
Neutron and proton electric dipole moments from Nf = 2þ 1 domain-wall
fermion lattice QCD

Eigo Shintani,1,2,* Thomas Blum,3,2 Taku Izubuchi,2,4 and Amarjit Soni4

(RBC and UKQCD collaborations)

1RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan
2RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

3Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, USA
4High Energy Theory Group, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 8 December 2015; published 5 May 2016)

We present a lattice calculation of the neutron and proton electric dipole moments (EDMs) with
Nf ¼ 2þ 1 flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from
three-point functions at the next-to-leading order in the θ vacuum of QCD. In this computation, we use
pion masses of 0.33 and 0.42 GeVand 2.7 fm3 lattices with Iwasaki gauge action, and a 0.17 GeV pion and
a 4.6 fm3 lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations.
The all-mode averaging technique enables an efficient and high statistics calculation. Chiral behavior of
lattice EDMs is discussed in the context of baryon chiral perturbation theory. In addition, we also show
numerical evidence on the relationship of three- and two-point correlation functions with the local
topological charge distribution.
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I. INTRODUCTION

Electric dipole moments (EDMs) are sensitive observ-
ables of the CP-violating (CPV) effects of the fundamental
interactions described by the standard model (SM) and
theories beyond the SM (BSM). The measurement of the
neutron EDM (nEDM) has been attempted in experiments
since the 1950s; however, no evidence for the nEDM has
been found, and the latest experimental upper bound is tiny,
DN ≤ 2.9 × 10−26 e · cm (90% C.L.) [1,2]. From the theo-
retical point of view, the contribution to the nEDM from the
CPV phase in the CKM mixing matrix is extremely small,
since the first nonvanishing contribution appears at three
loops, and DN ∼ 10−31 e · cm [3–6], more than 5 orders of
magnitude below the experimental bound. On the other
hand, since the QCD Lagrangian contains aCP-odd θ term,
the CPV effect from the strong interaction may dominate,
even though its contribution appears to be unnaturally
small, DN=θ̄ ∼ 10−17 e · cm [7–19]. This is known as the
strong CP problem.
For searches of new physics due to BSM scenarios,

the nEDM is just about the most important observable,
since naturalness arguments strongly suggest that BSM
interactions will not be aligned with the usual quark mass
eigenstates [20]. As a consequence, in most BSM scenar-
ios, there will be additional CP-odd phases; thus the
nEDM is a unique way to search for the effect of this
new phase(s). Extensions of the SM can generate a nEDM

at one-loop order in the new interactions—for example,
left-right symmetric models [21], extra-Higgs models,
warped models of flavor [20], and supersymmetric
(SUSY) models [22–27]. Indeed, some of the most popular
models, e.g. SUSY, have the problem that the expected size
of the nEDM value is bigger than the existing bounds [28].
In fact, in warped models which are considered extremely
attractive for a geometric understanding of flavors, the
nEDM naturally arises around the same level as the current
experimental bound, so there is a mild tension by factors of
a few. This means that if the nEDM is not discovered after
another order-of-magnitude improvement is made, then
that will cause a serious constraint on the warped models of
flavor. To extract BSM effects arising in an EDM, both
high-energy particle contributions and low-energy hadronic
effects have to be taken into account. Although there have
been several estimates of BSM contributions to EDMs,
for instance from the quark electric dipole, chromoelectric
dipole, and Weinberg operators, based on effective models,
baryon chiral perturbation theory (BChPT) and sum rules
[12–19,29–31], it is necessary to evaluate the unknown
low-energy constants appearing in such models. On the
other hand, computations from first principles using lattice
QCD are also possible. A recent attempt to estimate the
quark EDM contribution is given in Refs. [32,33].
This paper presents a first step in a feasibility study of

the nonperturbative computation of nucleon EDMs. The
starting point is to perform the path integral from an
ab initio calculation including the θ term. The renormaliz-
ability of the θ term allows a Monte Carlo integration*shintani@riken.jp
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without considering the mixing with lower-dimensional
CP-violating operators. It is also an appropriate test for the
next step towards inclusion of higher dimensional CP-odd
sources associated with BSM theories. Currently, there are
three strategies for neutron and proton EDM computations
in lattice QCD:
(1) Extraction of the EDM using an external electric

field [34–38].
(2) Direct computation of the EDM form factor, in

which the EDM is given in the limit of zero
momentum transfer [39–41].

(3) Use of imaginary θ and extraction of the EDM as in
strategy (1) or (2) [42–44].

In strategy (1), the neutron and proton EDMs are
evaluated from the energy difference of nucleons with
spin-up and spin-down in a constant external electric field.
In Refs. [36,37], the calculation is carried out with a
Minkowskian electric field, with the signal appearing as a
linear response to the magnitude of the electric field.
However, as shown in Refs. [36,37], possibly large excited
state contamination results due to enhanced temporal
boundary effects of the Minkowskian electric field.
Strategy (2) is a straightforward method in which the

EDM appears as the nonrelativistic limit of the CP-
violating part of the matrix element of the electromagnetic
(EM) current in the ground state of the nucleon. It requires
the subtraction of CP-odd contributions arising from the
mixing of the CP-even and CP-odd nucleon states in the θ
vacuum [39,40]. In this method, the EDM is obtained from
the form factor at zero momentum transfer. This paper
employs this strategy.
In strategies (1) and (2), the θ term in Euclidean space-

time is purely imaginary, while the CP-even part of the
action is real, which leads to a so-called sign problem
for Monte Carlo simulation. To avoid this issue, the idea
of strategy (3) is to employ a purely real action by using an
imaginary value of θ in the generation of gauge field
configurations. This has an advantage of an improved
signal-to-noise ratio over the reweighting method. In
Refs. [42,43], preliminary results indicate relatively small
statistical errors for the nEDM; however, we note that these
results may be affected by lattice artifacts due to chiral
symmetry breaking of Wilson-type fermions. Recently
updated results in Nf ¼ 2þ 1 QCD using strategy (3)
have been presented in Ref. [44] and appear promising.
Figure 11 (see also Ref. [45]) shows the summary plot

of EDM results obtained using strategies (1) and (3) and
Wilson-clover fermions, and strategy (2) using domain-
wall fermions (DWF) which maintain chiral symmetry at
nonzero lattice spacing to a high degree [46]. Older results
suffer from large statistical errors and uncontrolled sys-
tematic errors. To pursue a more reliable estimate of the
neutron and proton EDMs, we adopt strategy (2) and use
DWF. To efficiently reduce statistical errors, we employ
all-mode averaging (AMA) [47–49].

