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We present the first calculation of coupled-channel meson-meson scattering in the isospin ¼ 1, G-parity
negative sector, with channels πη, KK and πη0, in a first-principles approach to QCD. From the discrete
spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the
energy dependence of the S-matrix, and find that the S-wave features a prominent cusplike structure in
πη → πη close to theKK threshold coupled with a rapid turn-on of amplitudes leading to theKK final state.
This behavior is traced to an a0ð980Þ-like resonance, strongly coupled to both πη and KK, which is
identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet.
Consideration of D-wave scattering suggests a narrow tensor resonance at higher energy.
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I. INTRODUCTION

The spectrum of excited mesons is one of resonances
appearing in the scattering of lighter pseudoscalar mesons,
like π,K and η, which are stable against decay by the strong
interaction, and in most cases these resonances decay to
more than one final state, necessitating study of coupled-
channel scattering. One of the lightest experimentally
observed resonances is the a0ð980Þ, an isovector (I ¼ 1),
scalar (JP ¼ 0þ) meson, seen primarily as an enhancement
in πη final states very close to theKK threshold in, amongst
other processes, pp̄ annihilation [1,2], πp scattering [3],
pp collisions [4], radiative decays of the ϕ [5], γγ fusion
[6], and in decays of heavy-quark mesons [7,8]. Because
the observed enhancement straddles the KK threshold, any
attempt to describe this state must consider coupled πη, KK
scattering, and parametrizations which describe the avail-
able data [9–18] typically find a large coupling of the
resonance to the KK channel. This finding, combined with
proximity of the state to the KK threshold, and the claimed
presence of a second isovector scalar resonance near
1450 MeV [19,20], has led to suggestions that the
a0ð980Þ should not be identified with the qq̄ state expected
within qq̄ quark models, but rather that it might be
dominated by a KK molecular configuration [21]. Model
studies have considered the effects of meson loops on
simple qq̄-like states [22–24], typically resulting in sig-
nificant effects due to virtual KK configurations.

Ultimately, questions pertaining to the structure of
hadron resonances must be addressed within quantum
chromodynamics (QCD), the theory that describes the
interactions of the quarks and gluons that make up all
hadrons, but doing so is in general not a simple matter.
Quarks and gluons interact nonperturbatively at the energy
scales relevant to hadrons, and confinement ensures that
the asymptotic states of the theory are not free quarks and
gluons, but rather combinations of these bound into
hadrons stable against strong decay.
A powerful calculational tool comes in the form of lattice

QCD, a rigorous approximation to QCD in which the fields
are considered on a discrete space-time grid of finite extent.
By averaging over a large number of Monte-Carlo sampled
field configurations, correlation functions with hadronic
quantum numbers can be computed, and from these we
may extract a discrete spectrum of eigenstates of QCD in
the finite volume of the lattice. The precise relationship
between the spectrum in a finite periodic volume and
hadron-hadron scattering amplitudes is known [25–39],
and it follows that from sufficiently accurate determinations
of the spectrum in one or more volumes, we can extract
details of hadron scattering and any resonances which may
contribute.
The simple case of elastic ππ scattering in P-wave,

where the narrow ρ resonance appears, has been considered
extensively in lattice QCD calculations [40–47], and
recently the first extraction of a coupled-channel S-matrix
from QCD was reported [48,49], for the case of πK, ηK
scattering in S, P andDwaves. This calculation, performed
at a larger than physical light-quark mass, demonstrated
that resonance properties can be extracted from such
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calculations, albeit in a case where the two channels prove
to be relatively weakly coupled.
In this paper we will report on the determination of

S-wave scattering amplitudes for the πη, KK system, where
we find these two channels to be strongly coupled and to
feature a resonance coupled to both channels whose
properties we will discuss. We will also explore the
three-channel πη, KK, πη0 system, and the behavior of P
and D waves in the low-energy region. The remainder of
the paper is structured as follows:
In Sec. II we review the techniques used to determine

the finite-volume spectrum in our lattice QCD calculation.
After discussion of the composite operators used to
interpolate hadronic states from the vacuum, and the
construction and variational analysis of matrices of corre-
lation functions, we present the spectra obtained in a range
of moving frames in three lattice volumes.
In Sec. III we present the scattering amplitudes for the

coupled-channel πη, KK system determined from the
finite-volume spectrum using a variety of unitary K-matrix
parametrizations. The S-wave amplitudes show a promi-
nent cusplike behavior in πη at KK threshold, and a rapid
turn-on of amplitudes leading to KK final states. We also
consider the three-channel system including the πη0 channel
and present results for higher partial waves.
In Sec. IV we examine the singularity structure of our

scattering amplitudes, and find that the strong cusp at KK
threshold is due to a narrow resonance, strongly coupled to
both πη and KK channels. We find that this resonance is
dominated by a single nearby pole, lying close to the real
axis, slightly above the KK threshold. We also consider
Jost-style parametrizations of the scattering S-matrix
[50–53], in which the pole structure can be specified.
In Sec. V we consider physical interpretations of the

extracted amplitudes and the corresponding distribution of
pole singularities before we summarize our findings and lay
out future prospects for studying excited hadron resonances
using lattice QCD techniques.
Appendix A considers the behavior of a successful

amplitude parametrization under variation of two key
parameter values, exploring the migration of a resonance
pole between Riemann sheets and a discontinuous change
in the character of the phase-shift curves. Appendix B
presents a list of the operators used to compute the finite-
volume spectra in each lattice irrep.

II. COMPUTING THE SPECTRUM IN A FINITE
VOLUME USING LATTICE QCD

In lattice QCD, we obtain Euclidean correlation func-
tions on a finite cubic grid by evaluating averages over an
ensemble of gluon field configurations obtained through
Monte-Carlo sampling. Since we extract the energy spec-
trum of states from the time dependence of correlation
functions, there is an advantage in having a fine temporal

lattice spacing. Through use of an anisotropic lattice having
a finer temporal than spatial spacing, we obtain improved
energy resolution for only a moderate computational cost
increase. The configurations used here feature three flavors
of dynamical quarks: two degenerate light quarks, leading
to exact isospin symmetry, and a heavier strange quark. The
strange quark is approximately tuned to the physical
strange quark mass, while the light quarks are somewhat
heavier than their physical counterparts, leading to a pion
mass of 391 MeV. Details of the discretized anisotropic
action and the corresponding parameter tuning may be
found in Refs. [54,55]. In this study we make use of
three ensembles of configurations with as ∼ 0.12 fm
corresponding to three volumes with spatial extents
between 2 and 3 fm. The temporal lattice spacing, at,
expressed in physical units, is determined by computing the
Ω baryon mass on these lattices, atmΩ ¼ 0.2951, and
matching this to the experimentally determined value,
mphys

Ω ¼ 1672 MeV using at ¼ atmΩ

mphys
Ω
.

These configurations have been used in several other
studies to obtain a picture of the highly excited meson
and baryon spectrum [56–66], and to determine elastic
[45,67,68] and coupled-channel scattering amplitudes
[46,48,49].
Our approach to extract the discrete spectrum of eigen-

states follows closely that presented in the references
above—we form large matrices of two-point correlation
functions,CijðtÞ ¼ h0jOiðtÞO†

jð0Þj0i, using a large basis of
operators featuring some of “single-meson-like” construc-
tion, and others of “meson-meson-like” construction. It
was shown in the papers referenced above that inclusion of
both types is required in order to reliably extract the
complete spectrum of states in the region below three-
meson thresholds. We analyze the resulting correlation
matrices using a variational method [69–72] which
amounts to solving a generalized eigenvalue problem of
the form CðtÞvn ¼ Cðt0ÞvnλnðtÞ, where the spectrum of
eigenstates, fEng, is obtained from the large time behavior
of the “principal correlators,” λnðtÞ ∼ e−Enðt−t0Þ.
In evaluating the correlation matrices we must account

for all the quark-field Wick contractions specified by QCD,
and many of these involve quark annihilation. In order to
efficiently include all such contributions, we make use of
the distillation framework [73]. All the propagation objects
required for the present study had already been computed
for use in previous studies, and they are reused here. The
lattice volumes, ensemble size and the rank of the dis-
tillation vector space are provided in Table I.
The cubic symmetry of the lattice grid and the spatial

boundary of the lattice break the full rotational symmetry of
QCD down to a smaller group, and as such states are
classified not by spin and parity, but rather by irreducible
representations (irreps) of the cubic symmetry group at rest,
and the relevant “little-group” in the case of moving frames.
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In Table II we list the contributions of each infinite-
volume partial wave into each lattice irrep. This table
may be constructed from the unequal mass pseudoscalar-
pseudoscalar scattering case given in [49], and the equal
mass case given in Ref. [68]—the derivation is described in
those works.

The mass and dispersion relations for the pion and the
kaon on the current lattices were presented in previous
papers [45,49]. For the η and η0, in the current study, we
more precisely determined the mass and dispersion relation
than in our previous work. Using a large basis constructed
from single-meson-like operators, considering momenta up
to [2, 0, 0], we find atmη ¼ 0.10364ð19Þ with anisotropy
ξη ¼ 3.436ð6Þ and atmη0 ¼ 0.1641ð10Þ with anisotropy
ξη0 ¼ 3.36ð3Þ. These anisotropies are statistically compat-
ible with those found for the pion and kaon [68]. The η0,
which is stable on these lattices, is reliably extracted, but
not as precisely determined as the π, K and η, and its mass
displays somewhat larger volume dependence than the
other light states, as identified in Ref. [64], and in this first
study we will only make limited use of the region above πη0
threshold. The masses of low-lying stable hadrons and
corresponding thresholds are presented in Table III.
The meson-meson-like constructions that we utilize take

the form
P

~p1;~p2
Cð~p1; ~p2ÞΩ†ð~p1ÞΩ†ð~p2Þ, where Ω†ð~pÞ is a

variationally optimal momentum-projected operator [74]
that is obtained as a linear superposition of the “single-
meson-like” basis for each of the π, K, η and η0. We
combine these with the Clebsch-Gordon coefficients for the
desired lattice irrep to produce “πη-like,” “KK-like” and
“πη0-like” operators in the manner described in Ref. [68].
The KK operators are constructed to have definiteG-parity,
G ¼ −, as is described in Ref. [46]—there is no KK
P-wave scattering with G ¼ −.
The operator sets used to form the matrix of correlation

functions in each irrep are listed in Appendix B. Before
solving the generalized eigenvalue problem, we remove
the largest of the unwanted effects arising from the finite

TABLE I. The three volumes used, the number of configura-
tions on each, the number of independent time sources averaged
over (which varies somewhat according to irrep), and the number
of vectors in distillation space.

