [13]. The cut is
again at xcut0 ¼ 24, and Δ ¼ 8, 12, 16. It is clear that the

FIG. 6. Top line plots: central values (left) and their statistical errors (right) of the five terms appearing on both sides of Eq. (7.2).
Middle line plots: analogous results but for a factorized approximation where a projector on the deflation subspace has been inserted to
cut the fermion lines. Bottom line plots: the same but with fermion lines cut by a projector defined via 120 modes computed by the
inverse iteration technique, see main text.
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contribution from the deflation subspace saturates nicely
the exact pion correlator, and that the factorization com-
bines well with deflation provided the number of modes is
large enough.
Finally in the plots on the bottom of Fig. 6 we show

analogous data but with the ϕi being Nm ¼ 120 orthonor-
mal vectors computed by applying 10 inverse iterations
of the block Wilson–Dirac operator, defined in the thick

time-slice Ω�
ic−1 ¼ Λic−1 ∪ Λic , on randomly chosen vec-

tors. In this case the leading contribution ~CðfÞ
Pc

can be written
as a sum of a manageable number of terms defined as in
Eqs. (5.7)–(5.8). Since the ϕi depend on the gauge links
belonging to Ω�

ic−1 only, each term in the sum could have
been computed with a two-level Monte Carlo by keeping
frozen the links in Ω�

ic−1 during the level-1 updates. It is our

FIG. 7. Top line plots: central values (left) and their statistical errors (right) of the five terms appearing on both sides of Eq. (7.2). For
clarity in data are shown only up to x0 ¼ 41, after which the signal for the correlator is lost. Middle line plots: analogous results but for a
factorized approximation where a projector on the deflation subspace has been inserted to cut the fermion lines. Bottom line plots: the
same but with fermion lines cut by a projector defined via 120 modes computed by the inverse iteration technique, see main text.
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experience, however, that for the pion propagator this is not
cost effective as for baryons, see below. It must also be said
that, while Nm ¼ 120 is good enough for the lattice setup
we have chosen, this number may have to be increased
significantly at larger volumes.

VIII. TESTS OF TWO-LEVEL INTEGRATION FOR
THE BARYON PROPAGATOR

We have computed the baryon propagator on the same
n0 ¼ 1000 configurations used for the pion in Sec. VII.
Also in this case we have calculated the exact correlator
CNðy0; x0Þ, and the various contributions defined as

CðXÞ
N ðy0; x0Þ ¼

X
y

fhWðXÞ
N1 ðy; xÞi − hWðXÞ

N2 ðy; xÞig;

X ¼ f; r ð8:1Þ

by using the exact quark propagator and the factorized
approximations as defined in Eqs. (5.1) and (5.3). All of
them have been determined starting from 4 point sources
located at a randomly chosen spatial position on the time
slice at x0 ¼ 4.
As for the pion, we expand the nucleon propagator as

CN ¼Cð0Þ
N þ½Cð1Þ

N −Cð0Þ
N �þ ½Cð2Þ

N −Cð1Þ
N � þCðrestÞ

N ; ð8:2Þ

where CðiÞ
N for i ¼ 0, 1, 2 is a succession of factorized

correlators CðfÞ
N as defined in Eq. (8.1) for xcut0 ¼ 24 and for

Δ ¼ 8, 12, 16 respectively, while CðrestÞ
N ¼ CðrÞ

N for Δ ¼ 16.