This paper is organized as follows: In Sec. II we
introduce notation and give formulas used to extract the
CP-even EM and CP-odd EDM form factors for the
neutron and proton from correlation functions computed
in lattice QCD. In Sec. III we first describe the lattice setup,
including AMA parameters, and then give numerical
results for the EM and EDM form factors and subsequent
neutron and proton EDMs. We discuss our lattice QCD
result in the context of phenomenological estimates in
Sec. IV and present an idea to further reduce statistical
errors related to reweighting in Sec. V. Finally, we
summarize our study in Sec. VI.

II. MEASUREMENT OF EDM FORM FACTOR

A. Extraction of EDM form factor

The matrix element of the EM current is parametrized
with CP-even and CP-odd form factors:

hNð~pf; sfÞjVEM
μ jNð~pi; siÞiθ

¼ ūθNð~pf; sfÞ
�
F1ðq2Þγμ þ

iF2ðq2Þ
2mN

½γμ; γν�
2

qν

þ Fθ
3ðq2Þ
2mN

γ5½γμ; γν�
2

qν

�
uθNð~pi; siÞ; ð1Þ

where F1 and F2 are the usual CP-even EM form factors,
and Fθ

3 ¼ F3θ þOðθ3Þ is the CP-odd EDM form factor.
Here we focus on the electromagnetic interaction with
quarks inside the nucleon in the θ vacuum, so hiθ represents
the path integral with the θ term. uθN denotes the nucleon
spinor function depending on θ. Each form factor is
extracted order by order in θ from the expanded three-
point function and Eq. (1) as shown below (also see
Refs. [39,40] for more detail). Note that momentum
transfer q ¼ pf − pi is used in the spacelike region.
With the QCD action SQCD þ iθQ, where θ is the

vacuum angle, and Q ¼ R
G ~G=64π2 is the topological

charge computed from the gluon field strength G, we
represent the three-point function in our lattice study as

Cθ
Vμ
ðtf; ~pf; t; ~q; ti; ~piÞ≡ hηNðtf; ~pfÞVEM

μ ðt; ~qÞη̄Nðti; ~piÞiθ;
ð2Þ

with interpolation operator ηN ¼ ðuTCγ5dÞu for the
proton, ηN ¼ ðdTCγ5uÞd for the neutron, and charge
conjugation matrix C. Here the EM current is defined by
the local bilinear, VEM

μ ¼ ZVq̄γμQcq, with quark charge
matrix Qc ¼ diagð2=3;−1=3;−1=3Þ, as in the continuum
theory, but multiplied by the lattice renormalization factor
ZV . The above equation can be expanded for small θ:
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Cθ
Vμ
ðtf; ~pf; t; ~q; ti; ~piÞ ¼CVμ

ðtf; ~pf; t; ~q; ti; ~piÞ
þ iθCQ

Vμ
ðtf; ~pf; t; ~q; ti; ~piÞþOðθ2Þ;

ð3Þ

with

CVμ
ðtf; ~pf; t; ~q; ti; ~piÞ ¼ hηNðtf; ~pfÞVEM

μ ðt; ~qÞη̄Nðti; ~piÞi;
ð4Þ

CQ
Vμ
ðtf; ~pf; t; ~q; ti; ~piÞ ¼ hηNðtf; ~pfÞVEM

μ ðt; ~qÞη̄Nðti; ~piÞQi:
ð5Þ

All terms on the rhs are computed in the θ ¼ 0 vacuum.
Equation (4) is the leading order in-θ expansion of Cθ

Vμ
,

which is referred to as θ-LO, and Eq. (5) is the next-to-
leading order (θ-NLO). In this paper, we ignore the SUfð3Þ
suppressed disconnected quark diagrams and compute only
the connected part in the three-point function.
In order to extract the nucleon form factor, we use the

following ratio [50]:

Rμðtf; ~pf; t; ~q; ti; ~piÞ

¼ K
CVμ

ðtf; ~pf; t; ~q; ti; ~piÞ
CGðtf − ti; ~pfÞ

×

�
CLðtf − t; ~piÞCGðt − ti; ~pfÞCLðtf − ti; ~pfÞ
CLðtf − t; ~pfÞCGðt − ti; ~piÞCLðtf − ti; ~piÞ

�
1=2

;

ð6Þ

with the three-point function defined in Eqs. (4) and (5),
where

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðENð~pfÞ þmNÞðENð~piÞ þmNÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENð~pfÞENð~piÞ

q : ð7Þ

In Eq. (6), using the nucleon two-point function after parity
projection Pþ

4 ≡ ð1þ γ4Þ=2,

CL=Gðt; ~pÞ ¼ tr½Pþ
4 hηL=Gðt; ~pÞη̄Gð0; ~pÞi�; ð8Þ

with smeared-source/smeared-sink correlation functions
denoted as CGðt; ~pÞ and smeared-source/local-sink func-
tions as CLðt; ~pÞ, it is convenient to extract the matrix
element as shown below. Taking the large time-separation
limit to project onto the nucleon ground states,