ðL=asÞ3 × ðT=atÞ L (fm) Ncfgs Ntsrcs Nvecs

163 × 128 1.9 479 8 64
203 × 128 2.4 603 2–4 128
243 × 128 2.9 553 2–4 162

TABLE II. The subductions of πη, KK and πη0 partial waves
with l ≤ 4 into lattice irreps, Λ. N is the number of embeddings
of each l in the irrep. This table is derived from Table II of
Ref. [68] where more detailed discussion is presented. The

LGð~PÞ column shows the double-cover little group (the corre-
sponding single-cover little group relevant for only integer spin is
given in parentheses). Also shown are the various spins, J ≤ 4, or
helicities, jλj ≤ 4, that appear in each of the relevant irreps. The
JP values and jλj~η ¼ 0− in italics are in the “unnatural parity”
[P ¼ ð−1ÞJþ1] series and do not contribute to pseudoscalar-
pseudoscalar scattering. The KK operators we use are con-
structed with good G-parity and these IG ¼ 1− combinations
do not subduce into odd partial waves.

JPð~P ¼ ~0Þ πη, πη0 lN

~P LGð~PÞ Λ jλjð~ηÞð~P ≠ ~0Þ πη, KK̄, πη0lN

[0, 0, 0] OD
h (Oh)

Aþ
1

0þ, 4þ 01, 41

T−
1 1−, 3−, (4−) 11, 31

Eþ 2þ, 4þ 21, 41

Tþ
2 2þ, 4þ, ð3þÞ 21, 41

Tþ
1

4þ, (1þ, 3þ) 41

T−
2 3−, (2−, 4−) 31

A−
2 3− 31

½0; 0; n� Dic4 (C4v)

A1 0þ, 4 01, 11, 21, 31, 42

E2 1,3 11, 21, 32, 42

B1 2 21, 31, 41

B2 2 21, 31, 41

A2 4, (0−) 41

½0; n; n� Dic2 (C2v)

A1 0þ, 2, 4 01, 11, 22, 32, 43

B1 1,3 11, 21, 32, 42

B2 1,3 11, 21, 32, 42

A2 2, 4, (0−) 21, 31, 42

½n; n; n� Dic3 (C3v)
A1 0þ, 3 01, 11, 21, 32, 42

E2 1, 2, 4 11, 22, 32, 43

A2 3, (0−) 31, 41

TABLE III. Top: Stable meson masses. Bottom: Multimeson
kinematic thresholds. Channels whose threshold is shown in
italics do not contribute to scattering with JP ¼ 0þ.

Meson (JP) atm

πð0−Þ 0.06906(13)
Kð0−Þ 0.09698(9)
ηð0−Þ 0.10364(19)
ωð1−Þ 0.15678(41)
η0ð0−Þ 0.1641(10)

Threshold atEthr

πη 0.17270(23)
KK 0.19396(13)
πππ 0.20718(23)
πη0 0.2332(11)
πKK 0.26302(18)
πηη 0.27634(30)
ωππ 0.29490(45)
ηKK 0.29760(23)
πππη 0.31082(30)
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temporal extent of the lattice using the weighting-shifting
procedure described in Ref. [68]. An example of the
statistical quality of signals is presented in Fig. 1 which
shows the principal correlators for the eight lowest-lying
states in the [000] Aþ

1 irrep on the 243 lattice—one notable
feature is that the n ¼ 3 level, which is dominantly
produced by a πη0-like operator, is significantly less well
determined than the other levels, in line with our discussion
of the η0 on these lattices above.
In Fig. 2 we present the spectra in the rest-frame irreps

Aþ
1 and T−

1—these are dominated by S-wave and P-wave
meson-meson scattering respectively. The T−

1 spectrum is
observed to feature only levels lying very close to the
curves which show the position of noninteracting πη and
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FIG. 1. The principal correlators of the lowest eight states
obtained from the variational analysis of 21 operators in the
[000] Aþ

1 irrep on the 243 volume plotted as eEnðt−t0ÞλnðtÞ, with
t0 ¼ 8at. The orange band indicates a two-exponential description
of the time dependence over the range shown. State n ¼ 3 is
dominated by a “πη0-like” operator and has the largest uncertainty.
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FIG. 2. Lattice QCD spectra in three volumes—left panel: rest
frame Aþ

1 irrep, dominated by JPðCÞ ¼ 0þðþÞ, right panel: rest
frame T−

1 panel, dominated by JPðCÞ ¼ 1−ðþÞ. Red, green, blue
curves represent noninteracting πη, KK, πη0 levels respectively.
Horizontal dashed lines show kinematic thresholds (see Table III).
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FIG. 3. The low-lying ½000�Aþ
1 spectra for each volume. The

relative operator overlaps jhnjOij0ij are also shown as histograms.
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πη0 pairs. This suggests that the P-wave interactions at
low energy are weak, as we might expect in the exotic
JPC ¼ 1−þ channel. The Aþ

1 spectrum shows more struc-
ture, and the utility of the large basis of operators in
determining this spectrum can be inferred from Fig. 3
which shows the relative overlap of operators onto each
extracted level. The lowest two levels on each volume have
largest overlap with the π½000�η½000�, K½000�K½000� operators
respectively. The third level (fourth level on 163) is
dominated by the single-meson-like operators, but with
significant, and volume-dependent, admixture of πη and
KK operators. We observe that the fourth level (third level
on 163) lying near πη0 threshold, which has larger statistical
uncertainty than the others, is dominantly produced by the
π½000�η0½000� operator. The levels above these are seen to be

shifted significantly from the noninteracting meson-pair
energy curves, suggesting strong scattering.

Figure 4 shows the spectra in those moving-frame irreps
which feature S-wave scattering, and Fig. 5 spectra in
irreps which have D-wave scattering as the lowest partial
wave. We do not present spectra in moving-frame irreps
having P-wave scattering as the leading partial wave.
The T−

1 spectrum indicates that P-wave scattering is likely
to be weak at low energies, and owing to contributions
from opposite parity in these moving-frame irreps, the
spectrum will actually be dominated by the JP ¼ 1þ
scattering amplitudes. These do not appear in pseudoscalar-
pseudoscalar scattering, rather being a feature of, for
example, πππ scattering. Since we have not included
operators resembling three pions we do not expect to
obtain a reliable determination of the spectrum here, and
as such we do not make use of these irreps.
With the finite-volume spectra presented in Figs. 2, 4, 5

in hand, we move to the problem of determining coupled-
channel partial-wave scattering amplitudes.
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FIG. 4. Lattice QCD spectra in three volumes for A1 irreps in moving frames. Curves represent noninteracting meson-meson energy
levels with the coloring defined in the caption of Fig. 2—a solid curve indicates that the corresponding meson-meson-like operator was
included in the basis (see Table V), and a long-dashed curve indicates that it was not included in the basis. Levels in grey are not used in
the determination of scattering amplitudes.
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FIG. 5. As Fig. 4 for moving-frame irreps having JP ¼ 2þ as the lowest partial wave.
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III. DETERMINING COUPLED-CHANNEL
SCATTERING AMPLITUDES

In order to rigorously understand these finite volume
spectra in terms of infinite volume scattering amplitudes
we use the formalism first derived for elastic scattering
of equal mass particles in field theories with periodic
cubic boundaries by Lüscher [25,26]. Later extensions
[27,28,30–32,34,35] to the elastic formalism deal with
moving frames, nonzero spin, and scattering of particles of
unequal mass. The relationship to the finite-volume spec-
trum for coupled-channel scattering of hadron pairs
[29,36–39], described by the scattering t-matrix, tðEcmÞ,
can be written

det½1þ iρ · t · ð1þ iMÞ� ¼ 0; ð1Þ

where Ecm is the cm-frame energy, ρðEcmÞ is the diagonal
matrix of phase space factors ρijðEcmÞ¼δijρjðEcmÞ¼δij

2kj
Ecm

,
and where MðEcm; LÞ is a matrix of known functions
of essentially kinematic origin. The finite-volume
spectrum in a cubic L × L × L volume, corresponds to
the set of solutions, fEcmðnÞg, of Eq. (1), for a unitarity-
preserving tðEcmÞ.
The matrix space under the determinant is over scattering

channels and all partial waves subduced into the relevant
irrep, Λ. For a partial wave of angular momentum l,
the threshold barrier, k2lj , suppresses the contribution of
amplitudes for all but the lowest partial waves at low
energy. The subduction of M into the appropriate irreps is
described in Ref. [68], where further discussion of Eq. (1)
can be found.
In coupled-channel scattering with two or more chan-

nels and one or more partial waves, Eq. (1) depends on
several unknowns at any given value of energy, and it is
clear that from knowledge of a single energy level value,
not all these unknowns can be determined. An efficient
way of extracting information from all of the energy
levels in a given region is to use a parametrization of
tðEcmÞ with a limited number of parameters. Provided
sufficiently many energy levels are present then it is
possible to constrain those parameters by performing a χ2

minimization comparing the lattice-determined spectrum
and the spectrum provided by the solutions of Eq. (1) for
our parametrized tðEcmÞ. This procedure was followed in
Ref. [49], and the correlated χ2 we minimize is defined in
Eq. (8) of that reference.
Parametrizations of t typically feature the s-channel

Mandelstam variable, s ¼ E2
cm, and the cm-frame

momentum,

k2i ðsÞ ¼
1

4s
ðs − ðmi;1 þmi;2Þ2Þðs − ðmi;1 −mi;2Þ2Þ;

ð2Þ

where mi;1 and mi;2 are the scattering particle masses in
channel i. Our parametrizations must satisfy unitarity if
they are to solve Eq. (1), and since we intend eventually
to explore the singularities of the t-matrix at complex
values of s, they should also respect certain analyticity
properties. The K-matrix approach provides a conven-
ient parametrization of coupled-channel scattering that
manifestly ensures a unitarity-preserving t-matrix. In
general, for l-wave scattering, we may write the ele-
ments (with i and j labeling scattering channels) of the
inverse of t as

t−1ij ðsÞ ¼
1

ð2kiÞl
K−1

ij ðsÞ
1

ð2kjÞl
þ IijðsÞ; ð3Þ

where the factors ð2kiÞ−l provide the required kinematic
behavior at thresholds [75]. The elements KijðsÞ form a
symmetric1 matrix that is real2 for real s. The elements
IijðsÞ form a diagonal matrix whose imaginary part is
fixed by unitarity to be −ρiðsÞ above threshold in
channel i and zero below threshold. The real part of
IijðsÞ is not fixed by unitarity, however the analyticity of
the amplitude motivates a logarithmic form [76], which
follows from a dispersion relation relating the real
part to the known imaginary part. The resulting IijðsÞ
function behaves reasonably below threshold and off the
real energy axis—our implementation of this “Chew-
Mandelstam” phase space is described in the appendices
of Ref. [49]. We will explore a range of parametrizations
for KðsÞ when we consider coupled-channel scattering
to ensure that the results are not dependent on any
particular choice.
Before considering the case of coupled-channel scatter-

ing, we begin by examining the limited energy region
below KK threshold where πη scattering is elastic.

