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We calculate the spectrum of transfer matrix eigenvalues associated with Polyakov loops in finite-
density lattice QCD with static quarks. These eigenvalues determine the spatial behavior of Polyakov loop
correlation functions. Our results are valid for all values of the gauge coupling in 1þ 1 dimensions and in
the strong-coupling region for any number of dimensions. When the quark chemical potential μ is nonzero,
the spatial transfer matrix Ts is non-Hermitian. The appearance of complex eigenvalues in Ts is a
manifestation of the sign problem in finite-density QCD. The invariance of finite-density QCD under the
combined action of charge conjugation C and complex conjugationK implies that the eigenvalues of Ts are
either real or part of a complex pair. Calculation of the spectrum confirms the existence of complex pairs in
much of the temperature-chemical potential plane. Many features of the spectrum for static quarks are
determined by a particle-hole symmetry. For μ that is small compared to the quark mass M, we typically
find real eigenvalues for the lowest-lying states. At somewhat larger values of μ, pairs of eigenvalues may
form complex-conjugate pairs, leading to damped oscillatory behavior in Polyakov loop correlation
functions. However, near μ ¼ M, the low-lying spectrum becomes real again. This is a direct consequence
of the approximate particle-hole symmetry at μ ¼ M for heavy quarks. This behavior of the eigenvalues
should be observable in lattice simulations and can be used as a test of lattice algorithms. Our results
provide independent confirmation of results we have previously obtained in Polyakov-Nambu-Jona-
Lasinio models using complex saddle points.
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I. INTRODUCTION

Although lattice simulations have given excellent first-
principles results for many observables of finite-temperature
QCD, there has been less clear success when the chemical
potential μ is nonzero. Finite-density QCD is one of the class
of theoretical models that has a sign problem: the partition
function is a sum over complex weights which cannot be
interpreted as relative probabilities [1–3]. Many methods
have been used in attempts to overcome the sign problem in
finite-density QCD. Two methods that have received sig-
nificant attention recently are the complex Langevin tech-
nique [4–9] and the Lefschetz thimble approach [10–18].We
have recently explored the implications of complex saddle
points in phenomenological models of QCD at finite
temperature and density [19,20]. These models postulate
effective potentials for the Polyakov loop TrFPx and other
order parameters in such a way that the confinement-
deconfinement transition of quenched QCD is incorporated.

The most realistic of these models are Polyakov-Nambu-
Jona-Lasinio (PNJL) models, and they include the effects of
chiral symmetry restoration [21]. In all the cases studied in
[19,20], a nonzeroμ resulted in a complex saddle point for the
eigenvalues of the Polyakov loop. A number of desirable
results emerge from this. For example, the free energy is real
at the complex saddle point and hTrFPi ≠ hTrFP†i. The
mass matrix for Polyakov loops exhibits a new feature: the
mass eigenvalues may form a complex conjugate pair,
indicating the occurrence of spatially modulated sinusoidal
decay. Such behavior is forbidden by spectral positivity for
μ ¼ 0, but is possible when μ ≠ 0. In the case of PNJL
models, complex conjugate pairs occur in regions around the
first-order line that emerges from T ¼ 0, terminating at a
critical end point.
Here we address the generality of this phenomenon by

showing similar behavior in lattice QCD with static quarks
in the strong-coupling limit. We will use a transfer matrix
formalism to determine the behavior of Polyakov loop
correlation functions as a function of spatial separation.
These results are exact for any gauge coupling in 1þ 1
dimensions, but also represent the leading-order result in
the character expansion in higher dimensions. As the
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chemical potential of the static quarks is varied, we will
show that there are large regions of parameter space where
the eigenvalues of the transfer matrix form complex
conjugate pairs, leading to damped oscillatory behavior
of Polyakov loop correlation functions. The boundary of
such a region in parameter space is referred to as a disorder
line in condensed matter physics. The method used is
completely different from the saddle point technique
employed in [19,20], applied to a very different model,
illustrating the generality of the behavior. Any reliable
simulation method for finite-density lattice QCD should be
able to reproduce our results, which thus can serve as a
benchmark for the validation of algorithms.
Section II describes the strong-coupling formalism

underlying our calculation. We give a graphical demon-
stration of the non-Hermiticity of the correlation function
matrix in character space when the chemical potential is
nonzero. We also discuss the symmetries of the model,
paying particular attention to particle-hole symmetry.
Section III explains how the transfer matrix for
Polyakov loops can be realized in the character basis in
a form suitable for numerical diagonalization. In Sec. IV,
we present our results for the Polyakov loop spectrum. A
final section gives our conclusions.