Rμðtf; ~pf; t; ~q; ti; ~piÞ
≡ lim

tf−t;t−ti→∞
Rμðtf; ~pf; t; ~q; ti; ~piÞ

¼
X
sf;si

uθNð~pf; sfÞhNð~pf; sfÞjVμjNð~pi; siÞiθūθNð~pi; siÞ

¼ Rμð~pf; ~piÞ þ iθRQ
μ ð~pf; ~piÞ þOðθ2Þ ð9Þ

for the matrix element in Eq. (1).
To describe the rhs of Eq. (9) up to second order in θ, we

replace the spinor sums with the matrix [39]

X
s

uθNð~p; sÞūθNð~p; sÞ ¼ ENγ0 − i~p · ~γ þmNeiαNðθÞγ5 ;

ð10Þ

≈ ENγ0 − i~p · ~γ þmNð1þ iαNðθÞγ5Þ þOðθ2Þ; ð11Þ

where the CP-odd mixing angle αNðθÞ induced by the θ
term appears explicitly. Here αNðθÞ is a Lorentz scalar; thus
it is a function only of the quark mass. To lowest order,
αNðθÞ ≈ θαN is determined by

Cθ
L=Gðt; ~pÞ ¼ tr½γ5hηL=Gðt; ~pÞη̄Gð0; ~pÞiθ�

≃ Z�
L=GZG

2mN

EN
iαNθðe−ENt þ ð−Þbe−ENðLt−tÞÞ

ð12Þ

for large t. ZL=G denotes the normalization factor for
local (L) or Gaussian-smeared (G) sinks. b indicates the
boundary condition in the temporal direction with size Lt;
b ¼ 0 is for periodic boundary conditions, and b ¼ 1
antiperiodic. The N� state, the parity partner of the nucleon
in the θ ¼ 0 vacuum, cannot be projected out by parity
projection under the CP-violating θ vacuum; however,
the N� is exponentially suppressed as e−ðmN�−mNÞt due to
mN� ≫ mN . Note that to the order at which we are working,
the Z’s and E’s are given by the usual lowest order in-θ,
CP-even quantities.
Using (11) and the definitions in Eq. (1), and taking

traces with projectors Pþ
4 and Pþ

5z ≡ ið1þ γ4Þγ5γz=2, the
θ-LO form factors are obtained from (9) by

tr½Pþ
5zRxð0; ~pÞ� ¼

py

EN
Gmðq2Þ; ð13Þ

tr½Pþ
5zRyð0; ~pÞ� ¼ −

px

EN
Gmðq2Þ; ð14Þ

tr½Pþ
4 Rtð0; ~pÞ� ¼

EN þmN

EN
Geðq2Þ; ð15Þ

with Sachs electric and magnetic form factors
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Geðq2Þ ¼ F1ðq2Þ −
q2

4mN
F2ðq2Þ;

Gmðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ: ð16Þ

Hereafter, the momenta are set to ~pf ¼ 0 at sink and
~pi ¼ ~p at source.
Similarly, including the αN term in (11), the form factors

appearing at θ-NLO are obtained from

tr½Pþ
5zR

Q
t ð0; ~pÞ� ¼ i

pz

2EN

�
αN

�
F1ðq2Þþ

3mN þEN

2mN
F2ðq2Þ

�

−
EN þmN

mN
F3ðq2Þ

�
: ð17Þ

The EDM form factors F3 are then determined by sub-
tracting the αNF1;2 terms.

III. NUMERICAL RESULTS

A. Lattice parameters

We use lattices with size Lσ × Lt ¼ 243 × 64, Iwasaki
gauge action with a−1 ¼ 1.7848ð6Þ GeV (gauge coupling
is β ¼ 2.13) [51], and Lσ × Lt ¼ 323 × 64, Iwasaki (I)-
DSDR gauge action with a−1 ¼ 1.3784ð68Þ GeV (gauge
coupling is β ¼ 1.75) [52]. Both lattice scales were
determined from a global, continuum, and chiral fit [53],
including physical point ensembles. The fermions are
domain-wall fermions (DWF), which significantly suppress
the OðaÞ lattice artifact due to chiral symmetry breaking.
The small additive quark mass from residual explicit chiral
symmetry breaking, or residual mass, is amres ¼ 0.0032
and amres ¼ 0.0019 for the Iwasaki 243 and I-DSDR 323

ensembles, respectively. The chiral symmetry of domain-
wall fermions is useful to investigate the chiral behavior
of the EDM without any additive renormalization. We use
the two light quark masses m ¼ 0.005 and m ¼ 0.01,
corresponding to 330 and 420 MeV pion masses for the
Iwasaki 243 ensembles, and m ¼ 0.001 corresponding to a
170 MeV pion mass for the I-DSDR 323 ensemble, in order
to investigate the chiral behavior of the nucleon EDM. To
suppress correlations between measurements on successive

configurations, we use a 10 (unit length) trajectory sepa-
ration for Iwasaki 243 and 16 trajectory separation for
I-DSDR 323. The renormalization factor for the vector
current is ZV ¼ 0.71273ð26Þ for Iwasaki 243 [53], and
ZV ¼ 0.6728ð80Þ for I-DSDR 323 [52]. Both are evaluated
at −mres, i.e., in the chiral limit. Table I shows the lattice
parameters on each gauge ensemble.
We use Gaussian-smeared sources as described in

Ref. [50] with width 0.7 for Iwasaki 243 and 0.6 for I-
DSDR 323 ensembles, and the number of hits of the 3D
Laplacian was 100 and 70, respectively. The three-point
function is constructed with a zero-spatial-momentum
sequential source (~pf ¼ 0) on a fixed time slice for the
sink nucleon operator (see Ref. [54] for details). Fourier-
transforming the position of the EM current injects spatial
momentum ~q ¼ ~p, so ~pi ¼ −~p is removed at the source
by momentum conservation. In this analysis we employ
four different spatial momentum-transfer-squared values,
j~qj2 ¼ 4π2~n2p=L2