A. Elastic S-wave πη scattering

Below KK threshold, where only elastic πη scattering
occurs, the S-wave scattering t-matrix reduces to a single
scattering amplitude, t ¼ 1

ρ e
iδ sin δ, that can be described

by a single real parameter, the phase shift, δ0ðEcmÞ. The
determinant condition Eq. (1) reduces to a single equation3

for δ0ðEcmÞ. The points shown in Fig. 6 correspond to
solving this equation for nine levels well below KK
threshold in the ½000�Aþ

1 , ½100�A1 and ½200�A1 irreps (we
include three levels which appear below πη threshold). The

1A symmetric K-matrix ensures time-reversal invariance.
2K is real away from any “left-hand” cuts.
3Up to higher partial-wave contributions which we later

determine to be negligible in this energy region. Amplitudes
featuring the KK channel can influence the spectrum in a limited
energy region below KK threshold, so we are careful to exclude
energy levels which lie too close to the threshold.
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small values of δ0 appear to indicate rather weak πη
scattering at low energy.
An alternative approach is to parametrize tðEcmÞ and

describe the finite-volume spectra by varying the param-
eters. At low energies we may expand the scattering
amplitude in a power series in k2 known as the effec-
tive-range expansion. Retaining only the first term in this
expansion, the scattering length, we have

k2lþ1
πη cot δl ¼ 1

al
þOðk2πηÞ: ð4Þ

For S-wave scattering the spectra in the elastic
region are best described (with χ2=Ndof ¼ 0.52) by
al¼0 ¼ ð2.6� 1.6� 0.4Þ · at, where the first uncertainty
reflects the statistical uncertainty in the discrete energies
and the second the uncertainty on the pion mass, η mass
and the anisotropy. Adding an effective range term
does not improve the description. A closely related form
uses a one-channel implementation of Eq. (3) with a
constant K ¼ γπη, and the Chew-Mandelstam phase space.
Using this form to describe the energy spectrum we find

γπη ¼ 0.22� 0.14� 0.04 with a similar χ2=Ndof ¼ 0.54.
The energy dependence of the phase-shift curves for the
two forms are consistent and we plot the scattering length
form along with the discrete points in Fig. 6.
We note in passing that this scattering length is signifi-

cantly smaller than that obtained in the I ¼ 1=2 πK channel
on the same lattices [48,49], and we discuss this further
in Sec. V.

B. Coupled-channel S-wave πη, KK scattering

We now investigate the region below πη0 threshold,
where two channels, πη and KK, are kinematically open.
The left panel of Fig. 2 and all panels of Fig. 4 show the
finite-volume spectra we will use to constrain the scatter-
ing t-matrix. We use the lowest three levels from each of
the ½000�Aþ

1 irreps (2 on 163) and all of the points shown
in black in the moving frames. These 47 energy levels
are sufficiently far below the πη0 threshold that we believe
we can neglect the effect of that kinematically closed
channel.4

We will initially ignore partial wave contributions with
l > 0, and we will later show them to be negligible in
this energy region. Below the πη0 threshold, in the energy
region of interest, lies the πππ threshold, and this channel
does subduce into the in-flight A1 irreps, not however in
JP ¼ 0þ scattering, but only through higher partial waves.
These higher partial waves necessarily involve some l and
the threshold suppression that comes from that. We did not
include any operators resembling three pions in our basis,
and we will proceed assuming that πππ amplitudes do
not contribute significantly to determining the in-flight A1

spectra at low energy.
We will attempt to describe the finite-volume spectra

using parametrizations of the energy dependence of
the t-matrix that are as simple as possible and which
feature relatively few variable parameters. An example
of a form we find to be successful expresses the
K-matrix as

K ¼ 1

m2 − s

�
g2πη gπηgKK̄

gπηgKK̄ g2KK̄

�
þ
�
γπη;πη γπη;KK̄
γπη;KK̄ γKK̄;KK̄

�
;

ð5Þ

i.e. as the sum of a pole in s and a matrix of constants.
The six real parameters, m, gπη, gKK̄ , γπη;πη, γπη;KK̄ ,
γKK̄;KK̄, can be varied to describe the spectra. As
described in Refs. [36,49], we choose to subtract the
dispersive integral in the Chew-Mandelstam phase
space at s ¼ m2.
The best description of the 47 energy levels is given by

0.175 0.180 0.185 0.1900.170

0.175 0.180 0.185 0.1900.170

30

4
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20

10

−10

−2

−4

FIG. 6. S-wave πη elastic scattering amplitude determined
using the ½000�Aþ

1 , ½100�A1 and ½200�A1 spectra in three volumes.
Upper panel: phase shift δ0. Lower panel: k cot δ0. Discrete points
from application of the Lüscher condition assuming no contri-
bution from partial waves above l ¼ 0, curves from describing
the spectrum using a scattering length.

4See the next section for a study of the influence of πη0.
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m ¼ ð0.2214� 0.0029� 0.0004Þ · a−1t
gπη ¼ ð0.091� 0.016� 0.009Þ · a−1t
gKK̄ ¼ ð−0.129� 0.015� 0.002Þ · a−1t

γπη;πη ¼ −0.16� 0.24� 0.03

γπη;KK̄ ¼ −0.56� 0.29� 0.04

γKK̄;KK̄ ¼ 0.12� 0.38� 0.08

2
6666666664

1 0.58 −0.06 −0.51 0.39 0.02

1 −0.63 −0.87 0.84 −0.49
1 0.52 −0.68 0.83

1 −0.90 0.53

1 −0.78
1

3
7777777775

χ2=Ndof ¼
58.0
47 − 6

¼ 1.41; ð6Þ

where the uncertainties are first statistical and second due to
variation of mπ ,mK ,mη and ξ within their uncertainties. The
matrix shows the parameter correlations. In Fig. 7we show the
finite volume spectra obtained from the lattice QCD compu-
tation (shown in black) alongside the spectrum corresponding
to the minimization in Eq. (6) (shown in orange), where we
observe the good agreement suggested by the small χ2.
The cross sections for πη → πη, πη → KK andKK → KK

scattering are proportional to ρiρjjtijj2—we plot these for
this amplitude in Fig. 8. A clear cusp structure is observed in
πη→πη at the opening of the KK threshold, and the
amplitudes to produce KK are seen to turn on rapidly at
threshold.
An alternative way to display the t-matrix is to use phase

shifts for each channel and an inelasticity parameter,
such that the diagonal elements of the S-matrix5 are
ηe2iδπη ; ηe2iδKK̄ . The phase shifts and inelasticity as a
function of energy are presented in Fig. 9. The inelasticity
deviates sharply from unity at KK threshold indicating a
large coupling between channels.6

Finally, the amplitudes can be presented in a manner
which makes explicit the constraint of unitarity, by using an
“Argand” diagram which plots ρiImtii against ρiRetii, as
shown in Fig. 10. Departure inside the dashed circle for the
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FIG. 7. The A1 irrep spectra: black points show the spectra of Figs. 2 and 4 and the orange points show the volume-dependent spectra
corresponding to the S-wave amplitude presented in Eq. (6). Energy levels not used in the minimization are shown in grey.
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FIG. 8. The S-wave scattering amplitude expressed as
ρ2πηjtπη;πηj2 (red), ρπηρKK̄ jtπη;KK̄ j2 (orange) and ρ2KK̄jtKK̄;KK̄j2
(green). The inner bands are determined by statistically sampling
the space of correlated errors in Eq. (6), and the outer bands show
the variation with hadron masses and anisotropy as explained
in the text. The small black dots indicate the positions of the
energy levels on 163, 203 and 243 lattices (plotted in Figs. 2 and
4) used to constrain the amplitude.

5The S-matrix is related to t by S ¼ 1þ 2i
ffiffiffi
ρ

p
· t ·

ffiffiffi
ρ

p
.