The correlation between CNðy0; 4Þ and CðfÞ
N ðy0; 4Þ is practi-

cally 1 for all y0 and for all three values of Δ also for
the nucleon. In the plots on the top of Fig. 7 we show the
central values (left) and the statistical errors (right) of the
five terms appearing on both sides of Eq. (8.2) as a function
of y0. Due to the exponential suppression of the signal with
respect to the noise the data on the left plot has large

statistical errors, especially the smallest three contributions.
On the right plot the statistical error of the exact correlator
(and of all the others) follows the expected exponential
behavior ∝ e−3Mπ jy0−4j=2 (black line) withMπ ¼ 0.215 from
y0 ≳ 25, fully confirming the analysis in Ref. [1]. The
hierarchy among the statistical errors of the various terms is
evident in the left plot of Fig. 8, where the errors are
normalized to the one of the exact correlator. If we pick up a
typical point, y0 ¼ 35 not to lose the signal for the
correlator, we get

Cð0Þ
N ¼ ð21.3� 4.6Þ × 10−13;

½Cð1Þ
N − Cð0Þ

N � ¼ ð1.44� 0.83Þ × 10−13;

½Cð2Þ
N − Cð1Þ

N � ¼ ð0.78� 0.35Þ × 10−13;

CðrestÞ
N ¼ ð0.13� 0.20Þ × 10−13: ð8:3Þ

At this quark mass, the factorized correlator approximates
the exact one at the level of 5%–10% already for Δ ¼ 8, a
precision which increases for Δ ¼ 16 even though the
statistical errors are too large to justify a more precise
statement. The reduction of the statistical error from top to
bottom in Eqs. (8.3) is more than a factor 20, and it seems to
decrease a bit slower than the expectation from Eq. (4.13).
The other four plots in Fig. 7 are analogous to the ones

for the pions. The two plots in the middle show the results
for the factorized propagators computed by inserting in the
contraction ~SðfÞðy; xÞ as defined in Eq. (5.3). The set of
orthonormal vectors ϕi are chosen to be those which form
the deflation subspace. The cut is again at xcut0 ¼ 24, and
Δ ¼ 8, 12, 16. The remarkable fact is that the contribution
from the deflation subspace saturates nicely the exact
nucleon correlator, provided the number of modes is large
enough. The factorization combines well with deflation.
Finally in the plots on the bottom of Fig. 7 we

show analogous data but with the ϕi being Nm ¼ 120

FIG. 8. Left: statistical errors of the four terms appearing on the r.h.s. side of Eq. (7.2) normalized to the error of the exact propagator
on the l.h.s. of the same equation. Right: analogous results but for a factorized approximation where the fermion lines are cut by the
projector defined via the 120 modes computed by the inverse iteration technique, see main text.
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orthonormal vectors computed as for the pions. The
statistical errors normalized to the one of the full correlator
are shown on the right plot of Fig. 8.

A. Two-level Monte Carlo

The colorless spinors B in Eqs. (5.12) depend on the
gauge field belonging either to Γ̄0 or Γ�

0. When the links in
Ω�

ic
are kept frozen, the dependence of the action and of the

approximated contractions on them is factorized. We can

thus compute CðfÞ
N ðy0; x0Þ with a two-level Monte Carlo.

For n0 ¼ 50 level-0 configurations (the first 50 of the 1000
generated previously), we generate n1 ¼ 20 level-1 gauge
fields10 by freezing the link variables inΩ�

ic
. The thick time-

slice averages of the colorless spinors are then performed
independently on the level-1 configurations, and the matrix
elements of γ5P− between the spinors is averaged over the
50 level-0 boundary fields.
In the top left plot of Fig. 9 we show the total reduction

achieved for the statistical error on CðfÞ
N ðy0; x0Þ. In

particular what is plotted in this graph is the ratio of
(a) the statistical error on the factorized correlator—
computed by averaging over the 1000 level-0 configura-
tions at our disposal and the 4 point sources and finally
multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000=50

p
—over (b) the statistical error

achieved with the two-level integration. For y0 ≳ 30 we
observe a sharp reduction of the error by a factor which
becomes 40–50 for y0 ≳ 40. The cost per level-0 configu-
ration, without counting scalar products and updates, is
roughly 70 times higher. For a given target statistical error,
this results in a net reduction of the cost of the simulation of
20–40 times.
The origin of the gain is due to various factors: sum over

all the points on the time slice at x0 ¼ 4, averaging over the
n1 level-1 configurations, two-level averaging. On the top
right plot we show the ratio of the errors of the local
estimator, averaged over the 4 point sources and multiplied