σ , ~n2p ¼ 1, 2, 3, 4, and average over all
equivalent values of j~pj2 to improve statistics. The
Euclidean time separation of the sink and source in the
three-point function is set to 12 and 9 time slices for the 243

and 323 ensembles, respectively (both about 1.3 fm). On
Iwasaki 243 we also employ a shorter separation of 8 time
slices to investigate excited state contamination.
The AMA parameters [47–49] are summarized in

Table I. Here translational invariance is employed as the
covariant symmetry to be averaged over. Approximate
quark propagators on each time slice are computed starting
from the initial source locations and shifting once in each
direction by one half of the spatial linear size of the lattice.
In addition, on the I-DSDR 323 ensemble, we repeat the
shift three more times, starting from a different initial
spatial source location. To compute the bias correction, the
exact (to numerical precision) propagators are computed at
the same initial source location(s) on one time slice t=a ¼ 0

for 243 or four time slices t=a ¼ 0, 16, 32, 48 for 323.
Quark propagators are computed using the conjugate

gradient (CG) algorithm and the 4D-even-odd-
preconditioned Dirac operator [47–49]. As shown in
Table I, we compute various numbers of low modes of
the preconditioned Dirac operator to deflate the CG and to

TABLE I. Lattice and AMA parameters. NG refers to the number of AMA measurements per configuration and Nλ to the number
of eigenvectors. Note that the exact propagators are computed on one time slice t=a ¼ 0 for 243 or four time slices t=a ¼ 0, 16, 32, 48
for 323.

Size a−1 (GeV) Vol. (fm3) Ls mass NG Nλ AMA approx mπ (MeV) Configs. tsep (fm)

243 × 64 1.7848(6) 2.73 16 0.005 32 400 jrj < 0.003 330 772 1.32
187 0.9

243 × 64 1.7848(6) 2.73 16 0.01 32 180 jrj < 0.003 420 701 1.32
133 0.9

323 × 64 1.3784(68) 4.63 32 0.001 112 1000 100–125 CG iter. 170 39 1.29
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construct the approximate quark propagators1 using the
implicitly restarted Lanczos algorithm with Chebyshev
polynomial acceleration [55]. To reduce the memory
footprint for the I-DSDR 323 ensemble, a Möbius Dirac

operator [56–58] with Ls ¼ 16 was used for the approxi-
mation instead of the DWF operator with Ls ¼ 32. In
addition, the eigenvectors for this case were computed
in mixed precision and stored in single precision. In
Ref. [49], a detailed discussion of these AMA procedures
and the attendant bias is discussed.

B. Topological charge distribution

We describe the topological charge distribution used in
our analysis of the CP-odd parts of the two- and three-point
functions. Topological charge Q is computed using the
five-loop-improved lattice topological charge [59], which is
free of lattice spacing discretization errors through Oða4Þ.
The gauge fields are smoothed before computingQ by APE
smearing [60,61] with the smearing parameter 0.45 for 60
sweeps as was done in Refs. [51,52]. Figures 1 and 2 show
histograms of the topological charge and its Monte Carlo
time history for the ensembles used here. The shape is
roughly Gaussian for the Iwasaki 243 ensembles, while on
the other hand the I-DSDR 323 ensemble, where measure-
ments were made on only 39 configurations, shows some
deviations (the distribution for the whole ensemble looks
much better [52]). Despite the poor shape, at least the peak
is near Q ¼ 0, and it is roughly symmetric. In fact, the
Shapiro-Wilk test [62] for Q on the I-DSDR 323 ensemble
yieldsW ¼ 0.982 with p value 0.758, enabling us to verify
a normal distribution. We also observe a rather long
autocorrelation time of the topological charge for this
ensemble.
The topological susceptibility obtained on these

ensembles is

χQ ¼ hQ2i=V ¼
8<
:

3.1ð2Þ × 10−4 GeV4 ð330 MeV pion; Iwasaki 243Þ;
4.4ð2Þ × 10−4 GeV4 ð420 MeV pion; Iwasaki 243Þ;
0.9ð2Þ × 10−4 GeV4 ð170 MeV pion; I-DSDR 323Þ;

ð18Þ

and one sees the suppression with quark mass expected
from chiral perturbation theory [63]. χQ can be used to
investigate the relationship between the axial anomaly in
QCD and CP-odd effects at θ-NLO [63,64], for instance
the mixing angle αN or the nucleon EDM. We discuss this
point later.
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FIG. 1. Distribution of topological charge and its Monte Carlo
time history. Pion mass 330 MeV (top) and 420 MeV (bottom)
Iwasaki 243 ensembles are displayed. The solid line represents a
Gaussian distribution function.
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FIG. 2. Same as Fig. 1, but for the I-DSDR 323 ensemble with a
170 MeV pion.

1As detailed in Ref. [49], the approximation defined by a fixed
number of CG iterations, rather than that defined by a fixed
residual vector norm, is a safer choice to prevent possible bias due
to finite precision arithmetic. Calculations on the 243 ensemble,
done in a very early stage of the work, used the approximation with
fixed residual norm. We have not repeated the calculation with a
fixed number of CG iterations, as the resulting statistical error
would certainly overwhelm the potential bias. In Appendix C of
Ref. [49], a new method to completely remove the bias is given.
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C. Nucleon two-point function

The values of the nucleon mass (energy) and mixing
angle αN are obtained by fitting with the nucleon two-point
function using a single exponential function (see Table II).
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FIG. 3. Effective mass of the nucleon (θ-LO, Gaussian-smeared sink) compared to the θ-NLO effective mass using local and Gaussian
sinks. mπ ¼ 330 MeV (left) and 420 MeV (middle) Iwasaki 243, and 170 MeV I-DSDR 323 (right).
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FIG. 4. The operator time-slice dependence of electric and
magnetic Sachs form factors for the proton and neutron with
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330 MeV pion ensemble. Source and sink operators are located
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TABLE II. The nucleon energy and its CP-odd mixing angle
αN . The nucleon energy and αN are given for the Gaussian-
smeared sink operator.