6It is worth noting here that the energy dependence of the
two phase shifts in strongly coupled cases like this can undergo
a complete change in character as the relative strength of
coupling of a resonance to each channel is adjusted, while the
corresponding scattering cross-sections change relatively little—
see Appendix A for an illustration.
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case i ¼ πη corresponds to inelasticity, which we observe
to turn on rapidly at the KK threshold.
While a cusp behavior at the opening of a new

threshold is, in general, expected due to the correspond-
ing branch-point singularity, the strength of the effect
observed in Fig. 8, and the very rapid turn-on of the KK
amplitudes suggests that there may well be resonant
behavior in this energy region. In Sec. IV we will
examine the continuation of our amplitude to complex
values of s to determine if there are additional nearby pole
singularities that may provide a resonant explanation of
the above observations.
A common parametrization of coupled-channel scatter-

ing that can describe an isolated resonance is the simple
two-channel extension of the familiar elastic Breit-Wigner
form that was proposed by Flatté [9,10],

tijðsÞ ¼
gigj

m2 − s − ig21ρ1ðsÞ − ig22ρ2ðsÞ
; ð7Þ

where the phase space, ρðsÞ, becomes imaginary below
threshold, and where m, g1 ¼ gπη, and g2 ¼ gKK̄ are free
parameters. If we attempt to describe our finite-volume
spectra using this form, the best fit we can obtain is

m¼ ð0.2250� 0.0024� 0.0004Þ ·a−1t
gπη ¼ ð0.1194� 0.012� 0.003Þ ·a−1t
gKK̄ ¼ ð0.1362� 0.013� 0.004Þ ·a−1t

2
64
1 0.44 0.41

1 0.84

1

3
75

χ2=Ndof ¼
149.5
47− 3

¼ 3.40;

and while the key features of the spectra are reproduced,
the goodness of fit is significantly inferior to our
previous description using a “pole plus constant” K-matrix.
The problem with this form appears to be that it is too
restrictive—it describes an amplitude completely domi-
nated by a single resonance at all energies, no other
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FIG. 9. The phase shifts and inelasticity of the S-wave
scattering amplitude corresponding to the minimization pre-
sented in Eq. (6).
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FIG. 10. Argand diagram representation of the amplitude in
Eq. (6). The dashed circle shows the unitarity bound. Points
spaced equally in energy with atΔEcm ¼ 0.003. Ellipses indicate
the uncertainty on the amplitudes following from the statistical
uncertainty on the parameters in Eq. (6).
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behavior is accommodated. An example is that channel
factorization, t ∝ g ⊗ g with g ¼ ½gπη; gKK̄� is forced to
hold at all energies, while more generally we would expect
this to hold exactly only at the complex pole position.
We note that the K-matrix pole plus constant form

defined in Eq. (5), when used with our choice of subtraction
in the Chew-Mandelstam phase space [which ensures that
ReIðs ¼ m2Þ ¼ 0], approximately agrees with the Flatté
form for s ≈m2 if ργ ≪ 1. The presence of the γ matrix
provides more freedom, allowing the amplitude to deviate
from a pure resonance contribution at energies away from
s ¼ m2 and breaking the exact channel factorization for
real energies.
Of course, there is nothing unique about the pole plus

constant form for the K-matrix that we found could
successfully describe the finite-volume spectra, and we
should explore to what extent other parametrizations can be
used. Ultimately, as we will discuss in Sec. IV, it is the
singularities of tðsÞ in the complex-s plane, in particular
poles relatively close to the real axis, that provide the least
model-dependent description of the resonant content of
scattering amplitudes. In what follows we will consider a
variety of parametrizations of tðsÞ to describe the finite-
volume spectra and explore whether they share a common
singularity structure.
One class of parametrizations generalizes the pole plus

constant K-matrix form, allowing multiple poles plus a
polynomial in s,

KijðsÞ ¼
X
p

gðpÞi gðpÞj

m2
p − s

þ
X
n

γðnÞij sn: ð8Þ

Inclusion of (real) poles in K proves to be an efficient
parametrization when nearby poles are present in tðsÞ, but
their use does not guarantee that there are nearby poles in
tðsÞ—the interference with the polynomial can push them
far from the region of the real energy axis constraining the
amplitude. Typically we find that including a low-order
polynomial is parametrically more economical than adding
a pole in K that appears outside the constrained region.
In this study only a single pole was found to be necessary
and various constant and linear-order polynomials were
utilized.
Another alternative parametrizes the elements of the

inverse of K by polynomials in s,

K−1
ij ðsÞ ¼

XNij

n¼0

cðnÞij sn; ð9Þ

where cðnÞij are real free parameters. When using this form
we subtract the Chew-Mandelstam phase-space integral at
πη threshold.

We attempt to describe the finite-volume spectra using a
variety of K-matrix parametrizations, varying the form and
the number of parameters used. The results are summarized
in Table IV and the variation of the extracted amplitudes,
observed to be modest, is shown in Figs. 11 and 12. Higher
order polynomials, multiple poles in Eq. (8), and “running”
K-matrix pole coupling forms that were applied in Ref. [46]
were also attempted, however they introduce more freedom

TABLE IV. Variation of S-wave amplitude parametrization.

Parametrization Restrictions Npars χ2=Ndof

K ¼ gigj
m2−s þ γð0Þij

� � � 6 1.41

γð0Þπη;πη ¼ 0 5 1.38

γð0Þ
πη;KK̄ ¼ 0 5 1.45

γð0ÞKK̄;KK̄ ¼ 0 5 1.38

γð0Þπη;πη ¼ 0, γð0Þ
πη;KK̄ ¼ 0 4 2.26

γð0Þπη;πη ¼ 0, γð0ÞKK̄;KK̄ ¼ 0 4 1.38

γð0Þ
πη;KK̄ ¼ 0, γð0ÞKK̄;KK̄ ¼ 0 4 1.52

K¼ gigj
m2−sþγð1Þij s

� � � 6 1.40

γð1Þπη;πη ¼ 0 5 1.37

γð1Þ
πη;KK̄ ¼ 0 5 1.36

γð1ÞKK̄;KK̄ ¼ 0 5 1.36

γð1Þπη;πη ¼ 0, γð1Þ
πη;KK̄ ¼ 0 4 1.99

γð1Þπη;πη ¼ 0, γð1ÞKK̄;KK̄ ¼ 0 4 1.34

γð1Þ
πη;KK̄ ¼ 0, γð1ÞKK̄;KK̄ ¼ 0 4 1.36

K−1¼cð0Þij þcð1Þij s

� � � 6 1.40
cð1Þπη;πη ¼ 0 5 1.37

cð1Þ
πη;KK̄ ¼ 0 5 1.50

cð1ÞKK̄;KK̄ ¼ 0 5 1.38

cð1Þπη;πη ¼ 0, cð1Þ
πη;KK̄ ¼ 0 4 1.52

cð1Þπη;πη ¼ 0, cð1ÞKK̄;KK̄ ¼ 0 4 1.36

cð1Þ
πη;KK̄ ¼ 0, cð1ÞKK̄;KK̄ ¼ 0 4 2.26

cð1Þij ¼ 0 3 6.27

K¼ gigj
m2−sþγð0Þij

IijðsÞ ¼ −iδijρiðsÞ

� � � 6 1.48
γð0Þπη;πη ¼ 0 5 1.45

γð0Þ
πη;KK̄ ¼ 0 5 1.49

γð0ÞKK̄;KK̄ ¼ 0 5 1.47

γð0Þπη;πη ¼ 0, γð0Þ
πη;KK̄ ¼ 0 4 1.72

γð0Þπη;πη ¼ 0, γð0ÞKK̄;KK̄ ¼ 0 4 1.44

γð0Þ
πη;KK̄ ¼ 0, γð0ÞKK̄;KK̄ ¼ 0 4 1.52

tij ¼ gigj=ðm2 − s − ig21ρ1 − ig22ρ2Þ 3 3.40
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than is necessary to describe the spectra and generally lead to
large parameter correlations. It appears that the relatively
narrow region of energywe are considering can be adequately
described by just four suitably chosen parameters.
We observe that many different forms give amplitudes

having essentially the same structure, indicating that the
details of the parametrization form are not important
provided it contains sufficient freedom. In Sec. IV we will
consider to what extent the singularity structures of each of
these amplitudes are common.

C. Coupled-channel S-wave πη, KK̄, πη0 scattering

We may extend our S-wave scattering analysis up to the
ππω threshold at atEcm ¼ 0.2949 if we also allow for
scattering in the πη0 channel. We consider only the extra
constraint from describing the ten additional energy levels
in the rest-frame Aþ

1 irrep in this region, as no higher partial

waves with J < 4 contribute to this irrep, nor do any three-
pseudoscalar channels. The relatively large statistical
uncertainties on energy levels having large overlap with
πη0-like operators (see Fig. 3) limits the precision with
which we will determine scattering amplitudes above πη0
threshold.
We perform a minimization to describe the 57 energy

levels using a 3 × 3 version of Eq. (8) with a pole plus
constant form. We find that a reasonable description of the
spectra can be obtained allowing, in addition to the free
parameters in Eq. (6), also a nonzero gπη0 and a nonzero
γπη0;πη0 . The fit yields

m ¼ ð0.2275� 0.0029� 0.0013Þ · a−1t
gπη ¼ ð0.129� 0.011� 0.017Þ · a−1t
gKK̄ ¼ ð−0.145� 0.010� 0.002Þ · a−1t
gπη0 ¼ ð0.104� 0.032� 0.060Þ · a−1t

γπη;πη ¼ −0.59� 0.14� 0.36

γπη;KK̄ ¼ −0.31� 0.13� 0.37

γKK̄;KK̄ ¼ 0.14� 0.16� 0.34

γπη0;πη0 ¼ 0.57� 0.39� 0.23

2
66666666666664

1 0.69 −0.09 0.04 −0.33 0.17 0.22 0.02

1 −0.38 0.22 −0.59 0.48 0.08 0.14

1 −0.49 0.06 −0.09 0.24 0.05

1 0.22 −0.21 0.12 0.10

1 −0.87 0.28 −0.12
1 −0.61 0.13

1 0.01

1

3
77777777777775

χ2=Ndof ¼
65.8
57 − 8

¼ 1.34: ð10Þ
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FIG. 11. The result of varying the parametrization used to
describe the finite volume spectrum. All parametrizations with
χ2=Ndof < 1.5 from Table IV are included. The inner band
corresponds to the fit in Eq. (6), as plotted in Fig. 8. The outer
band corresponds to taking the maximum and minimum values of
all of the other fits, including their errors from minimization.
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FIG. 12. The result of varying the parametrization used to
describe the finite volume spectrum. All parametrizations with
χ2=Ndof < 1.5 from Table IV are included. The inner band
corresponds to the fit in Eq. (6), as plotted in Fig. 9. The outer
band corresponds to taking the maximum and minimum values of
all of the other fits, including their errors from minimization.

a0 RESONANCE IN STRONGLY COUPLED … PHYSICAL REVIEW D 93, 094506 (2016)

094506-11



There is not a settled convention for describing three-
channel scattering amplitudes in terms of a minimal set of
energy-dependent functions. We will use a scheme where
the scattering is described by three phase shifts, δi, and
three “inelasticities,” ηi, where the diagonal entries of the
S-matrix are

diagðSÞ ¼ ðη1e2iδ1 ; η2e2iδ2 ; η3e2iδ3Þ; ð11Þ

and the off-diagonal entries are determined by unitarity
and invariance under time reversal, the phase of each
element of Sij being δi þ δj. In the limit where the third
channel decouples from the other two, then η3 → 1, and
η2 → η1 ¼ η where η is the two-channel inelasticity used
previously. We plot the phase shifts and inelasticities
corresponding to the amplitude described in Eq. (10) in
Fig. 13. The region below πη0 threshold is, as we would
expect, largely unchanged by the inclusion of the addi-
tional channel. Apart from mild cusps at the opening of
πη0, there are no notable new structures below ππω
threshold. Exploring alternative parametrizations, we
find some variation in the amplitudes in the region
above πη0 threshold, due to there being relatively few
energy levels to constrain the additional parameters, but
in all cases the region below πη0 threshold is largely
unchanged and there is no significant structure above πη0
threshold.