II. STRONG-COUPLING FORMALISM

A. Setup

Strong-coupling expansions and character expansions
are well-developed methods for exploring the properties of
lattice gauge theories [22]. Strong-coupling expansions are
typically expansions in inverse powers of some coupling g2

around 1=g2 ¼ 0. Generally such expansions have a finite
radius of convergence in an 1=g2, and thus are not directly
relevant for the continuum limit of non-Abelian gauge
theories at g2 ¼ 0. Nevertheless, they have often given
important insight into mechanisms and critical behavior.
Character expansions are closely related to strong-coupling
expansions, but have many advantages. Consider the case
of SUð3Þ lattice gauge fields in 1þ 1 dimensions at some
finite temperature. In the absence of nongauge fields, i.e.,
the quenched approximation, this model is exactly solv-
able. The action Sp of a single plaquette Up can be
expanded in character expansion

eSp½Up� ¼
X
R

dRcRχRðUpÞ; ð1Þ

where χR is the character of an irreducible representation R
of the gauge groupG, dR is the dimensionality of R, and cR
is a coefficient that depends on the parameters of the gauge
action Sp. The character expansion is an expansion in the
ratios cR=c0, where c0 is the coefficient of the trivial
(identity) representation. A strong-coupling expansion in

1=g2 may be obtained by expanding these ratios. We will be
using the character expansion in what follows.
Our principle observable is the trace of the Polyakov

loop operator Px in irreducible representations of SUð3Þ.
The Polyakov loop operator Px is the time-ordered product
of the timelike links starting at a given point x and returning
to that point due to the periodic boundary conditions of
finite-temperature lattice gauge theories. The trace of Px in
an irreducible representation R measures confinement for
that representation: hTrRPi ¼ exp ð−βFRÞ, where FR is the
free energy required to insert a static particle in a repre-
sentation R into the system and β is the inverse of the
temperature T. In a pure gauge theory, the trace in the
fundamental representation, TrFP, is an order parameter for
confinement.
We will begin by giving simple arguments that show that

the Polyakov loop propagator matrix is not Hermitian at
finite density, indicating the possibility of complex eigen-
values. The correlation function of Polyakov loops in a
representation R, hTrRPxTrRP

†
yi is given to lowest order in

the character expansion by tiling space with plaquettes in
the representation R between x and y. We now introduce
static quarks into this system. Each quark carries with it a
factor of TrFP with an additional factor of expðβμÞ when
the chemical potential μ ≠ 0. As shown in Fig. 1, this
generates a new interaction not present in the quenched
case that couples TrFP to itself. Correlation functions of the
form hTrRPxTrRPyi have been measured in lattice simu-
lation of full QCD at μ ¼ 0 [23]. When μ ≠ 0, the lowest-
order contribution to hTrRPxTrRPyi is enhanced by a
weight factor expðβμÞ. On the other hand, the coupling
of TrFP† to itself, as represented in Fig. 2, is suppressed by
a corresponding factor of exp−βμ. The only difference
between the two graphs is the factor of exp ðβμÞ versus
exp ð−βμÞ so hTrRPxTrRPyi ≠ hTrRP†

xTrRP
†
yi. Thus when

μ ≠ 0 the matrix of two-point correlation functions is no

TrP TrP

e

FIG. 1. Graphical representation of a contribution of fermions
to hTrFPTrFPi.

TrP TrP

e-

FIG. 2. Graphical representation of a contribution of fermions
to hTrFP†TrFP†i.
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longer Hermitian. In order to find masses, that matrix of
correlation functions must be diagonalized. However, if
the correlation matrix is not Hermitian, the masses need
not be real. The asymmetry between TrFP and TrFP† is a
consequence of the explicit breaking of charge conjugation
C by the chemical potential. However, the symmetry of
finite-density QCD under the combined action of C and
complex conjugation K remains intact [19,20,24,25]. Thus
the combined action of CK leaves TrFP and TrFP†

invariant. For our purposes, the most important conse-
quence of the CK symmetry is that the masses are either real
or are part of a complex conjugate pair, as we discuss
below.
A comprehensive treatment of Polyakov loop correlation

functions at strong coupling is most conveniently carried
out using a version of Svetitsky-Yaffe universality [26,27].
This fundamental result for gauge theories at finite temper-
ature links the critical behavior of Polyakov loops in pure
gauge theories in d dimensions with the behavior of spin
systems in d − 1 dimensions. Furthermore, the effect of
introducing quarks into the gauge theory is similar to the
effect of an external magnetic field on a spin system. It is
easy in strong coupling to show that the effective action for
the interaction of Polyakov loops is similar to that found in
a spin system. If we consider two adjacent Polyakov loops
on a lattice, they share a “belt” of plaquettes running up the
time axis. Integrating over the spatial links of this belt leads
to an effective interaction between the Polyakov loops of
the form

X
R

cNt
R χRðPxÞχRðP†

yÞ; ð2Þ

where Px and Py are Polyakov loops on adjacent spatial
lattice sites x and y. The parameter Nt is the temporal size
of the lattice, so β ¼ Nta, where a is the lattice spacing. To
leading order in a strong-coupling expansion, the expo-
nential of the effective action is

eSeff ¼
Y
hxyi

�X
R

cNt
R χRðPxÞχRðP†

yÞ
�
; ð3Þ

where the product is taken over all nearest-neighbor spatial
lattice sites. For very strong coupling, the contribution of
the fundamental representation usually dominates, and the
effective action may be written approximately as

eSeff ≃ exp

�X
hxyi

J½χFðPxÞχFðP†
yÞ þ χFðP†

xÞχFðPyÞ�
�
; ð4Þ

where the sum over hxyi is a sum over nearest-neighbor
pairs of spatial points and