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000=50

p
, over the one on Cð0Þ

N ðy0; x0Þ obtained with
the 50 level-0 configurations only. After a few transient
time slices, the gain is in the range 2–3. On the bottom left
plot we show the gain due to the averaging over the
n1 gauge configurations but without two-level integration.
We just bin the n1 measurements for each level-0

FIG. 9. The total gain on the statistical error of CðfÞ
N ðy0; x0Þ in the two-level Monte Carlo (top left) is due to various factor: the sum over

all the points on the time-slice at x0 ¼ 4 (top right), the averaging over the n1 level-1 configurations (bottom left), the two-level
averaging of the B-spinors (bottom right). See main text for more details.

10When n1 is not a large number, it is feasible to avoid the cut
of the fermion lines by computing the factorized propagator on
the n21 combinations of level–1 configurations.
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configurations, and we compute the errors considering the
bins as independent. After few time slices were no gain is
observed due to the freezing of the links belonging to Ω�

ic
,

the gain scales approximately as
ffiffiffiffiffi
n1

p
. In the bottom right

plot the reduction of the error due to the two-level
independent averaging is shown. For y0 ≳ 35 the gain is
clearly visible, and at larger distances saturates the
expected

ffiffiffiffiffi
n1

p
factor up to n1 ¼ 20.

The final results for the correlator with and without the
two-level integration are shown in the left plot of Fig. 10. In
the two-level Monte Carlo the signal-to-noise ratio for the
factorized contribution remains larger than one for 10
additional time slices with respect to the standard evalu-
ation. When we add the rest of the correlator, CðrÞ

N , the gain
reduces to 5 additional points. The effectiveness of the two-
level integration is better seen on the right plot of Fig. 10,
which is a replica of the right graph in Fig. 8 but with the

error on Cð0Þ
N coming from the two-level integration (error

with standard Monte Carlo also shown with shadow red
points). For completeness we report also the statistical error
on our best two-level estimate of the exact correlator,
normalized to the one obtained with the standard
Monte Carlo.
A rather clear picture emerges, similar to what we

discussed for the disconnected correlator. At large time
distances, the statistical error on the standard estimate of

CN is dominated by the one on Cð0Þ
N . Once the two-level

integration is switched on, the error on Cð0Þ
N decreases

roughly as n−11 , while the one on the rest of the correlator

continues to scale as n−1=21 . We thus tuned n1 so that the

error on Cð0Þ
N is smaller (roughly 1=2) of the uncertainty on

½Cð1Þ
N − Cð0Þ

N � at the same cost of generating n0 · n1 global
configurations. If one wants to gain further (beyond the

scope of this paper), the leading correction ½Cð1Þ
N − Cð0Þ

N �

needs also to be integrated with a two-level algorithm with
Δ ¼ 12. This way the error on this contribution can be

reduced at the level or below the one on Cð0Þ
N ðy0; x0Þ and

½Cð2Þ
N − Cð1Þ

N �, and so on. A good statistical precision can
thus be reached with a number of updates of the lattice
ðn0 · n1Þ ∝ exp fðMN − 3Mπ=2Þjy0 − 4jg, i.e. a factor at
the exponent which is halved with respect to the one in the
standard Monte Carlo procedure.

IX. CONCLUSIONS

The numerical computation of many interesting hadronic
correlation functions in lattice QCD suffers from signal-to-
noise ratios which decrease exponentially with the time
distance of the sources. Notable examples are meson
correlators with disconnected contributions, static-light
correlators, baryonic correlation functions with and without
disconnected Wick contractions, etc. Based on the expe-
rience in purely bosonic theories, our physics intuition
would suggest that multilevel algorithms would lead to an
impressive acceleration of those computations, opening
new perspectives in lattice QCD.
Formulating multilevel integration schemes in systems

with fermions, however, is not as straightforward as for
bosons. The gauge-field dependence of the fermion deter-
minant and of the propagator need to be judiciously
factorized before integrating the Wick contractions. Here
we have shown that this can be achieved in (quenched)
QCD by properly combining the ideas of multilevel
integration and domain decomposition of the quark
propagator.
The numerical tests that we have carried out for the

disconnected correlator of two flavor-diagonal pseudosca-
lar densities and for a nucleon two-point function show
indeed that the signal-to-noise ratio increases exponentially
with the time distance of the sources when a two-level