D. Higher partial waves

Thus far we have assumed that in A1 irreps, only
S-wave scattering plays a significant role in determining
the spectrum in the energy region considered. In a
finite cubic volume the reduced rotational symmetry
leads to a subduction of multiple partial waves of
definite l into the limited set of irreps in which we
work. In the case of scattering of unequal mass particles
in moving frames the subduction leads to a rather dense
set of partial waves in each irrep, as summarized in
Table II.
The role of higher partial waves at low energies is limited

by kinematic suppression proportional to k2li , but this can
be circumvented if resonances happen to appear at low
energy. In this case, πη in P-wave has exotic JPC ¼ 1−þ
quantum numbers, so we do not expect any low-lying
resonances7 and KK̄ cannot have the required G ¼ − in
P-wave. πη and KK̄ in D-wave have JPC ¼ 2þþ, and we
might expect there to be an a2 resonance, a supposition that
is supported by the presence in Fig. 5 of levels near
atEcm ¼ 0.26, that do not lie near to noninteracting meson-
meson energies.

1. P-wave

In the right pane of Fig 2 we plot the spectrum in the
rest-frame T−

1 irrep, which receives contributions from πη
P-wave, F-wave and higher partial waves. There are only
very small shifts seen in the lattice QCD spectra compared
to the noninteracting πη levels, suggesting a very weak
interaction. In the πη elastic region, below πη0 threshold,
there is one energy level at atEcm ¼ 0.2316ð8Þ from which
we can determine a P-wave elastic scattering phase
shift, δ1 ¼ ð−1.2� 3.0Þ°. The levels above πη0, but below
ππω, that are dominated by overlap with πη operators
are similarly consistent with small or no interactions.
We extract one πη0-like level on the 243 lattice and
this is also consistent with negligibly small interac-
tions. Using the four levels that are dominated by πη
operators we obtain a scattering length a1 ¼ ð9� 17Þ · a3t
with a χ2=Ndof ¼ 0.61.
The P-wave interactions are clearly very weak in this

low-energy region, but we may include their effect when
extracting the S-wave amplitudes from moving-frame A1

irreps—doing so we observe negligible changes in the
S-wave amplitudes.

2. D-wave

In Fig. 5 we show the energy levels in irreps that have
D-wave as their lowest subduced partial wave. The
extracted levels largely lie close to noninteracting
meson-meson energies, with the addition of a level that
appears systematically at about atEcm ¼ 0.26. No levels
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FIG. 13. The phase shifts and inelasticities’ of Eq. (11)
corresponding to Eq. (10). Below πη0 threshold, the inelasticities
ηπη and ηKK̄ are equal.

7In Ref. [57], the indications are that there may be hybrid
mesons [77] above atEcm ¼ 0.35 on these lattices.
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appear in the πη elastic scattering region, but if we
assume that there is negligible coupling between πη
and KK̄ at low energy, the lowest level in 243 ½000�Eþ
at atEcm ¼ 0.2316ð11Þ would correspond to a D-wave πη
phase shift of δ2 ¼ ð−0.5� 1.6Þ°.
With our current formalism, we are limited in how much

we can determine about scattering amplitudes in this
channel—πππ scattering can contribute here, and we have
not included “πππ-like” operators in our basis, so we do not
expect to have extracted the complete spectrum of finite-
volume eigenstates. Neither do we have a complete
formalism with which to determine three-body scattering
amplitudes.8 Nevertheless, we may take a somewhat

cavalier approach and proceed under the assumption that
the πππ channel plays a negligible role here—in our
previous analysis of the coupled πK; ηK system [48,49]
we found that we were able to adequately describe the
calculated D-wave spectrum well above the ππK threshold
using only meson-meson amplitudes, and extracted what
appeared to be a signal for a narrow K⋆

2 resonance that was
dominantly coupled to the πK channel.
We will attempt something similar here, treating the

description of the spectra in Fig. 5 as a coupled πη, KK̄
problem alone. Utilizing a K-matrix of pole plus constant
form, with the necessary threshold factors from Eq. (3) we
obtain

m ¼ ð0.2658� 0.0008� 0.0001Þ · a−1t
gπη ¼ ð0.712� 0.056� 0.004Þ · at
gKK̄ ¼ ð0.665� 0.072� 0.010Þ · at

γπη;πη ¼ ð−0.1� 7.7� 2.7Þ · a4t
γπη;KK̄ ¼ ð30:� 18:� 2.Þ · a4t
γKK̄;KK̄ ¼ ð1.2� 11.9� 6.3Þ · a4t

2
666666664

1 0.03 0.03 0.01 −0.05 0.02

1 0.07 0.73 −0.22 0.17

1 0.07 0.73 0.27

1 −0.05 0.55

1 0.31

1

3
777777775

χ2=Ndof ¼
45.0
28 − 6

¼ 2.05: ð12Þ

The corresponding phase shifts and inelasticity are
plotted in Fig. 14, along with a comparison of the finite-
volume spectrum given by the amplitude in Eq. (12) and the
lattice QCD spectrum used to the constrain the amplitude.
The description is reasonable, but not perfect,9 and may
indicate the limitations due to the assumed correctness of
the spectrum without πππ operators, and the assumed
absence of coupling of the πη, KK̄ system to πππ. The
solution obtained clearly corresponds to dominance of the
scattering by a narrow resonance, coupled to both πη and
KK̄, and if this result is correct, it is quite interesting, since
the experimental a2ð1320Þ meson couples dominantly to
πππ, but perhaps this coupling decreases rapidly with
increasing pion mass? Further calculations at other pion
masses will be required to explore this.
The presence of a narrow resonance, coupled to both πη

and KK̄, suggests that the Flatté amplitude may provide an
efficient description. Generalizing Eq. (7) to nonzero
angular momentum l, we have

tij ¼
ð2kiÞlgigjð2kjÞl

m2 − s − ig21ρ1ð2k1Þ2l − ig22ρ2ð2k2Þ2l
;

and we find that the spectrum can be described
well by

m¼ð0.2658�0.0008�0.0001Þ ·a−1t
gπη¼ð0.766�0.043�0.017Þ ·at
gKK̄ ¼ð0.581�0.050�0.006Þ ·at

2
64
1 0.06 0.08

1 0.30

1

3
75

χ2=Ndof ¼
49.0
28−3

¼1.96:

This appears to be an appropriate description of the
scattering amplitude having well determined parameters
with low correlations corresponding to a narrow resonance
coupled to both πη and KK̄.

IV. RESONANCE POLES

The scattering amplitudes that we have extracted are
directly constrained for real values of s ¼ E2

cm by the finite-
volume energy levels computed in our lattice QCD calcu-
lations. In a similar way, scattering amplitudes may be
determined experimentally using scattering data collected
at real energies above kinematic thresholds. It has proven
useful to consider the continuation of these amplitudes to
values of s in the complex plane since singularities, in
particular pole singularities associated with resonances, are
the dominating features.

9Variation of parametrization form did not yield any descrip-
tions of the spectrum with χ2=Ndof significantly below this value.

8See [78–80] for promising progress in this direction.

a0 RESONANCE IN STRONGLY COUPLED … PHYSICAL REVIEW D 93, 094506 (2016)

094506-13



The structure of the complex s-plane away from the real
axis becomes more complicated as new scattering channels
open. Each new square-root branch cut associated with an
opening threshold splits the plane into two Riemann sheets,
so that for n-channel scattering, there are 2n sheets. In the
two channel region there are four sheets to consider, and
they may be labeled by the sign of the imaginary part of the
cm-frame momenta for the two channels:

Sheet Imkπη ImkKK̄

I þ þ
II − þ
III − −
IV þ −

Physical scattering occurs on sheet I, just above the real s
axis where the branch cuts that lead to the other, “unphys-
ical,” sheets lie. Causality ensures that singularities cannot
appear off the real axis on the physical sheet, but they can
appear on any of the unphysical sheets. In particular, we
can have poles at complex values of s, and in a region near a
pole we have for an element of the t-matrix, tij ∼

cicj
s0−s

. s0 is
the pole position, which is often associated with a reso-
nance mass and width as s0 ¼ ðmR � i

2
ΓRÞ2, and the

residue can be factorized into ci, cj, couplings that indicate

the relative strength with which the pole couples to each
channel.10

For physical scattering above πη threshold, but well
below KK̄ threshold, the lower half-plane of sheet II is
nearby, while well above KK̄ threshold it is the lower half-
plane of sheet III that is nearby. In the energy region close to
KK̄ threshold all of the following are nearby: the lower
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FIG. 14. TheD-wave scattering amplitude corresponding to the
six parameter K-matrix minimization in Eq. (12) shown via the
phase shifts and inelasticity. In the center, we plot the energy
spectra used to constrain the amplitude (in black, as in Fig. 5)
along with finite-volume spectra corresponding to the para-
metrization (in orange). The empty circles on the energy axis
denote threshold energies from Table III.

physical
scattering

FIG. 15. Sheet structure around the KK̄ threshold expressed in
terms of the KK̄ cm momentum. Physical scattering with
increasing energy follows the blue line down the imaginary axis
(subthreshold) and then along the real axis (above threshold). The
lower half-plane of sheet II is seen to be closest well below KK̄
threshold and the lower half-plane of sheet III is closest well
above threshold. For energies close to the threshold, the upper
half-plane of sheet IV is also nearby. Four different possible
resonant pole structures are also shown: (squares) “Breit-
Wigner”–like (Flatté) pair of poles for subthreshold narrow
resonance—πη elastic amplitude shows a bump below threshold
and a weak threshold cusp; (circles) Breit-Wigner–like (Flatté)
pair of poles for narrow resonance above threshold—amplitudes
show the canonical bump in each coupled-channel; (triangle)
single nearby pole on sheet II—leads to an asymmetric bump/
strong cusp at KK̄ threshold and a rapid turn-on of amplitudes
leading to the KK̄ final state; (star) single nearby pole on sheet
IV—leads to an asymmetric bump/strong cusp at KK̄ threshold
and a rapid turn-on of amplitudes leading to the KK̄ final state.
The upper half-plane of sheet IV is continuously connected to the
lower half-plane of sheet II above threshold, so the triangle and
star should be considered to be close to each other, and it should
be no surprise that their amplitudes are similar.