J ¼
�
cF
c0

�
Nt

: ð5Þ

This is clearly of the form of a spin system, with spins
taking on values in G and the interaction respecting global
center symmetry.
In order to arrive at a simple model, we consider only the

case where quarks are so heavy that they move only in time
and are static in space. In this case, the effects of quarks at x
can be represented in the partition function by a weight [28]

Dx ¼ det ½1þ eβμ−βMPx�; ð6Þ

while antiquarks give a weight factor

D̄x ¼ det ½1þ e−βμ−βMP†
x�; ð7Þ

where μ is the chemical potential andM is the heavy quark
mass. It will be convenient to associate two different
“activities” for quarks and antiquarks:

z1 ¼ eβμ−βM ð8Þ

z2 ¼ e−βμ−βM: ð9Þ

Although z1 and z2 may take on any non-negative values,
their association with μ and M does impose restrictions:
Depending on the sign of μ, either z1 or z2 is always less
than one. However, it is sometimes convenient to ignore
this restriction to display the symmetries of the model. The
complete partition function is given by

Z ¼
Z

½dP�
Y
x

½DxD̄x�
Y
hxyi

�X
R

cNt
R χRðPxÞχRðP†

yÞ
�
; ð10Þ

where the integral ½dP� is over the Haar measure for the
Polyakov loop Px on each spatial lattice site x, and the sum
over hxyi is a sum over nearest-neighbor pairs.

B. Symmetries

The physics of SUðNÞ static quarks at finite density is
invariant under ðz1; z2Þ → ðz2; z1Þ provided we also switch
our definition of particle and antiparticle operators.
However, we need not switch operators at the special
points where z1 ¼ z2. These are the points where μ ¼ 0 and
we have particle-antiparticle symmetry. Notice, however,
that the identity

det ½1þ z1Px� ¼ zN1 det ½1þ z−11 P†
x� ð11Þ

also leads to an invariance and a symmetry. The factor of zN1
represents the Boltzmann factor for a completely filled
state at a site. Although this factor of zN1 does contribute
to the free energy, it does not affect expectation values.
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This operation reflects the equivalence between particles
and holes: a particle (relative to the vacuum) is equivalent to
N − 1 holes (relative to the completely filled state) at the
same site. In the special case where z2 ¼ 0, there is an exact
particle-hole symmetry under z1 → 1=z1. This extends to
an approximate particle-hole symmetry when antiparticle
effects are small. If we apply the above identity to
antiparticles as well as particles, we obtain an exact
symmetry of the complete theory: The model is invariant
under the transformation ðz1; z2Þ → ð1=z2; 1=z1Þ. Note,
however, that this transformation takes the physical region
z1, z2 < 1 into the unphysical region z1; z2 > 1.
Let us suppose we are in a low-temperature, large-μ

region where z2 ≪ 1 and antiparticle effects can be
neglected. Then the fermion determinant D is real and
there is no sign problem when z1 ¼ 1; this is precisely the
absence of a sign problem at “half-filling” for static quarks.
See [29] for an extensive treatment of this property. These
symmetries are easily extended to any representation of the
gauge group. Note that an alternative approach to including
static quarks at finite density is to add a term,X

x

½z1TrFPx þ z2TrFP
†
x�; ð12Þ

directly to the action. However, this is an approximation to
lowest order in z1 and z2 of the effects of static fermions or
bosons. It, therefore, misses the effects of Pauli blocking as
well as the symmetries of the fermion determinant just
discussed.
In addition to the invariances associated with z1 and z2,

this model inherits from finite-density QCD invariance
under the combined action of charge conjugation C and
complex conjugation K [19,20]. Charge conjugation takes
TrFPx → TrFP

†
x. It is a symmetry when μ ¼ 0, but not

when μ ≠ 0. Complex conjugation is an antilinear
symmetry, changing not only fields but also complex-
conjugating ordinary numbers. Like C, K is a symmetry of
the model only when μ ¼ 0. K acts on TrFP to give
TrFP� ¼ TrFP†. It is easy to see that the combined effect of
CK is to leave the action invariant. From this, it can be
shown that all the eigenvalues of the transfer matrix are
either real or are part of a complex conjugate pair. Due to
the symmetry of the model, the transfer matrix Ts
commutes with CK. If Tsjλi ¼ λjλi it follows that

TsCKjλi ¼ CKTsjλi ¼ CKλjλi ¼ λ�CKjλi; ð13Þ
so λ� is an eigenvalue of Ts if λ is.
The partition function Z can be written in terms of the

eigenvalues λa of the spatial transfer matrix Ts as

Z ¼ Tr½TNs
s � ¼

X
a

exp ð−NsλaÞ; ð14Þ

where Ns is the spatial size of the system. The CK
symmetry implies that each eigenvalue is either real λb

or part of a complex conjugate pair λRc � iλIc. The partition
function is now given by [30]

