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Momentum space anisotropy present in the quark and gluon distribution functions in relativistic heavy
ion collisions induces Chromo-Weibel instability in the hot QCD medium created therein. The impact of
the Chromo-Weibel instability on the dynamics of a heavy quark (HQ) traversing in the QGP medium is
investigated within the framework of kinetic theory by studying the momentum and temperature behavior
of HQ drag and diffusion coefficients. The physics of anisotropy is captured in an effective Vlasov term
in the transport equation. The effects of the instability are handled by making a relation with the
phenomenologically known jet-quenching parameter in RHIC and LHC. Interestingly, the presence of
instability significantly affects the temperature and momentum dependences of the HQ drag and diffusion
coefficients. These results may have appreciable impact on the experimental observables such as the
nuclear suppression factor, RAAðpTÞ, and the elliptic flow, v2ðpTÞ, of heavy mesons in heavy ion collisions
at RHIC and LHC energies which is a matter of future investigation.
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I. INTRODUCTION

The physics of the Chromo-Weibel instability [1] (non-
Abelian analogue of Weibel instability [2]) during the
hydrodynamic expansion of the QGP in heavy ion colli-
sions may play a crucial role in understanding the space-
time evolution and properties of a quark-gluon plasma
medium. The momentum anisotropy present during the
hydrodynamic expansion of the QGP may induce insta-
bilities to the Yang-Mills field (Chromo field) equations.
The Weibel type of instabilities can be seen in the
expanding quark-gluon plasmas since the width of the
momentum component in the direction of the expansion
narrows by expansion, leading to an anisotropic momentum
distribution. The instability in the rapidly expanding QGP
in heavy ion collisions may lead to the plasma turbulence
[3]. Recall that the plasma turbulence describes a random,
nonthermal pattern of excitation of coherent color field
modes in the QGP with a power spectrum similar to that of
vortices in a turbulent fluid [3].
The prime goal here is to investigate the heavy quark

dynamics in the presence of Chromo-Weibel instability.
This could be done by first modeling the nonequilibrium
momentum distribution functions that describe expanding
anisotropic QGP followed by employing it to the kinetic
theory description of heavy quark dynamics.
Hadrons containing HQs (c, c̄, b, or b̄) are of great

interest in investigating the properties of the QGP since
their physical properties get significantly modified while

traveling through QGP. This fact has been reflected in the
particle spectra at RHIC and the LHC energies. Further, HQ
thermalization time is larger than gluons and light quarks,
and they do not constitute the bulk of the QGP. Since their
formation occurs in the early stages of the collisions, they
can travel through the thermalized QGP medium and can
retain the information about the interaction with them very
efficiently. For instance, it is pertinent to ask whether a
single cc̄ can stay together long enough to form a bound
state (say J=ψ ) at the hadronization state. To address this,
one is required to describe the dynamics of the HQs
propagating through the QGP. Therefore, one can explore
the physics of the HQ transport [4–22] in the QGP medium
as follows. The nonequilibrated HQs can travel in the
equilibrated QGP medium, and one has to deal with the
problem within the framework of Langevin dynamics [23].
This is to say that the HQs perform random motion in the
equilibrated QGP. Recall that the QGP goes through a
hydrodynamic evolution before it reaches the hadronization
and subsequently the hadrons freeze out.
The pertinent question to ask is whether HQs maintain

equilibrium during this entire process of the space-time
evolution or not. It has been observed [24] within the
framework of Langevin dynamics and pQCD (perturbative
QCD) that the HQs may not achieve the equilibrium in the
RHIC and LHC energies.
The most important observable, which encodes the

medium effects carried with them by the HQs while
traveling in the QGP, is the nuclear modification factor,
RAA. It has been observed that their energy loss in the QGP
due to gluon radiation is insufficient to describe the
medium modification of the spectrum [25,26]. Therefore,
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one has to look at the collisions since they have different
fluctuation spectrums than radiation and might contribute
significantly as one thought of initially [27,28]. The colli-
sional effects can be captured well in the HQ drag and
diffusion coefficients which have been calculated within
weak coupling QCD by several authors. The formalism and
details are offered in Sec. II A.
The temperature, T, and chemical potential, μB, depend-

ence of the drag and diffusion coefficient enter through the
thermal distributions of light quarks and gluons. In the
present calculation, we ignore the μB dependence in view of
the fact that the QGP produced at RHIC and LHC energies
at the midrapidity region has negligibly small net baryon
density. But one has to implement the realistic QGP EOS in
terms of the appropriate form of the thermal distribution
functions. Lattice QCD EOS may be a good choice for
the description of the equilibrated QGP. Additionally, it is
important to address the role of the momentum anisotropies
at RHIC and LHC in influencing the dynamics of the heavy
quarks in the hot QCD medium. This is the main focus of
the article.
The paper is organized as follows. Section II deals

with the kinetic theory formulation of HQ dynamics in
the background QGP medium in terms of drag and
diffusion coefficients. Section III discusses the non(near)-
equilibrium modeling of the degrees of freedom that
describes the QGP medium in the presence of anisotropy.
In Sec. IV, we present the results and related discussions.
Finally, conclusions are presented in Sec. V.

II. HEAVY QUARK DRAG AND DIFFUSION
IN THE HOT QCD MEDIUM

HQs play crucial roles in characterizing QGP as they
are produced in the early stages of the heavy ion collisions
and remain extant throughout the evolution and, hence, can
capture the information of the entire evolution of the
system. The dynamics of HQs while traveling in the
QGP medium can be understood in terms of the drag
and diffusion coefficients following Landau’s prescription.