FIG. 10. Left: best results for CNðy0; x0Þwith and without two-level integration, and for Cð0Þ
N ðy0; x0Þ. Right: same as in the right plot of

Fig. 8 but with the error on Cð0Þ
N ðy0; x0Þ from the two-level Monte Carlo. For completeness we show also the statistical error on our best

two-level estimate of the exact correlator.

DOMAIN DECOMPOSITION, MULTILEVEL INTEGRATION, … PHYSICAL REVIEW D 93, 094507 (2016)

094507-15



integration is at work. In the very simple setup that we have
implemented, the number of configurations needed to reach
a given statistical precision is proportional to the square
root of those required in the standard case.
For the strategy to be useful in full QCD, the next step is

to devise a similar domain decomposition for the quark
determinant.
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APPENDIX A: WILSON-DIRAC OPERATOR

The massive Wilson–Dirac operator is defined as [27]

D ¼ Dw þm0; ðA1Þ

where m0 is the bare quark mass, Dw is the massless
operator

Dw ¼ 1

2
fγμð∇�

μ þ∇μÞ −∇�
μ∇μg; ðA2Þ

γμ are the Dirac matrices, and the summation over repeated
indices is understood. The covariant forward and backward
derivatives ∇μ and ∇�

μ are defined to be

∇μψðxÞ ¼ UμðxÞψðxþ μ̂Þ − ψðxÞ;
∇�

μψðxÞ ¼ ψðxÞ −U†
μðx − μ̂Þψðx − μ̂Þ; ðA3Þ

where UμðxÞ are the link variables. The Wilson–Dirac
operator satisfies the γ5-hermiticity relation

D ¼ γ5D†γ5: ðA4Þ

APPENDIX B: LU FACTORIZATION
OF THE BLOCK-BANDED

WILSON-DIRAC OPERATOR

The LU factorization for block banded matrices leads to
the simple result for the Wilson–Dirac operator [28]

0
BBBBBB@

DΛ0;0
DΛ0;1

0 …

DΛ1;0
DΛ1;1

DΛ1;2
…

0 DΛ2;1
DΛ2;2

..

. . .
.

1
CCCCCCA

¼

0
BBBBB@

1 B0 0 …

0 1 B1 …

0 0 1

..

. . .
.

1
CCCCCA

0
BBBBB@

A0 0 0 …

DΛ1;0
A1 0 …

0 DΛ2;1
A2

..

. . .
.

1
CCCCCA;

ðB1Þ

where the block matrices DΛi;j
are defined in Eqs. (4.1)–

(4.2), while the Ai and the Bi are defined uniquely in terms
of the DΛi;j

by the following recursion relations

AT−1 ¼ DΛT−1;T−1
;

Ai ¼ DΛi;i
−DΛi;iþ1

A−1
iþ1DΛiþ1;i

ði ¼ 0;…; T − 2Þ;
Bi ¼ DΛi;iþ1

A−1
iþ1 ði ¼ 0;…; T − 2Þ: ðB2Þ

Using the factorization (B1), the linear system Dψ ¼ η can
be easily solved, again leading to recursion relations. Let us
consider the case where the source η is nonzero only on one
thick time slice Λk. Solutions for sources on multiple time
slices can be obtained by superposition. The system

0
BBBBBBBB@

1 B0 0 …

0 1 B1 …

0 0 1

..

. . .
.

0 1

1
CCCCCCCCA

0
BBBBB@

χ0

χ1

..

.

χT−1

1
CCCCCA ¼

0
BBBBBBBB@

0

..