Z ¼
X
b

exp ð−NsλbÞ þ
X
c

exp ð−Nsλ
R
c Þ · 2 cos ðNsλ

I
cÞ:

ð15Þ

If there is a single eigenvalue with smallest real part λ0, then
Z is dominated by it in the limit Ns → ∞:

Z≃ exp ð−Nsλ0Þ: ð16Þ

If there is a pair of eigenvalues λR0 � iλI0 with smallest real
part λR0 , this leads to an approximate partition function

Z≃ exp ð−Nsλ
R
0 Þ · 2 cos ðNsλ

I
0Þ; ð17Þ

which displays Lee-Yang-Fisher zeros. Such behavior is
not expected in finite-density QCD for normal parameter
values, because a construction of Z as a sum over physical
states does not show it. On the other hand, such zeros can
occur at unphysical values of the parameters. Steepest
descent methods are approximation methods whose aim is
essentially to estimate λ0, as is the case with any approxi-
mation method that calculates thermodynamic behavior.
CK symmetry implies that any complex saddle point is
either real or part of a complex conjugate pair.
We stress that it is the symmetry that matters, and not the

particular analytical method used. The model we use in this
paper is completely specified by Eq. (10). The form we
have given is ideal for character expansions. This is a
convergent expansion when the character coefficients cR
are sufficiently small. For any problem where the transfer
matrix T commutes with an antilinear symmetry such as
CK, there is always a basis where all the matrix elements of
T are real [30]. The character basis provides such a
representation of T, because all the coefficients of the
character expansion are real. The coefficents of T are not
necessarily positive, so such a basis cannot always be used
for simulations. As a consequence of the underlying CK
symmetry, the expectation values hTrFPi and hTrFP†i are
both real, but typically not equal. If we take the underlying
gauge theory coupling g2 to be small, then the interaction of
adjacent Polyakov loops will be large, and given approx-
imately by Eq. (4), with the effective coupling J large. An
analytical treatment of the effective theory in this region
will find a complex saddle point in the sense that the saddle
point will be a complex point within the Lie algebra, but the
expectation values hTrFPi and hTrFP†i will again be real
and the effective action at the saddle will also be real
[19,20]. On the other hand, the same model can be studied
for J small without the need for a saddle-point expansion.
The case of a Zð3Þ spin model with complex external fields
has recently been studied using an extended form of mean
field theory (MFT), with conclusions similar to those
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described here [31]. In the Zð3Þ case, there are no saddle
points because Zð3Þ is a finite group. Perhaps the most
interesting case accessible to a combination of strong-
coupling expansions and mean field theory is the case of
light quarks at strong coupling and finite density [32]. Here
CK symmetry is clearly helpful. For example, suppose one
is using the variational form of MFTwith an MFTaction of
the form

S0 ¼
X
x

½K1TrFPþ K2TrFP†�; ð18Þ

where K1 and K2 must be real to maintain CK symmetry.
Although the action S0 is complex, it may be treated using
weak- or strong-coupling methods. In the weak-coupling
case, the saddle point will give a real value for the action
without any need to track a complex phase. It would be
interesting to know if oscillatory behavior is found in this
case, as it is in the structurally similar PNJL continuum
models [20].
In lattice simulations, a typical field configuration is not

in and of itself CK-symmetric. It is not yet clear how CK
symmetry can be used to constrain complex simulation
methods. The particular case of static quarks at finite
density has been studied by a variety of simulation methods
[8,28,33–39]. It may be possible to make contact between
our results and the variety of techniques which have been
employed. For example, reweighting techniques [40] could
be used to generate an explicitly CK symmetric ensemble,
ensuring that any reweighting was always real if not
necessarily positive.
Correlation functions of operators that couple to eigen-

states of Ts with complex eigenvalues will generally exhibit
some amount of sinusoidally modulated exponential decay
rather than the usual exponential decay found in models
with Hermitian actions [19,20,24,25]. We will show below
that this sinusoidal modulation is present in strong-
coupling QCD with a finite density of static quarks.

III. STRONG-COUPLING CALCULATION
OF THE SPECTRUM

In 1þ 1 dimensions, the transfer matrix connecting one
Polyakov loop Px to its nearest neighbor Py in a pure gauge
theory can be written as

T0 ¼
X
R

cNt
R χRðPxÞχRðP†

yÞ ð19Þ

in the gauge-invariant basis where states are class functions
of P:

ΨðPÞ ¼
X
R

bRχRðPÞ: ð20Þ

We can regard T0 as acting on wave functions ΨðPÞ or
alternately on an infinite vector of coefficients bR. We refer

to the latter representation as the group character basis.
We are free to choose the lattice action as reflected by the
coefficients cR, provided they have the correct behavior in
the continuum limit. Although theWilson action is the most
common lattice action, there is an infinite class of lattice
actions that lead to the same continuum limit. Because we
are interested in tracking the behavior of Polyakov loop
correlation functions in many representations, we will need
to keep the higher-order terms in the character expansion of
the effective action. We will use the heat kernel action, for
which the coefficients are

cR ¼ exp ð−g2CRa2=2Þ; ð21Þ

where CR is the quadratic Casimir invariant for R. This has
important advantages for us over the standard Wilson
action. The expression for cR is simple and easy to
calculate. In addition, it yields exactly the continuum
results for string tensions for pure gauge theories in
1þ 1 dimensions. See [27,41,42] for an explanation of
other properties of the heat kernel action.
Using the identification β ¼ Nta, the transfer matrix T0

has the form

T0 ¼
X
R

exp ð−βg2aCR=2ÞχRðPxÞχRðP†
yÞ: ð22Þ

In the group character basis the Casimir operator is
diagonal. For SUð3Þ, its eigenvalues are

Cðp;qÞ¼ ðpþ1Þ2þðqþ1Þ2þðpþ1Þðqþ1Þ
3

−1; ð23Þ

where ðp; qÞ specify the particular irreducible representa-
tion of R of the gauge group. Here p represents the number
of columns of one box and q represents the number of
columns of two boxes in Young tableau. The transfer
matrix in the group character basis is

T0 ¼ e−
g2βa
2
Cðp1;q1Þδp1p2

δq1q2 : ð24Þ

In the pure gauge theory, the eigenvalues of T0 determine
the exponential decay of correlation functions:

hTrRPxTrRP
†
yi ∼ exp

�
−Cðp1; q1Þ

g2βa
2

jx − yj
�
: ð25Þ

It is convenient to define the combination g2β=2 to be m0,
so that each representation R is associated with a mass
mp;q ≡ Cðp; qÞm0 in the pure gauge theory. The eigenval-
ues of the pure gauge theory transfer matrix T0 are given by

λp;q ¼ e−
g2βa
2
Cðp1;q1Þ ð26Þ

so a mass mp;q can be extracted as
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mp;q ¼ −
1

a
log

�
λp;q
λ0;0

�
: ð27Þ

In the more general case where static quarks are present, the
eigenvalues of the transfer matrix cannot be associated with
a fixed group representation, and the corresponding eigen-
vectors in character space are linear combinations of group
characters. In general, we simply number the eigenvalues
sequentially starting at zero, and define the mass by

mj ¼ −
1

a
log

����� λjλ0
����
�

ð28Þ

taking into account that the eigenvalues may be complex.
Note that m0 is simply a convenient mass scale, and not the
mass of the ground state. If we consider mj=m0 in the limit
where quark effects vanish, we obtain the Casimir operator
Cðp; qÞ. It is only in this sense that a given mass can be
associated with a representation in the general case. In the
case where λj is complex, ArgðλjÞ determines the wave-
number for the oscillations. In general, we define

exp ð−mjaþ ikjaÞ ¼
λj
λ0

ð29Þ

so that kja ¼ Argðλj=λ0Þ determines the period of oscil-
lation for a given eigenvalue j. In all the cases considered
here, the ground state is unique and λ0 is real and positive,
so kja ¼ ArgðλjÞ. We will take the lattice spacing a to be 1,
and treat m0 as the fundamental parameter of the pure
gauge theory.
In the group character basis, TrFP and TrFP† act as

raising and lowering operators and can be expressed in
terms of Kronecker deltas

TrFP ¼ δp1;p2
δq1;q2−1 þ δp1;p2−1δq1;q2þ1 þ δp1;p2þ1δq1;q2

ð30Þ
TrFP† ¼ δp1;p2−1δq1;q2 þ δp1;p2þ1δq1;q2−1 þ δp1;p2

δq1;q2þ1
:

ð31Þ
The effect of heavy static quarks can in turn be represented
in the partition function by the fermion determinant

Dðz1Þ ¼ 1þ z1TrFPþ z21TrFP
† þ z31 ð32Þ

while the effect of antiquarks is represented by

D̄ðz2Þ ¼ 1þ z2TrFP† þ z22TrFPþ z32; ð33Þ

where z1 and z2 are the “activities” for quark and antiquark
defined above. The overall transfer matrix including the
effect of quarks and antiquarks can be written as

Ts ¼ T1=2
0 Dðz1ÞD̄ðz2ÞT1=2

0 : ð34Þ

This particular form is chosen so that Ts is Hermitian when
z1 ¼ z2. While the transfer matrix corresponding to pure
gauge fields, T0, is Hermitian, the final transfer matrix, Ts,
that includes the effect of heavy quarks and antiquarks is no
longer Hermitian. TrFP and TrFP† connects between
different representations so they introduce off diagonal
elements in the transfer matrix. Since TrFP and TrFP† are
different for μ ≠ 0, the off-diagonal elements are no longer
symmetric and the transfer matrix is non-Hermitian.
In 1þ 1 dimensions, the results obtained from the

transfer matrix are exact at any value of the coupling. In
the strong coupling region, the results from 1þ 1 dimen-
sions are also valid in higher dimensions to leading order
in the character expansion. This result was noted long ago