Iwasaki 243 in 0.33 GeV pion

Fit range [6, 12] [5, 9]

~p2 (GeV2) EN (GeV) αN
0.000 1.1738(25) −0.356ð22Þ
0.218 1.2618(27) −0.350ð22Þ
0.437 1.3480(34) −0.348ð22Þ
0.655 1.4321(52) −0.342ð24Þ
0.873 1.5092(90) −0.334ð27Þ

Iwasaki 243 in 0.42 GeV pion

Fit range [7, 13] [5, 9]

~p2 (GeV2) EN (GeV) αN
0.000 1.2641(28) −0.370ð22Þ
0.218 1.3454(31) −0.367ð23Þ
0.437 1.4210(40) −0.366ð23Þ
0.655 1.4931(57) −0.363ð24Þ
0.873 1.5660(93) −0.357ð27Þ

I-DSDR 323 in 0.17 GeV pion

Fit range [5, 10] [5, 9]

~p2 (GeV2) EN (GeV) αN
0.000 0.9746(66) −0.333ð128Þ
0.073 1.0122(69) −0.269ð132Þ
0.147 1.0491(78) −0.409ð230Þ
0.220 1.0827(86) −0.448ð287Þ
0.293 1.1116(114) −0.381ð148Þ
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The nucleon energy and wave function renormalization
ZL=G are obtained from the CP-even part of the nucleon
propagator (θ-LO) using the spin projector Pþ

4 . αN is
obtained from the CP-odd part using Eq. (12). Since
we are only working to θ-NLO, to reduce the statistical
error on αN , the mass in the CP-odd part is fixed to the
θ-LO mass obtained from the CP-even part. The fit ranges
are given in Table II, and were chosen to produce a
χ2=d:o:f: roughly equal to 1, but with errors that are as
small as possible.
As shown in Fig. 3, the effective mass of the θ-NLO

nucleon propagator has a clear plateau, and its value is
consistent with that from the θ-LO nucleon propagator
for both local and smeared sinks. The plateau of the
effective mass plot for θ-NLO seems to start at shorter
time separation than those for θ-LO.2 We also note the

constancy of αN even when the nucleon carries finite
momentum, which is in agreement with the formulation
in Eq. (12). In the following analysis we use αN
computed with the Gaussian sink, evaluated at zero
momentum.

D. Electromagnetic form factor

First, we present the CP-even form factors Ge and Gm
obtained from Eq. (15) and from Eqs. (13) and (14). For the
Iwasaki 243 ensembles, precise results for the (isovector)
form factors, using a multiple-source method, have
appeared previously [50]. Using AMA, we achieve a
further reduction of the statistical errors compared to
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2Unlike θ-LO, there is a mixed contribution, with the CP-even
and CP-odd states in the θ-NLO two-point function having
alternative sign. The excited states may have similar masses and
amplitudes between CP-even and CP-odd, so the plateau-like
behavior of effective mass in the shorter time separation of
θ-NLO implies that cancellation of excited state contamination
occurs.
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previous work. The precise measurement of the EM form
factors is important for the EDM calculation, since linear
combinations of Ge and Gm are needed for the subtraction
terms proportional to αN .
In Figs. 4 and 5 we show the time-slice dependence of

the EM form factors for each momentum and also compare
the results for two different time separations, tsep, between

the nucleon source and sink operators. Suitable nucleon
ground-state form factors can be extracted from the plateau
regions 4 ≤ t=a ≤ 8, as seen in Fig. 4 (left panel), and
from 3 ≤ t=a ≤ 6, in Fig. 5, for the smaller quark mass
I-DSDR ensemble (note that the electric form factor for
the neutron is very small, and should be zero at q2 ¼ 0). In
these regions, excited state contributions are evidently
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suppressed. Although increasing tsep reduces excited state
contamination, the signal-to-noise ratio also decreases
exponentially.
To see whether our value of tsep is large enough, we

compare the form factors computed using two different
values on the 243 ensembles. In the right panel of Fig. 4, one
observes a clear plateau between 3 ≤ t=a ≤ 5 for the smaller

value of tsep, which is in good agreement with the results
shown in the left panel. In Fig. 6, the average values of the
form factors are shown. As expected, in Fig. 6 the values for
different tsep agree within statistical errors, so we conclude
that the excited state contamination is small for the tsep ≈
1.3–1.4 fm source-sink separations used for the observables
in this study. A few-percent precision on the form factors for
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FIG. 9. The neutron EDM form factor F3=2mN in e · fm units, the lowest momentum, for various numbers of configurations and
values of NG. The percentages denote the rates of reduction of statistical errors, defined as the ratio of the statistical error between full
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TABLE III. Fn
3=2mN (e · fm) on Iwasaki 243 ensemble.

m ¼ 0.005 P N

q2 (GeV2) tsep ¼ 1.32 fm tsep ¼ 0.9 fm tsep ¼ 1.32 fm tsep ¼ 0.9 fm

0.210 0.022(17) 0.017(9) −0.040ð13Þ −0.025ð7Þ
0.405 0.025(12) 0.025(7) −0.031ð9Þ −0.027ð5Þ
0.586 0.013(15) 0.028(7) −0.018ð11Þ −0.026ð5Þ
0.760 −0.001ð19Þ 0.010(7) −0.018ð14Þ −0.016ð6Þ

m ¼ 0.01 P N

q2 (GeV2) tsep ¼ 1.32 fm tsep ¼ 0.9 fm tsep ¼ 1.32 fm tsep ¼ 0.9 fm

0.212 0.034(17) 0.027(15) −0.005ð11Þ −0.015ð10Þ
0.412 0.023(13) 0.021(11) −0.011ð8Þ −0.012ð7Þ
0.604 −0.006ð15Þ 0.014(10) 0.003(10) −0.010ð7Þ
0.782 0.012(17) 0.003(9) −0.005ð12Þ −0.002ð7Þ
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Gp
e , G

p
m and Gn

m is obtained, and less than 20% precision for
Gn

e . For tsep ¼ 0.9 fm, even higher precision is seen despite
having only a quarter of the statistics. This indicates that
tsep ¼ 0.9 fm allows good statistical precision while keeping
control of excited state contamination.