10Poles always appear in complex-conjugate pairs in
ffiffiffiffiffi
s0

p
andffiffiffiffiffi

s0
p ⋆ and their residues are also related by complex conjugation.
Usually only one pole of the pair is in close proximity to physical
scattering.
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half-plane of sheet II, the lower half-plane of sheet III and
the upper half-plane of sheet IV (or using a convenient
shorthand, IIl; IIIl; IVu). This can be more easily visualized
by using kKK̄ as a “uniformizing variable” [52,81]—this
unfolds the multisheeted s-plane into a single sheet, with
physical scattering running first down the imaginary axis
towards the origin, corresponding to the KK̄ threshold, and
then out to positive real values. Figure 15 illustrates the
sheet proximities described above in terms of the complex-
kKK̄ plane.
An illustration of the kind of unphysical sheet pole

structures that can arise for a single isolated resonance is
provided by the two-channel Breit-Wigner extension of
Flatté, Eq. (7). If we consider the case of a narrow S-wave
resonance, above the kinematic thresholds for each chan-
nel, we find poles in IIl and IIIl (or in IVu and IIIl for certain
relative channel couplings, g2=g1), which in the case of
dominance of coupling to one channel over the other, lie at
approximately mirror positions in the complex-kKK̄ plane:
kIIKK̄ ≈ −kIIIKK̄ , as shown in Fig. 15 (circles). The IIIl pole is
very close to physical scattering when Ecm ≈mR and this
leads to the narrow bumps and rapid phase motion of the
amplitudes that we typically associate with resonances.
Also shown in Fig. 15 is the case of a sub-KK̄-threshold
resonance (squares) described by a pair of poles—this case
can be described by the Flatté form.
While this “pair of poles” situation corresponds to our

canonical view of a coupled-channel hadron resonance,
other distributions of poles are not forbidden by any general
principle. Another possibility is to have a nearby pole on
only one unphysical sheet [16,81,82]—cases of this type
are illustrated in Fig. 15 by the star and the triangle, where
we see that they can lead to a structure at threshold that is
strongly asymmetric. We will discuss the physical inter-
pretation of such a pole distribution in Sec. V.

A. S-wave poles from K-matrix analysis

We examined the singularity structure of the amplitudes
presented in Table IV, and the pole positions for all
descriptions with χ2=Ndof < 1.5 are presented in Fig. 16.
In every case we find a pole on IVu located rather close to
the real axis slightly above the KK̄ threshold (red points).
The distribution of other nearby poles depends strongly
upon the parametrization—typically we find a IIIl pole
located significantly further into the complex plane (blue
points), and we see that its position varies significantly with
parametrization choice. There is also usually a pole on the
real energy axis (green points), that while it may appear to
be close to πη threshold, is actually on sheet III or IV and, as
can be observed in the lower panel of Fig. 16, is not close to
πη threshold.
The lower panel of Fig. 16 makes it clear that the well-

determined IVu pole is actually very close to IIl, these two
sheets being continuously connected. It is also clear that a
pole at this position is likely to strongly influence the

behavior of amplitudes close to theKK̄ threshold, while the
poorly determined pole on sheet III is most likely influ-
encing the higher energy behavior of the amplitudes.
We also determine the residues of each pole, and

factorize these into couplings ci—these are shown in
Figs. 17 (for the IVu pole) and 18 (for the IIIl pole). For
the well-determined IVu pole we find a slightly larger
coupling to the KK̄ channel than to πη, with the πη
coupling being close to purely real in all of the fits, while
the KK̄ coupling has a phase of roughly −30°. The residues
of the sheet III poles are statistically poorly determined, and
show significant scatter over choice of parametrization. The
residues of the real-axis poles show significant scatter.
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FIG. 16. Poles found for each K-matrix parametrization
presented in Table IV having χ2=Ndof < 1.5. Red points are
poles found on sheet IV, blue points are poles found on sheet III,
and green points are poles found on the real energy axis, but on
either sheet III or sheet IV depending upon the parametrization.
The thick black points indicate the parametrization described
by Eq. (6).
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The pole content of the six parameter pole plus constant
K-matrix parametrization that we presented in Eq. (6) is
highlighted in bold in Figs. 16–18. In this case the nearby
poles are located at

at
ffiffiffiffiffi
s0

p jIV ¼ ð0.2075� 0.0042Þ þ i
2
ð0.0108� 0.0043Þ

at
ffiffiffiffiffi
s0

p jIII ¼ ð0.2406� 0.0059Þ − i
2
ð0.072� 0.053Þ

at
ffiffiffiffiffi
s0

p jIV ¼ ð0.1702� 0.0110Þ;

and the corresponding factorized residues of these poles in
each channel are found to be

Sheet atcπη atcKK̄

IV 0.119ð15Þe−iπ0.028ð48Þ 0.158ð19Þeþiπ0.136ð51Þ
III 0.095ð35Þeþiπ0.18ð10Þ 0.130ð43Þeþiπ0.173ð83Þ
IV 0.13(25) 0.13(20)

and there are also poles on IVl and IIIu located at the
complex conjugate positions, with factorized residues that
are the complex conjugates of those above.
Taking a conservative average over many parametriza-

tions we find for the sheet IVu pole

at
ffiffiffiffiffi
s0

p ¼ ð0.2077� 0.0047Þ þ i
2
ð0.0086� 0.0059Þ

atcπη ¼ ð0.115� 0.023Þe−iπð0.032�0.098Þ

atcKK̄ ¼ ð0.149� 0.030Þeþiπð0.122�0.073Þ:

In the three-channel (πη, KK̄, πη0) analysis discussed in
Sec. III C we find a very similar pole position and residues
in good agreement, for both signs of kπη0 . We are also able
to determine cπη0 even though this channel is kinematically
closed at the position of the real part of the pole, finding

jatcπη0 j≃ 0.1 and phases consistent with zero but with
significant uncertainty.

B. Jost functions

The K-matrix formalism we used to describe the finite-
volume spectra in Sec. III has the distinct advantage of
ensuring that unitarity is automatically satisfied at all the
real energies we consider. On the other hand, the pole
content of the resulting t-matrix is obscure—we do not
know precisely how many nearby poles the amplitude will
feature until we have determined the particular parameters
needed to describe the spectra. It would be convenient to
have a parametrization of the t-matrix in which we can
manually specify the number of poles and on which
unphysical sheets they appear. We describe here an
approach which attempts, in a limited way, to do that.
What we will refer to as the Jost function parametrization

[50–53,81] leverages relations for the two-channel
S-matrix, when written as a function of the cm momenta
for each channel, which allow the four sheets of the
complex energy plane to be unfolded into a single sheet.
The elements of the S-matrix can be written in terms of an
auxiliary function of the two complex momenta, Jðk1; k2Þ,
the Jost function,

S11 ¼
Jð−k1; k2Þ
Jðk1; k2Þ

S22 ¼
Jðk1;−k2Þ
Jðk1; k2Þ

detS ¼ Jð−k1;−k2Þ
Jðk1; k2Þ

:

Through a simple mapping [53] of ðk1; k2Þ, we can write
these as functions of a variable ω,

ω ¼ k1 þ k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 − k22

p ; ω−1 ¼ k1 − k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 − k22

p ;
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FIG. 17. The channel couplings extracted from the residues of
the sheet IVu pole. Shown in red is cπη and green is cKK̄ . We
highlight those from the case of Eq. (6) in bold.
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and by making the identifications

Jðk1; k2Þ → DðωÞ
Jð−k1; k2Þ → Dð−ω−1Þ
Jðk1;−k2Þ → Dðω−1Þ

Jð−k1;−k2Þ → Dð−ωÞ;

we find that the S-matrix may be written

S11 ¼
Dð−ω−1Þ
DðωÞ ;

S22 ¼
Dðω−1Þ
DðωÞ ;

detS ¼ Dð−ωÞ
DðωÞ : ð13Þ

There are restrictions on the function DðωÞ, notably
DðωÞ ¼ D⋆ð−ω⋆Þ which follows from the Hermitian
analyticity of the scattering amplitude. Following
Ref. [53] we might write a relatively simple parametrization
of DðωÞ as a product of zeros:

DðωÞ ¼ 1

ω2

�
1 −

ω

ωp1

��
1þ ω

ω⋆
p1

��
1 −

ω

ωp2

��
1þ ω

ω⋆
p2

�
:

ð14Þ

The zeros at ω ¼ ωpi
and ω ¼ −ω⋆

pi
become poles of the

S-matrix when used in Eq. (13). The utility of this form is
that these poles are input parameters whose real and
imaginary parts can be manipulated as desired. A compli-
cation is that not all aspects of unitarity are certain to be
obeyed by this amplitude—while jS11j ¼ jS22j automati-
cally, jS11j ≤ 1 is not guaranteed, and for certain parameter

choices may be violated. In practice we must always verify
that this constraint is satisfied before we can accept an
amplitude of this type.
For orientation we plot the complex-ω plane in Fig. 19.