(a) (b)

FIG. 3. Strong-coupling diagrams for a free scalar theory.
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by [43]. Consider the strong-coupling expansion for a free
scalar field, as shown in Fig. 3. For on-axis correlation
functions, say hϕð0Þϕðrx̂Þi, the leading diagram is a line
between the two points, the single path of minimal length.
For off-axis correlation functions, there are multiple min-
imal-length paths in the taxicab metric, e.g. jxj þ jyj þ jzj
in 3þ 1 dimensions, but this gives rise to a prefactor that
does not change the exponential decay of the correlation
function. When looked upon as a spin system, the dia-
grammatic expansion here behaves similarly, so the lead-
ing-order strong-coupling result in 1þ 1 dimensions is also
the result in dþ 1 dimensions. Higher-order corrections to
masses do explicitly depend on d. In any dimension, the
strong-coupling expansion is a convergent expansion with a
finite radius of convergence, so there will be some region
around g−2 ¼ 0 where the lowest-order result is a good
approximation.

The analogous behavior for a gauge theory at finite
temperature is shown in Fig. 4 below. For on-axis corre-
lation functions of widely-separated Polyakov loops, the
dominant contribution at strong coupling is a straight sheet,
exactly as in 1þ 1 dimensions. For the off-axis correlation
function, there will be many minimal surfaces connecting
the two Polyakov loops, but this will not change the rate of
exponential fall-off at leading order in strong coupling.
Thus we see that the strong-coupling results in 1þ 1
dimensions are also valid in dþ 1 dimensions.

IV. RESULTS FOR THE MASS SPECTRUM

We now discuss our results for the low-lying eigenvalues
of Ts. We begin with the case where z1 and z2 are set to a
common value z, which corresponds to setting μ to zero so
that z can be identified with expð−βMÞ. In this case, the
model is Hermitian so the eigenvalues are real and
hTrFPi ¼ hTrFP†i. Figure 5 shows the mass spectrum
of the low-lying eigenstates and Polyakov loop expect-
ations values for m0 ¼ 1 and 2. The masses shown in the
figures below are always divided by the mass scale m0;
the values ofmj=m0 at z ¼ 0, on the left-hand axis, are thus
the values of the Casimir operator for low-lying represen-
tations of SUð3Þ. In particular, we can associate the masses
shown in Fig. 5 with the 3, 3̄, 8, 6 and 6̄ representations of
SUð3Þ when z ¼ 0. As can be seen in the figure, the values
on the left-hand axis at z ¼ 0 are precisely 4=3, 3 and 10=3.
For z > 0, the corresponding eigenvectors contain a mix-
ture of the identity representation, the above five repre-
sentations and other higher-dimensional representations.
Both the spectrum and Polyakov loop expectation values
are invariant under z → 1=z. This is reflected in the peaks

=1/T

FIG. 4. A contribution to the off-axis correlation function
between two-widely separated Polyakov loops. For clarity, the
intermediate staircase has been replaced by a diagonal sheet.
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FIG. 5. The mass spectrum and Polyakov loop expectation values for the (1þ 1)-dimensional SUð3Þ model as a function of z with
m0 ¼ 1 and m0 ¼ 2.
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achieved at z ¼ 1 by both the masses and the Polyakov
loop expectation values. Physically, quark effects behave as
an external magnetic field, and this effect is strongest at
M ¼ 0, corresponding to z ¼ 1. Increasing m0 from 1 to 2
shortens the correlation length in lattice units, and
decreases the effects of the fermions on the spectrum.
The peak in the Polyakov loop at z ¼ 1 is smaller atm0 ¼ 2
than at m0 ¼ 1 because the interaction between nearest-
neighbor Polyakov loops is smaller. At z ¼ 0, pairs of
complex representations like the 3 and 3̄ have degenerate
masses. Because the quark determinant breaks the Zð3Þ
symmetry of the pure gauge theory, the eigenstates for
z > 0 do not show any degeneracy, but separate into clear,
well-defined levels.
We next consider the case where the effects of antiquarks

are neglected, which corresponds to setting z2 ¼ 0.
Figure 6 shows the real and imaginary parts of the mass
spectrum, mj=m0 and Arg½λj�, for low-lying eigenstates
when m0 ¼ 1 and 2. The figure also shows Polyakov loop
expectation values. As seen in the plots, the masses start out
real for z1 ¼ 0 but quickly take on complex values for
nonzero z1. As z1 increases, the magnitude of complex part
of the mass gradually increases before dropping back to
zero. The plots clearly reflect the particle-hole symmetry
under z1 → 1=z1. The real part of mass spectrum is highest

when z1 ¼ 1, which corresponds to μ ¼ M. The point
z1 ¼ 1 is special because the theory is Hermitian at half-
filling, and the mass spectrum must be real. Furthermore,
there appears to be a region around z1 ¼ 1 where the mass
spectrum is real. The size of this region is largest for the 3
and 3̄ representations. The 8 representation does not
develop an imaginary part. For z1 < 1, hTrFPi is less than
hTrFP†i, implying that the free energy cost of inserting a
fermion into the system is greater than that of inserting an
antifermion. For z1 > 1, this behavior is reversed in
accordance with the z1 → 1=z1 symmetry. At z1 ¼ 1, the
two expectation values are equal. As in the case z1 ¼ z2,
moving from m0 ¼ 1 to m0 ¼ 2 lessens the impact of
fermions on the spectrum and on Polyakov loop expect-
ation values. As mentioned earlier, this increase in scale of
pure gauge theory lessens the effects of fermions as seen in
the plots.
We next consider the effects of antiquarks as gradually