.

ηk

..

.

0

1
CCCCCCCCA

ðB3Þ

is solved by

χi ¼

8>>><
>>>:

hQ
k−1
j¼i ð−BjÞ

i
ηk i < k

ηk i ¼ k

0 i > k

ðB4Þ

where in the first line the obvious ordered product has to be
taken. Using Eq. (B2) we can rewrite

Yk−1
j¼i

ð−BjÞηk ¼ ð−Þk−iðDΛi;iþ1
A−1
iþ1Þ…ðDΛk−1;k

A−1
k Þηk; ðB5Þ

where for i < k the χi have support only on the boundaries.
By solving the system
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0
BBBBB@

A0 0 0 …

DΛ1;0
A1 0 …

0 DΛ1;2
A2

..

. . .
.

1
CCCCCA

0
BB@

ψ0

..

.

ψT−1

1
CCA¼

0
BB@

χ0

..

.

χT−1

1
CCA; ðB6Þ

we get the final result

ψ0 ¼ A−1
0 χ0;

ψ i ¼ A−1
i ðχi −DΛi;i−1

ψ i−1Þ ði ¼ 1;…; T − 1Þ: ðB7Þ

As for the χi, the second term in the parentheses on the
r.h.s. of Eq. (B7) live on the boundaries. The matrix A−1

i
propagates these two contributions into the center of the
thick time-slice. The Eq. (B7) is the basis of the so-called
Thomas algorithm for the solution of (block) banded linear
systems [28].

1. The 2 × 2 case

The previous derivation for the 2 × 2 block-banded
Wilson-Dirac operator

D ¼
�DΛ0;0

DΛ0;1

DΛ1;0
DΛ1;1

�

¼
�
I DΛ0;1

D−1
Λ1;1

0 I

�� SΛ0;0
0

DΛ1;0
DΛ1;1

�
; ðB8Þ

where the Schur complement is defined as

SΛ0;0
¼ DΛ0;0

−DΛ0;1
D−1

Λ1;1
DΛ1;0

; ðB9Þ

leads to

D−1 ¼
 

S−1Λ0;0
−S−1Λ0;0

DΛ0;1
D−1

Λ1;1

−D−1
Λ1;1

DΛ1;0
S−1Λ0;0

D−1
Λ1;1

þD−1
Λ1;1

DΛ1;0
S−1Λ0;0

DΛ0;1
D−1

Λ1;1

!
: ðB10Þ

It is worth noting that S−1Λ0;0
is the exact block in the block inverse of D, and one can turn this formula around and compute

S−1Λ0;0
by projecting the full propagator D−1 to the block Λ0. By putting the Schur complement in the bottom-right block, the

analogous formula can be written as

D−1 ¼
 
D−1

Λ0;0
þD−1

Λ0;0
DΛ0;1

S−1Λ1;1
DΛ1;0

D−1
Λ0;0

−D−1
Λ0;0

DΛ0;1
S−1Λ1;1

−S−1Λ1;1
DΛ1;0

D−1
Λ0;0

S−1Λ1;1

!
: ðB11Þ

with SΛ1;1
defined as in Eq. (B9) but with 1 ↔ 0.

2. Approximate factorization

The formulas (B4) and (B7) factorize the solution vector
in terms of thick time slicematrix products. Only thematrices
Ai carry the dependence on the links that belong to several
slices, via (nested) Schur complements. The Eq. (4.12) can
be derived from Eqs. (B4) and (B7) by a systematic

approximation of the LU decomposition. As in Sec. IV we
choose the source point x ∈ Λm and the sink y ∈ Λl with
l > m, see Fig. 2. By using Eq. (B7) it is easy to show that

ψ l ¼ ð−1Þm−lA−1
l Dl;l−1…A−1

mþ1Dmþ1;mψm ðB12Þ

By approximating Ai with DΩ�
i
and ψm with D−1

Ωmþ2
ηm we

arrive at Eq. (4.12).
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