Real energies below πη threshold appear on the imaginary
ω axis above ω ¼ i. As energy increases above the πη
threshold physical scattering follows the unit circle
clockwise to ω ¼ 1 where KK̄ threshold opens, and from
there it moves along the positive ω axis with increasing
energy. In this application we do not consider energies
above atEcm ¼ 0.233 where the πη0 channel opens. The
sheets are labeled using the usual numbering scheme with a
u suffix denoting the upper half of the complex-s plane and
l denoting the lower half-plane.
Attempting to describe our standard set of 47 energy

levels using the parametrization DðωÞ in Eq. (14) with the
real and imaginary parts of the poles as free parameters we
find a best fit given by

Reωp1
¼ ð0.443� 0.016� 0.006Þ

Imωp1
¼ ð−0.044� 0.014� 0.003Þ

Reωp2
¼ ð0.00� 2.22� 0.02Þ

Imωp2
¼ ð−3.83� 0.20� 0.08Þ

2
6664
1 −0.35 −0.01 0.47

1 0.01 −0.02
1 0.10

1

3
7775

χ2=Ndof ¼
58.9
47 − 4

¼ 1.37; ð15Þ

where the nearby poles in ω are shown in Fig. 19. The
resulting amplitude for real energies is qualitatively similar
to our K-matrix parametrizations, as can be seen in Fig. 20
where it is compared to the six parameter K-matrix pole
plus constant fit given by Eq. (6). ωp1 corresponds to a pole
on sheet IV in the same location found for all successful

K-matrix parametrizations—Fig. 21 shows these poles in
the complex-kKK̄ plane.
We can explore the sensitivity of the description

of the finite-volume spectrum to the precise location of
the “second” pole by scanning the χ2 as a function of
that pole’s position. If we fix the first pole parameter

1

1 2 3-1

-1

FIG. 19. Complex ω plane. Physical scattering occurs along the
blue line. The Riemann sheet structure in s is shown. Shown in
red are the poles corresponding to ωp1 in Eq. (15).
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at the position found in the two pole fit above,
ωp1

¼ 0.443 − 0.044i and scan the second pole over
positions in sheet III, we find the result presented in
Fig. 22. We see clearly that a second pole close to the
RekKK̄ axis is not preferred.11

Our well-determined pole is on the upper half-plane of
sheet IV, but is very close to the lower half-plane of sheet II.
Within the Jost parametrization, we find qualitatively
similar results, but with a larger total χ2, if we fix ωp1

so that the pole is shifted just onto sheet II.
These simple applications of the Jost parametrization

appear to confirm our observation from K-matrix studies,
that the finite-volume spectrum requires the presence
of a nearby pole on sheet IV (but very close to sheet II),
while the presence of other nearby poles is not strongly
suggested.

C. D-wave scattering

The D-wave scattering amplitudes discussed in
Sec. III D 2 all contain a narrow resonance with strong
couplings to both πη and KK̄. We reiterate that these
amplitudes were obtained from spectra without πππ-like
operator constructions and no attempts were made to
incorporate three-body effects in the finite-volume formal-
ism (efforts in this direction [78–80,83–87] are not yet
applicable in our situation). Well-determined poles were
obtained on sheets III and II, and these are illustrated in
Fig. 23 where we observe that this resonance appears to be
of the “canonical” coupled-channel type having a mirror-
pole pair with the sheet III pole dominating the amplitude at
real values of energy close to the pole position (although
recall that we are ignoring any complications from the
presence of other two-body and three-body channels in this
first analysis).

Analyzing the K-matrix with six parameters shown in
Eq. (12) we find poles at

at
ffiffiffiffiffi
s0

p jIIl ¼ 0.26576ð77Þ − i
2
0.00108ð45Þ

at
ffiffiffiffiffi
s0

p jIIIl ¼ 0.26577ð77Þ − i
2
0.00359ð48Þ;

and the corresponding factorized residues of these poles in
each channel are found to be

Sheet atcπη atcKK̄

IIl 0.0286ð23Þe−iπ0.0108ð43Þ 0.0221ð24Þe−iπ0.0077ð75Þ
IIIl 0.0287ð23Þe−iπ0.0098ð46Þ 0.0221ð24Þe−iπ0.0053ð76Þ

V. INTERPRETATION AND SUMMARY

All parametrizations of the S-wave t-matrix that we
found capable of describing the finite-volume spectrum
share the same essential features: a strong cusplike
enhancement in πη → πη at the KK̄ threshold coupled
with a rapid turn-on of amplitudes leading to the KK̄ final
state. This is illustrated in Fig. 24 for a typical successful
parametrization. The strength of these effects likely indi-
cates a resonance close to the threshold that is strongly
coupled to both channels, but clearly one that does not
manifest itself in the canonical way as a simple symmetrical
bump in the amplitudes.
Upon examining the singularity structure of our para-

metrized amplitudes we found in all cases a statistically
well-determined pole near to the KK̄ threshold, located on
sheet IV, but very close to the boundary with sheet II.
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FIG. 21. Complex kKK̄ plane: Jost amplitude poles, Eq. (15)
(black points), compared with those of the K-matrix pole plus
constant form of Eq. (6) (grey points).
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FIG. 20. The Jost amplitude, Eq. (15) (solid line), compared with
the K-matrix pole plus constant form of Eq. (6) (dashed line).

11Values very close to the real axis lead to amplitudes which
violate the jS11j ≤ 1 unitarity condition.
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Expressed in physical units (using the scale setting pro-
cedure described in Sec. II) this pole lies at

ffiffiffiffiffi
s0

p ¼
�
ð1177� 27Þ þ i

2
ð49� 33Þ

�
MeV;

and has a residue which factorizes into couplings

jcπηj ¼ 652ð130Þ MeV

jcKK̄j ¼ 844ð170Þ MeV;

indicating comparable coupling to each channel,
jcKK̄=cπηj ¼ 1.30ð37Þ.
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FIG. 23. The D-wave poles plotted in the complex kKK̄ plane.
We see a pair of poles with kII ≃ −kIII as is expected for a narrow
resonance far above threshold (see e.g. Fig. 15).
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FIG. 22. Left: Jost amplitude poles, Eq. (15) (black points) and the lines in kKK̄ scanned over with a fixed sheet IV pole. Right: The χ2
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FIG. 24. S-wave coupled-channel πη, KK̄ scattering amplitudes using pole plus constant K-matrix parametrization. Left: phase shifts
and inelasticity. Right: amplitude magnitudes. Open circles on axis indicate the positions of the πη, KK̄ and πη0 thresholds. Lattice QCD
energy levels constraining the amplitude are shown as dots below the figures (increasing lattice volume from bottom to top). In this
calculation the stable meson masses are mπ ¼ 391 MeV, mK ¼ 549 MeV, mη ¼ 587 MeV and m0

η ¼ 929 MeV.
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Many parametrizations indicated another pole, on the
real energy axis at energy values close to mπ þmη, but
actually lying on sheet III or IV and hence far from the
physical πη threshold. The position of this pole changed
with parametrization choice and was typically not sta-
tistically well determined—its influence on the amplitude
behavior near KK̄ threshold is not completely clear. A
further pole on sheet III lying far from the KK̄ threshold
may be present, but it showed significant sensitivity to
parametrization choice and it is unlikely that it is relevant to
the threshold activity. The sheet IV pole and the corre-
sponding behavior around the KK̄ threshold is the robust
result of this analysis.
A canonical two channel resonance, as described for

example by the Flatté form, features a pair of poles,
located either on sheets II and III, or sheets IV and III,
depending upon the relative size of the couplings to the
two channels. The alternative case observed in this
analysis, featuring dominance of a single pole near a
kinematic threshold has previously been discussed
[81,82] as a possible signal for a state which is not
one bound tightly by short-range (“confining”) forces,
but rather one which binds through the long-range
interaction between a pair of mesons, i.e. a “hadron
molecule.” The resonance pole we have determined is
only 79(27) MeV above the KK̄ threshold, and we find it
to have a large coupling to the KK̄ channel, and as such
we expect KK̄ components to play a significant role in the
wave function of the state.
Since this is a calculation with artificially heavy u, d

quarks, direct comparison to experiment is not justified, but
we note that most analyses of experimental data (see
Ref. [16] for a summary in the context of the Flatté
amplitude) suggest that the a0ð980Þ appears with a phase
shift δπη which rises with increasing energy, and a corre-
sponding pole lying slightly above KK̄ threshold on
sheet II. This superficially differs from our result, but as
discussed in Appendix A, relatively small changes in the
coupling to the KK̄ channel or to the resonance “bare-
mass” parameter would lead to the sheet IV pole migrating
to sheet II12 and a sudden “flip” to a rising phase shift δπη.
This evolution may indicate a possible destiny for this state
as the quark mass is reduced toward the physical value,
ending in agreement with the experimental data. Explicit
lattice QCD calculations at lower quark mass are warranted
to explore this.
If we restrict our attention to the behavior of the πη → πη

S-wave amplitude below KK̄ threshold, we observe that an
effective range parametrization with a scattering length
a0 ¼ ð0.09� 0.06Þ fm and zero effective range can well
describe the finite volume spectra. The scattering length

extracted from the low-energy behavior of the coupled-
channel K-matrix amplitudes, a0 ¼ ð0.02� 0.04Þ fm, is
compatible with this. These values prove to be much
smaller than those we found for πK scattering in the
I ¼ 1=2 channel at the same value of the u, d quark mass
in Refs. [48,49], aπK0 ¼ ð0.65� 0.07Þ fm. Although our
quarks are far from having exact chiral symmetry, this
observation is in line with expectations of chiral effective
theory [18,88,89], and may reflect the absence of a
(κ, σ)-like state in the πη channel.
Beyond S-wave scattering, wewere able to infer from the

spectrum in the T−
1 irrep that there is negligible P-wave πη

scattering at low energy. This was expected as this is an
exotic JPC ¼ 1−þ channel in which qq̄ mesons cannot
appear—hybrid mesons are indicated at much higher
energy [57].
In D-wave we extracted coupled πη; KK̄ amplitudes

under the assumption that πππ and other three-meson
channels remain irrelevant at the quark masses considered
here. We found our spectrum could be well described
by an amplitude featuring a very narrow resonance
coupled to both πη and KK̄ whose nearby sheet III pole
is located at

ffiffiffiffiffi
s0

p ¼ ð1506ð4Þ − i
2
20ð3ÞÞ MeV with cou-

plings jcπηj ¼ 162ð14Þ MeV, jcKK̄j ¼ 125ð14Þ MeV.