E. EDM form factor

The EDM form factor is extracted from the CP-odd
functions given in Eq. (17), which contains F3 and terms
proportional to α to be subtracted. First, we decompose F3

into two pieces:

F3 ¼ FQ þ Fα; ð19Þ

with

FQ ¼ mN

EN þmN
i
2EN

pz
tr½Pþ

5zR
Q
t �; ð20Þ

Fα ¼
mN

EN þmN
αN

�
F1 þ

3mN þ EN

2mN
F2

�
; ð21Þ

where FQ contains the total θ-NLO three-point function,
and Fα contains the subtraction terms. From Fig. 7, one
sees that Fα is relatively precise with a statistical error of
about 10%, while that of FQ is more than 50%. This
indicates that the ultimate signal-to-noise ratio of F3

depends mainly on FQ. Again, the region 4 ≤ t=a ≤ 8 is
used to obtain the EDM form factor.
To investigate the presence of excited state contamina-

tion, we show the EDM form factor with tsep ¼ 1.32 fm
and tsep ¼ 0.9 fm in Fig. 8. The smaller separation result
has an even better signal than tsep ¼ 1.32 fm, and their
plateaus are consistent. Therefore, one sees that the
contamination of excited states is negligible in this range.
In Fig. 9 we investigate statistical error scaling by

examining subsets of our data with reducedNG, the number

of source locations of OðappxÞ
G in the AMA procedure. We

find good agreement with the full results, and the statistical
error roughly scales with the square root of the number of

TABLE IV. Fn
3=2mN (e · fm) on I-DSDR, 323, 170 MeV pion

ensemble.

P N

q2 (GeV2) tsep ¼ 1.3 fm tsep ¼ 1.3 fm

0.072 0.033(80) −0.083ð34Þ
0.141 0.057(50) −0.048ð31Þ
0.208 0.027(69) −0.028ð38Þ
0.273 −0.057ð75Þ −0.067ð50Þ
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configurations. Furthermore, comparing the full statistics
with reduced NG, there is a similar reduction of the
statistical errors; e.g., the second line in Fig. 9 indicates
that the rate of 52% with one-quarter statistics (200
configurations) is close to the ideal rate, 50%. In the fourth
line, the rate 44% is slightly larger than the ideal rate
1=

ffiffiffi
8

p ≃ 35%. It turns out that the gauge configurations we
used do not show strong correlations between different
trajectories, and also for AMA there is not a large
correlation between different source locations. Our choices
of approximation and NG seem to perform well for the
statistical error reduction of the EDM form factor for the
Iwasaki 243 ensembles, and also the I-DSDR 323 ensemble.
In Tables III and IV, we present the results of the EM and

EDM form factors, extracted by fitting the plateaus to a
constant value. The EDM form factors for the Iwasaki 243

ensembles have roughly 25%–30% statistical error at best,
and the errors grow to more than 100% at worst, depending
on the nucleon and momenta. For the I-DSDR 323 lattice,
the EDM form factor is very noisy, and we do not observe a
clear signal. This is likely due to the relatively poor
sampling of the topological charge on this small ensemble
of configurations, since we do observe relatively small
errors for the CP-even EM form factors.
In the next section we estimate the nucleon EDMs by

extrapolating these results to zero momentum transfer.

F. Lattice results for the neutron and proton EDM

To extrapolate to q2 ¼ 0, a simple linear function
consistent with chiral perturbation theory is used:

F3ðq2Þ=2mN ¼ dN þ S0q2 þOðq4Þ; ð22Þ

where dN represents the leading order, and S0 the next-
to-leading order in the q2 dependence of the EDM form
factor. dN is defined as the coefficient of the leading linear

term in θ in the experimental value of the EDM,
DN ¼ dNθ þOðθ3Þ. Furthermore, according to ChPT
[18,19] at NLO, S0 in the isoscalar channel (also isovector)
is related to the low-energy constant of the CP-violating
pion-nucleon coupling, and this point is discussed later.
In Fig. 10, we show the q2 dependence of the EDM

form factors. F3ðq2Þ exhibits mild q2 dependence
within relatively large statistical errors. Since we assume
a linear function at low q2 for F3ðq2Þ, the fit ranges
0.20 GeV2 < q2 < 0.6 GeV2 in Iwasaki 243 and
0.07 GeV2 < q2 < 0.273 GeV2 in DSDR 323 are chosen.
The central values and statistical errors for those fits are
given in Table V and shown in Fig. 10. One sees that using
such fitting ranges yields small χ2=d:o:f:, although the
extrapolated EDM value has errors of about 40%–80%, and
also the slope, which corresponds to S0, has almost 100%
statistical error. For the near physical pion mass ensemble,
the relative statistical error is still large: the proton EDM is
zero within 1 standard deviation, and the neutron EDM is
only nonzero by a bit more than 2. Clearly, more precision
is needed.
Figure 11 displays our results for the EDM as a function

of the pion mass squared, and for comparison we show
older calculations with Nf ¼ 2 Wilson clover and domain-
wall fermions, and recent Nf ¼ 3 Wilson clover fermions
[44] and Nf ¼ 2þ 1þ 1 twisted-mass (TM) fermions
[41]. One also sees that our results are comparable with
the recent imaginary θ calculation [44] and the results of the
ETMC Collaboration [41]. We note that DWF chiral
symmetry forbids potentially large lattice artifacts arising
from mixing with chiral symmetry breaking terms asso-
ciated with Wilson fermions [35], unlike the Wilson clover
simulations in Ref. [44]. (This corresponds to mixing with
topological charge and pseudoscalar mass terms induced by
lattice artifacts. Since in our case there is only a small
residual mass which controls chiral symmetry breaking,