“turned on” by making z2 nonzero. We fix the value of m0

to 1. The region where Arg½λj� ¼ 0 can be inferred from the
nondegeneracy of the real parts. As seen from Fig. 7,
increasing the effect of antiparticles by making z2 bigger
gradually shrinks the region of complex mass. The region
of complex mass are completely washed out for high
enough value of z2 and the mass spectrum is completely
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FIG. 6. The real and imaginary parts of the mass spectrum and Polyakov loop expectation values for the (1þ 1)-dimensional SUð3Þ
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real. The value of z2 for which the eigenvalues are real is
smaller for low-lying eigenstates. For example, the 3 and 3̄
eigenstates are real even when z2 is around 0.5 but we need
z2 to be around 1 for the eigenstates corresponding to 6 and
6̄ to be completely real. When z2 is much larger than 1, the
mass spectrum will again show regions where Arg½λj� ≠ 0.
This can be understood from the properties of the fermion
determinants: the antifermion determinant at large z2 is
equivalent to a fermion determinant whose z1 ¼ 1=z2 is
small. The spectrum at large z2 is thus similar to that at
small z2.
We now turn to a more physical analysis of the spectrum

in terms of the quark mass M and the chemical potential μ.
In all cases, we set the fundamental scale-setting parameter
m0 ¼ 1. The ratio M=T is fixed at values between 0 to 5
and μ=T is varied from 0 to 6. As shown in Figs. 8 and 9,
the behaviors of the mass spectrum and Polyakov loop

expectation values are similar to what has been seen before,
but the peak in the real part of the mass spectrum occurs
near μ ¼ M, corresponding to z1 ¼ 1. As before, the
eigenvalue associated with the 8 remains real throughout.
When M is large compared to m0 and μ, the spectrum is
essentially that of the pure gauge theory. When μ is close to
M there is again a clear region where the low-lying
eigenstates are real. In this region, there are well-defined
eigenvalues associated with the 3 and 3̄, and with the 6 and
6̄. Near μ ¼ M, there are also clear maxima and minima in
many of the mass values. This is presumably due to a
relative maximum in the overall strength of Zð3Þ breaking
at that point. Furthermore, TrFP and TrFP† both peak near
μ ¼ M, and also cross near this point. We attribute much
of the observed behavior for M ≃ μ to an approximate
particle-hole symmetry associated with the trans-
formation z1↔1=z1. In the cases we are considering
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z2 ¼ exp ð−βμ − βMÞ is typically less than 1. This leads to
an approximate z1↔1=z1 symmetry with small corrections
coming from z2 < 1, with the effects of the symmetry most
pronounced in the region M ≃ μ. For M=T large, z2 is
always much less than one, leading to an approximate
particle-hole symmetry for all μ; crossing of the Polyakov
loops occurs at approximately the same value of μ=T as
half-filling. For large μ, Polyakov loop expectation values
go to zero, also as a consequence of the approximate
symmetry. Equivalently, one can view this as due to the
saturation of the quark number density at large μ. For
M=T ≲ 0.55, antiquark effects are significant and cannot
be neglected: the low-lying spectrum is complex at
half-filling.
On either side of the region including M ¼ μ, where the

3 and 3̄ are real, there are regions where the value of
jArg½λj�j for the 3 and 3̄ representation reaches a maximum.
These regions also include the value of μ=T where TrFP
and TrFP† are most different. A similar correlation of
jArg½λj�j with jhTrFðP − P†Þij was seen in PNJL models
[20]. As in Fig. 7, there is a second region where the low-
lying eigenvalues are all real. This region is separate from
the region around M ¼ μ where the eigenvalues are real,
and appears here for low μ=T. This behavior is clearly
visible for M=T ¼ 2, but is present for M=T ¼ 4 and even
higher values.
As may be seen from Figs. 8 and 9, the magnitude of the

imaginary part of any eigenvalue is generally substantially
smaller than the real part and may be difficult to observe
directly in simulations. Nevertheless, it may be possible
to observe the modulated decay directly in some
circumstances. Figure 10 shows the 3 − 3̄ Polyakov loop

correlation function hTrFP†ðrÞTrFPð0Þi as a function of r
for m0 ¼ 0.1 and z1 ¼ 0.08 with z2 ¼ 0. The clear mini-
mum at r≃ 22 is a consequence of sinusoidal modulation
and reminiscent of the behavior of density-density corre-
lation functions in liquids. Note also that the correlation
function drops below zero, also as a consequence of the
spatial modulation.
The quark number density also may be calculated.