VI. SUMMARY

We have presented the first extraction of a strongly
coupled-channel meson-meson scattering system in lattice
QCD finding an S-wave resonance which may be asso-
ciated with the experimental a0ð980Þ state. The resonance
lies in a two coupled-channel (πη, KK̄) region, and we also
extended the analysis to higher energy with a limited first
consideration of three-channel scattering (πη, KK̄, πη0). In
order to proceed to still higher energies a formalism is
required to extract scattering amplitudes featuring three-
meson channels, and significant progress is being made in
this direction [78–80,83–87].
In the near future we will apply similar methods to those

considered here to the I ¼ 0 ππ; KK̄… coupled system in
which we expect to see physics corresponding to the low-
lying scalar mesons, σ and f0ð980Þ. Once this is done we
will have a first survey of the I ¼ 0; 1

2
; 1 scalar meson

sector from first-principles QCD computation. Exploring
the structure of these states, including the possible role of
hadronic molecule components, will then be a priority, and
possible tools at our disposal include coupling to external
currents in order to determine “form-factors” of the
resonances. It has recently been shown that finite-volume
lattice QCD calculations can give access to such quantities
[90]. The behavior of the states with varying quark mass
will also inform our descriptions, in particular their relative
proximity to the KK̄ threshold.
The extraction of the first strongly coupled-channel

meson resonance is a major milestone in our journey

12and see Ref. [16] who find the same evolution using a Flatté
form when the resonance bare-mass is above threshold and the
coupling to KK̄ is large.
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towards our goal of studying highly excited hadron
resonances in first-principles QCD calculations.
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APPENDIX A: AMPLITUDES, PHASE SHIFTS
AND POLES IN A POLE PLUS

CONSTANT K-MATRIX

In this Appendix we will explore parameter variations in
a pole plus constant K-matrix and the corresponding
changes to the amplitudes. Notably we will find that while
the magnitudes of the amplitudes evolve with changing
parameter values rather smoothly, the phase shifts can
undergo discontinuous change, and these changes are
correlated with poles moving between Riemann sheets.
Similar evolutions of pole position have been reported
previously in Refs. [11,16] where a Flatté form is used.
Let us consider a relatively simple parametrization of the

two-channel t-matrix,

t−1ij ¼ K−1
ij − iρiδij; ðA1Þ

with

K ¼ 1

m2 − s

� g2πη gπηgKK̄

gπηgKK̄ g2KK̄

�
þ
�
0 γ

γ 0

�
; ðA2Þ

where we are choosing to use the ordinary phase space
(rather than the Chew-Mandelstam form) for simplicity.
We note that this parametrization is able to successfully
describe our lattice QCD spectra with χ2=Ndof¼ 61.9

47−4¼1.44,
with parameter central values: gπη ¼ 0.127, gKK̄ ¼ 0.178,
m ¼ 0.2221 and γ ¼ 0.570. We will explore the behavior
of the amplitude as we vary the value of gKK̄ or m.
Figure 25 shows the amplitude evolution with varying

gKK̄ considering five values in equal steps from 0.178 down
to 0.110. Note that between gKK̄ ¼ 0.161 and 0.144, the
phase-shift graph, (e), “flips” from one in which δKK̄
(green) has the rising behavior to one where it is δπη
(red) which rises. However this change in character is not
associated with any discontinuous change in the magnitude
of the amplitudes, ρiρjjtijj2 (d). We observe in (a), (b), and
(c), that this transition in phase-shift form corresponds to
the nearby pole moving smoothly from sheet IV to sheet II.
Other behavior visible in Fig. 25 is that the real axis pole

on sheet III moves further away as gKK̄ is reduced while the
off-axis pole on sheet III moves closer to physical
scattering.
Figure 26 shows the amplitude evolution with varying m

considering five values in equal steps from 0.2221 down to
0.1883. Again we observe a flip in the character of the
phase shifts, while the magnitudes of the amplitudes evolve
smoothly, and we can again trace this behavior to the
transition of a nearby pole from sheet IV to sheet II. Note
also that there is more pole motion between sheets in this
case with the pole on the real energy axis moving from
sheet III to sheet IV as m is reduced—the off-axis sheet III
pole evolves rather slowly.
The right top panel shows gradual adjustment from a

“cusp”-like πη → πη amplitude, which we have found
describes the lattice QCD spectra obtained in this docu-
ment, to one which is more of an asymmetric bump near
KK̄ threshold as m is reduced. This observation is
interesting, since one possible evolution of this system
with decreasing quark mass would be for the resonance
mass to decrease faster than the energy of the KK̄ thresh-
old, which this in some ways resembles.
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FIG. 25. Amplitude of Eq. (A2) for varying gKK̄ . Pole positions in (a) complex
ffiffiffi
s

p
plane, (b) complex kKK̄ plane and (c) complex ω

plane. Poles in green on sheet II, poles in blue on sheet III and poles in orange on sheet IV. (d) Amplitude magnitudes, ρ2πηjtπη;πηj2 (red),
ρπηρKK̄ jtπη;KK̄j2 (orange), ρ2KK̄jtKK̄;KK̄j2 (green). (e) Phase shifts (δπη in red and δKK̄ in green) and inelasticity (orange).
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APPENDIX B: OPERATOR TABLES

In this Appendix we summarize the operator bases that
were used to construct matrices of correlation functions,
from which the finite volume spectra used throughout this

study were obtained. Table V contains the operators used in
irreps that contain subductions of S-wave and higher partial
waves, while Table VI shows the operators used in irreps
whose lowest partial wave is either P or D-wave.
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FIG. 26. As Fig. 25 but for varying parameter, m.
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TABLE V. The operator bases used in each lattice irrep in this calculation. For each irrep we list the “πη-like,” “KK̄-like” and “πη0-
like” operators that were used as well as the number of single-meson-like operators. We use a notation which indicates the momentum
(in units of 2π=L) of the pseudoscalar meson operators, recalling that the directions of momentum are summed over with generalized
Clebsch-Gordan weights to ensure the operator lies in the stated irrep [45,68].

½000�Aþ
1

½100�A1 ½110�A1

163 203 243 163 203 243 163 203 243

π000η000 π000η000 π000η000 π000η100 π000η100 π000η100 π000η110 π000η110 π000η110
π100η−100 π100η−100 π100η−100 π100η000 π100η000 π100η000 π100η010 π100η010 π100η010

π110η−1−10 π110η−1−10 π001η10−1 π001η10−1 π110η000 π110η000 π110η000
π101η00−1 π101η00−1 π001η11−1 π001η11−1 π001η11−1

π−100η200 π101η01−1
π111η00−1

K000K̄000 K000K̄000 K000K̄000 K100K̄000 K100K̄000 K100K̄000 K000K̄110 K000K̄110 K000K̄110

K100K̄−100 K100K̄100 K100K̄100 K101K̄00−1 K101K̄00−1 K100K̄010 K100K̄010 K100K̄010

K110K̄−1−10 K101K̄01−1

π000η
0
000 π000η

0
000 π000η

0
000 π000η

0
100 π000η

0
100 π000η

0
110 π000η

0
110 π000η

0
110

π100η
0
−100 π100η

0
−100 π100η

0
000 π100η

0
000 π100η

0
010 π100η

0
010 π100η

0
010

ψ̄Γψ × 13 ψ̄Γψ × 4 ψ̄Γψ × 13 ψ̄Γψ × 9 ψ̄Γψ × 8 ψ̄Γψ × 10 ψ̄Γψ × 4 ψ̄Γψ × 18 ψ̄Γψ × 6

½111�A1 ½200�A1

163 203 243 163 203 243

π000η111 π000η111 π000η111 π000η200 π000η200 π000η200
π100η011 π100η011 π100η011 π100η100 π100η100 π100η100
π110η001 π110η001 π110η001 π200η000 π200η000 π200η000
π111η000 π111η000 π111η000 π101η10−1 π101η10−1

π111η1−1−1

K111K̄000 K111K̄000 K111K̄000 K000K̄200 K200K̄200 K000K̄200

K110K̄001 K110K̄001 K110K̄001 K100K̄100 K100K̄100 K100K̄100

K101K̄10−1 K101K̄10−1
π000η

0
111 π000η

0
200 π000η

0
200 π000η

0
200

π100η
0
011 π100η

0
100 π100η

0
100

π200η
0
000

ψ̄Γψ × 5 ψ̄Γψ × 6 ψ̄Γψ × 5 ψ̄Γψ × 7 ψ̄Γψ × 5 ψ̄Γψ × 9

TABLE VI. As above but for irreps not featuring S-wave subductions.

½000�T−
1 ½000�Eþ ½000�Tþ

2

163 203 243 163 203 243 163 203 243

π100η−100 π100η−100 π100η−100 π100η−100 π100η−100 π100η−100
π110η−1−10 π110η−1−10 π110η−1−10 π110η−1−10 π110η−1−10 π110η−1−10 π110η−1−10 π110η−1−10

K100K̄−100 K100K̄−100 K100K̄−100 K110K̄−1−10
π100η

0
−100 π100η

0
−100 π100η

0
−100 π100η

0
−100

ψ̄Γψ × 4 ψ̄Γψ × 4 ψ̄Γψ × 13 ψ̄Γψ × 17 ψ̄Γψ × 17 ψ̄Γψ × 12 ψ̄Γψ × 22 ψ̄Γψ × 6 ψ̄Γψ × 5

½100�B1 ½100�B2

163 203 243 163 203 243

π010η1−10 π010η1−10 π010η1−10 π011η1−1−1
π110η0−10 π110η0−10 π110η0−10 π111η0−1−1

K010K̄1−10 K010K̄1−10 K010K̄1−10 K111K̄0−1−1

ψ̄Γψ × 11 ψ̄Γψ × 11 ψ̄Γψ × 7 ψ̄Γψ × 11 ψ̄Γψ × 11 ψ̄Γψ × 10
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