TABLE V. Result of EDM which is obtained by the extrapolation of q2 to zero with a linear ansatz using the fitting range of
0.21 GeV2 ≤ q2 ≤ 0.586 GeV2 for 243 m ¼ 0.005, 0.212 GeV2 ≤ q2 ≤ 0.604 GeV2 for 243 m ¼ 0.01, and 0.072 GeV2 ≤ q2 ≤
0.273 GeV2 for 323 DSDRm ¼ 0.001. The values of S0 and its χ2=d:o:f: are also shown in this table. Here those errors denote statistical
ones.

Iwasaki 243 Proton Neutron

mπ (GeV) tsep (fm) dpN (e · fm) S0p (e · fm3) χ2=d:o:f: dnN (e · fm) S0n (e · fm3) χ2=d:o:f:

0.33 1.32 0.030(25) −11.0ð21.2Þ × 10−4 0.7(1.7) −0.053ð18Þ 24.3(14.6)×10−4 0.2(9)
0.33 0.9 0.015(12) 10.3ð8.5Þ × 10−4 0.1(6) −0.029ð8Þ 1.0ð5.4Þ × 10−4 1.0(2.0)
0.42 1.32 0.064(27) −45.2ð21.8Þ × 10−4 1.3(2.3) −0.021ð15Þ 11.7ð12.9Þ × 10−4 1.8(2.7)
0.42 0.9 0.035(19) −10.4ð10.7Þ × 10−4 0.03(46) −0.016ð11Þ 3.4ð5.9Þ × 10−4 0.02(36)

I-DSDR 323 Proton Neutron

mπ (GeV) tsep (fm) dpN (e · fm) S0p (e · fm3) χ2=d:o:f: dnN (e · fm) S0n (e · fm3) χ2=d:o:f:

0.17 1.3 0.101(90) −166.4ð147.1Þ × 10−4 0.4(7) −0.093ð43Þ 87.4ð74.0Þ × 10−4 0.5(9)
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this mixing is irrelevant for the current precision. However,
considering higher dimension CP-violation operators,
e.g. the chromoelectric dipole moment, the mixing with
lower-dimensional operators should be taken into
account. See Ref. [32] for more details.) Effective theories
like chiral perturbation theory [7,16,19] and several

models in QCD sum rules [12,13] have found dpðnÞN ¼
ð−Þð1–4Þ × 10−3 e · fm (the minus sign is for the neutron),
about 1 order of magnitude smaller than the central value of
lattice QCD results computed at an unphysically large
pion mass.

IV. DISCUSSION

The neutron and proton EDMs induced by the θ term in
the QCD action must vanish in the chiral limit, since it can
be moved entirely into a pseudoscalar mass term by a chiral
rotation because of the QCD axial anomaly [7–11,14–19].
Such a mass term vanishes if any of the quarks in the theory
are massless. In chiral perturbation theory, the leading
behavior [7] is

dN ≈
ḡπNNgπNN

mN
log

m2
π

m2
N
; ð23Þ

with CP-preserving and CP-violating πNN couplings gπNN
and ḡπNN ,

3 respectively, whereas in the low-energy nuclear
effective theory [9,10], the EDM can also be described as

dN ≈
2

f2π
χ2QμN

ḡπNN

2mN
; ð24Þ

where μN is the nucleon magnetic moment and χQ is the
topological charge susceptibility, represented in leading
order chiral perturbation theory as χQ ¼ m2

πf2πðm2
η0 −m2

πÞ=
ðNfm2

η0 Þ [63] (here fπ ¼ 92 MeV). As given in Eq. (24),
the topological charge distribution and its susceptibility are
related to the EDM, and thus it is interesting to check this
relationship in lattice QCD for consistency with the
effective model. Figure 12 shows such a relationship at
our lattice point, and also displays the predicted bound
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3In which ḡπNN is defined as the coefficient of the leading order
in-θ expansion of the CP-violating coupling as in Ref. [7].
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from baryon ChPT at the physical point, for which we use
mπ ¼ 0.135 GeV andmη0 ¼ 0.957 GeV. One also sees that
for the neutron EDM, there is a slight tension between the
lattice result and the ChPT estimate; however, our simu-
lation point is still far from the physical one.
Although the statistical uncertainty of our lattice results

(Fig. 11) is too large to discriminate the quark mass
dependence given in (23) or (24), the signs of neutron
and proton EDMs are opposite, and their signs are con-
sistent with the nucleon magnetic moment, as one can see
in Fig. 4. Further, since the ratio of the proton and neutron
EDMs is given from the ratio of those magnetic moments,
as seen in Eq. (24), using the quark model, the ratio is
ðdnN=dpNÞquark ¼ −2=3, assuming no SU(2) isospin break-
ing. Our lattice calculation gives roughly dnN=d

p
N ≃ −2 and

dnN=d
p
N ≃ −0.5 for the lighter and heavier 243 quark mass

ensembles, respectively, the same sign and order of
magnitude as the quark model prediction. Note that the
analytic result of the neutron EDM in NLO SU(2) [18] and
SU(3) [15] ChPT suggests that higher order corrections are
about 40%, and furthermore, there is the additional uncer-
tainty of the CPV πNN coupling [29–31].
Nuclei or diamagnetic atoms (e.g. 199Hg, 129Xe) are

important experimental avenues for detecting EDMs. To
estimate their EDMs using an effective theory framework,
nonperturbative evaluation of the low-energy constants of
the theory is essential. The low-energy constants related to
the quark mass and q2 dependence of F3ðq2Þ and S0, for
instance, can be obtained from lattice QCD. The values of
S0 in Table V (statistical errors only) are of similar order to
that from SU(3) ChPT at the leading order, S0nðChPTÞ ¼
−3.1 × 10−4 e · fm3 [18] (see also Ref. [28]). Furthermore,
according to the argument of NLO BChPT (for details, see
Ref. [31]), S0 for the isoscalar and isovector EDMs is
approximately