Results are shown in Fig. 11 for the quark number density
as a function of μ=T for M=T ¼ 1=2 and 5=2; the
parameter m0 is set to 1. The most obvious feature is
the saturation of the number density at 3 for large μ. In the
context of lattice gauge theories at finite density, saturation
was first discussed in [44] for the case of SUð2Þ, where
there is no sign problem. See [29,38] for recent discussions
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of saturation effects in strong-coupling models of SUð3Þ at
finite density. Saturation is also observed in recent
Langevin simulation with heavy quarks [8]. For the heavier
quark mass M=T ¼ 5=2, we expect that antiquark effects
are negligible for μ≃M, and the system has an approxi-
mate particle-hole symmetry atM ¼ μ. This in turn implies
that the quark number density reaches half-filling (1.5) at
M ¼ μ. As may be seen from the figure, that expectation is
confirmed. For the lighter quark mass, M=T ¼ 1=2, anti-
quark effects are not negligible when μ≃M, and antiquark
contributions lower the number density at μ ¼ M below the
half-filling value. In both cases, the number density
saturates at some value of μ larger than M.

V. CONCLUSIONS

The spatial transfer matrix associated with Polyakov
loops in finite-density QCD with static quarks have com-
plex eigenvalues over a significant region of parameter
space in strong-coupling limit. The appearance of complex
eigenvalues is a direct consequence of the non-Hermiticity
of the transfer matrix. This is a manifestation of the sign
problem in finite-density QCD. We have given a graphical
explanation of the non-Hermiticity in terms of the mixing
between different representations. The invariance of finite-
density QCD under CK symmetry ensures that the eigen-
values are either real or part of complex conjugate pair.
The complex conjugate pairs in turn give rise to sinusoidal
modulation of Polyakov loop correlation function. If the
activities z1 and z2 are set to a common value z, i.e. μ ¼ 0,
all the eigenvalues are real. In this case, all the low-lying
eigenvalues are largest when the static fermion mass M is
zero, corresponding to z ¼ 1. In the case where antipar-
ticles effects are completely suppressed by setting z2 ¼ 0,
the mass spectrum reflected the particle-hole symmetry of
the theory under z1 → 1=z1. As in the previous case, the
real part of the transfer matrix eigenvalues peak at z1 ¼ 1,
corresponding to M ¼ μ. This is a point where the transfer

matrix is Hermitian, and also the point of half-filling.
The complete suppression of antiquark effects obtained by
setting z2 ¼ 0 is an approximation. If z2 were exactly zero,
then we would find that (a) all mass ratios would be real at
z1 ¼ 1, a property that would hold in a region around
z1 ¼ 1, (b) mass ratios would show maxima or minima at
z1 ¼ 1, (c) TrFP and TrFP† would cross at z1 ¼ 1. We
have confirmed that these properties persist when z2 ≪ 1,
reflecting an approximate particle-hole symmetry. As z2
increases and antiparticle effects become more important,
the regions where complex eigenvalues occur reduce in size
and eventually disappear as z2 approaches z1.
The mass spectrum can also be analyzed in terms of the

more physical parameters M=T and μ=T. In general, the
spectrum of low-lying eigenvalues shows a complicated set
of behaviors, with both real and complex pairs of eigen-
values occurring. When M=T is large compared to m0 and
μ=T, the spectrum obtained is essentially that of pure gauge
theory, and the low-lying eigenvalues are all real. The
region where μ=T is close to M=T corresponds to z1 ¼ 1,
and the behavior in this region is largely determined by the
approximate particle-hole symmetry discussed above. In
all the cases studied, hTrFPi ≤ hTrFP†i for 0 < μ < M,
reflecting the lower free energy cost associated with
introducing antiparticles. The occurrence of conjugate
complex mass pairs and sinusoidal modulation of
Polyakov loop correlation functions was previously
observed by us in the study of phenomenological models
of QCD using a saddle point approximation [19,20]. The
presence of a similar phenomenon in lattice models of QCD
at strong coupling strongly suggests the generality of the
phenomenon. It has been suggested [45,46] that sinusoidal
modulation of this type might be observed in lattice
simulations and heavy ion experiments. In both phenom-
enological models and in lattice strong-coupling calcula-
tions, the imaginary part of the mass is significantly smaller
than the real part, suggesting that the direct observation of
modulation might be difficult because of a long wave-
length. However, there is another way to observe the
splitting of the spectrum into complex pairs in lattice
simulations. Suppose that the imaginary parts of the masses
are too small to be directly observed and can be neglected.
In the regions where there are complex conjugate eigen-
value pairs, the real parts of the eigenvalues are degenerate,
but outside of those regions they are different. This effect
should be present and observable in lattice simulations of
finite-density QCD and may provide a strong test for finite-
density algorithms.
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