S0isoscalar ≃ 0; S0isovector ≃ gAḡ
ð0Þ
π

48π2fπm2
π

�
1 −

5π

4

mπ

mN

�
; ð25Þ

so ḡð0Þπ , the CPV NNπ coupling, is leading in S0isovector.
Although the precision shown in Table V is not enough to
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FIG. 13. The dependence of pion mass squared for αN obtained
by a CP-odd nucleon two-point function using the different
momenta.
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FIG. 14. Top: The nucleon EDM form factors from local time-
slice reweighting, as described in the text, for the lowest non-
trivial momentum, for protons (squares) and neutrons (circles).
The tick-mark labels denote the total number of time slices used
to sum the topological charge density (64 is the global sum). The
point on the right corresponds to reweighting with the topological
charge Q. This figure shows the 243, 330 MeV pion ensemble.
Bottom: CP-odd mixing angle from local time-slice reweighting,
as described in the text, on the same ensemble.
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address this comparison, our results provide a rough bound,

jḡð0Þπ j ∼Oð10−1Þ. The phenomenological value is also

estimated as ḡð0Þπ ∼ 0.04 at leading order [28], and recently

ḡð0Þπ ¼ 0.0156ð26Þ as updated by Ref. [65].
Finally, we consider the chiral behavior of the CP-odd

mixing angle αN . It depends on the (sea) quark mass but is
independent of momentum. Since αNðθÞ ∝ θ, it is expected
to vanish in the chiral limit. However, as seen in Fig. 13, we
observe no significant mass dependence for αN among all
of the ensembles in our study. This may simply reflect that
the simulations are far from the chiral limit for EDMs. We
also note that the statistical errors are large, especially for
the 170 MeV pion ensemble, and there the topological
charge distribution is suspect, since we have only used 39
configurations.

V. AN EXPLORATORY REWEIGHTING WITH
TOPOLOGICAL CHARGE DENSITY

The large statistical noise of the CP-odd correlation
functions is possibly due to reweighting with the global
topological charge, since for many, perhaps most, of the
EM current insertions, there is no overlap with a CP-odd
vacuum fluctuation. So reweighting just adds noise to the
expectation value. Unfortunately, for this study, we have
averaged over space on each time slice, so we cannot
examine these local correlations directly. But we can
reweight the correlation function with the charge density
summed over a time slice, or several successive time slices.
To investigate the above, we sum the topological charge
density over a range of time slices, �1, 4, and 8 about the
time slice of the sink operator. A plot of the nucleon EDM
and the corresponding mixing angle for such a reweighting
is shown in Fig. 14.
One observes a dramatic decrease in the noise as the

number of time slices that are summed for the topological
charge density decreases. Interestingly, the EDM values
may plateau between 9 and 17 time slices. Note that αN is
not a physical observable and need not plateau. In the
future, we plan to investigate spatially local reweighting.
One needs to address issues of renormalization as well.

VI. SUMMARY

This paper presents a lattice calculation of the nucleon
electric dipole moment obtained from the study of the
CP-odd form factors of the nucleon in (2þ 1)-flavor
QCD with unphysically heavy up and down quarks (the
pion mass in this study ranges from 420 MeV down to
170 MeV). The QCD θ term is included to the lowest
order by reweighting correlation functions with the
topological charge. We employ the domain-wall fermion
discretization of the lattice Dirac operator, which allows
us to control lattice artifacts due to chiral symmetry
breaking which may otherwise lead to significant

systematic errors in the chiral regime. We apply the
all-mode averaging (AMA) procedure [47,48] to signifi-
cantly boost the statistical precision of the correlation
functions, which results in statistically significant values
of the neutron and proton EDMs for the two heavier
quark ensembles in our study, and a less significant
signal for the lightest, 170 MeV pion ensemble. We have
examined the pion mass dependence of the EDMs, which
is obtained by linear extrapolation of low-momentum
transfer to zero-momentum transfer with two different
time-slice separation of source and sink operators. In this
analysis, the effect of excited state contamination is small
compared to the statistical error.
In addition, we have investigated the relationship

between the local topological charge on each time slice
of the lattice and the CP-odd correlation function. This idea
may lead to a significant noise reduction in future calcu-
lations by reweighting correlation functions with the local
topological charge density. We show promising numerical
evidence that the large noise associated with global
topological charge fluctuations can be reduced.
In this paper, we have concentrated on a high statistics

analysis using unphysical masses, mπ ¼ 0.17–0.42 GeV,
and provide lattice QCD results for the nucleon EDMs and
form factors with statistical errors only. Future calculations
will address systematic errors, including finite size effects
(FSE), poor topological charge sampling, the q2 ¼ 0
extrapolation, and lattice spacing artifacts. Baryon chiral
perturbation theory (BChPT) in finite volume, to the next-
to-leading order [16,17,66], suggests the magnitude of FSE
for our lattice sizes and pion masses is roughly 10%, or less.
However, additional effects are possible, for instance, at
higher order in BChPT. We note several domain-wall
fermion gauge ensembles with different lattice cutoffs,
volumes and pion masses below 0.2 GeV are avail-
able [52,53] to estimate these systematics. Recent develop-
ments in numerical algorithms like AMA make it possible
to carry out these calculations with current computational
resources, and those studies are underway.
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