A. Heavy quark drag and diffusion

Let us consider the elastic interaction experienced by
HQs while traversing into the hot QCD medium. Next, we
consider the process cðpÞ þ lðqÞ → cðp0Þ þ lðq0Þ [l stands
for gluon and light quarks and antiquarks; p denotes the
momentum of an HQ and q of the bulk particles. Note that
the sub(super)script, q, denotes the quarks and antiquarks].

B. HQ drag

The the drag coefficient, γ, can be calculated by using the
following expression [29]:

γ ¼ piAi=p2 ð1Þ

where Ai is given by

Ai ¼
1

2Ep

Z
d3q

ð2πÞ3Eq

Z
d3p0

ð2πÞ3E0
p

Z
d3q0

ð2πÞ3E0
q

×
1

gQ

X
jMj2ð2πÞ4δ4ðpþ q − p0 − q0Þ

× fðqÞð1� fðq0ÞÞ½ðp − p0Þi�
≡ hhðp − p0Þii; ð2Þ

with gQ being the statistical degeneracy of the HQ
propagating through QGP. The above expression indicates
that the drag coefficient is the measure of the thermal
average of the momentum transfer, p − p0, due to inter-
action of the heavy quarks with the bath particle weighted

by the square of the invariant amplitude, jMj2. The factor
fðqÞ denotes the thermal distribution of the particles in the
QGP. Here, 1� fðp0Þ is the momentum distribution with
the Bose enhancement or Pauli-suppressed probability in
the final state. Note that fðqÞ will involve three types of
thermal phase space distribution functions corresponding to
the gluons (g), light quarks (q≡ up and down), strange
quarks (s), and corresponding antiquarks. Hence, fðqÞ
jointly denotes this three phase space distribution as

fðqÞ≡ ffg; fq; fsg: ð3Þ

In the presence of initial momentum anisotropy, we need
to model them appropriately by first setting up the transport
equation and then solving it either analytically or numeri-
cally. In the present work, we consider the linearized
transport equation and capture all the effects coming from
the anisotropy as the first-order modification to the equi-
librium distribution functions for quark-antiquark and
gluons.
In view of the above, we consider the following

decomposition for the fðqÞ in three sector,

fg ¼ fg0ðqÞ þ fg1ð~q; ~rÞ;
fq ¼ fq0ðqÞ þ fq1ð~q; ~rÞ;
fs ¼ fs0ðqÞ þ fs1ð~q; ~rÞ: ð4Þ

Here, q ¼ j~qj.
At this stage, we need the correct modeling of equilib-

rium (isotropic) distribution functions [(first term in the
right-hand side of Eq. (4)] and the modifications induced
by the anisotropy. This is presented in the next section.

C. HQ diffusion

Similar to the HQ diffusion coefficient, B0 can be
evaluated as
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B0 ¼
1

4

�
hhp02ii − hhðp:p0Þ2ii

p2

�
: ð5Þ

With an appropriate choice of F ðp0Þ, both the drag and
diffusion coefficients can be evaluated from a single
expression as follows:

≪ F ðpÞ ≫ ¼ 1

512π4
1

Ep

Z
∞

0

q2dqdðcos χÞ
Eq

f̂ðqÞ

×
w1=2ðs;m2

Q;m
2
pÞffiffiffi

s
p

Z
−1

1

dðcos θc:m:Þ

×
1

gQ

X
jMj2

Z
2π

0

dϕc:m:F ðp0Þ; ð6Þ

where s is the Mandelstam variable and wða; b; cÞ ¼ a2 þ
b2 þ c2 − 2ab − 2bc − 2ac is the triangular function. In
the next section, we present the modeling of nonequili-
brium distribution functions for a rapidly expanding plasma
in the presence of small momentum anisotropy. These
distributions are employed to compute the HQ drag and
diffusion coefficients.

III. MODELING MOMENTUM DISTRIBUTION
FUNCTIONS FOR GLUONS AND QUARKS

A. The isotropic distributions

The equilibrium modeling of the momentum distribution
functions employed here is based on the quasi-particle
nature of the hot QCD medium (beyond Tc) [30]. The
quasi-particle description employed here has been devel-
oped in the context of the recent (2þ 1)-flavor lattice QCD
EOS [31] at physical quark masses. There are more
recent lattice results with the improved actions and refined
lattices [32], for which we need to re-look the model with a
specific set of lattice data specifically to define the effective
gluonic degrees of freedom. Therefore, we stick to the set
of lattice data utilized in the model described in [30]. Here,
the form of the equilibrium distribution functions, feq≡
ffg0; fq0; fs0g, (this notation is useful later while writing the
transport equation in both the sector in compact notations)
describing the strong interaction effects in terms of effec-
tive fugacities zg;q can be written as

fg=q0 ¼ zg=q exp½−βq�
ð1∓zg=q exp½−βq�Þ

;

fs0 ¼
zq exp½−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

s

p
�

ð1þ zq exp½−β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

s

p
�Þ
; ð7Þ

where q ¼ j~qj, ms denotes the mass of the strange quark
(which we choose to be 0.1 GeV), and β ¼ T−1 denotes the
inverse of the temperature.

We use the notation νg ¼ 2ðN2
c − 1Þ for gluonic degrees

of freedom, νq ¼ 2 × 2 × Nc × 2 for light quarks, and νs ¼
2 × 2 × Nc × 1 for the strange quark for SUðNcÞ. As we
are working at zero baryon chemical potential, therefore
quark and antiquark distribution functions are the same.
Since the model is valid in the deconfined phase of QCD
(beyond Tc), the mass of the light quarks can be neglected
as compared to the temperature. As QCD is a SUð3Þ gauge
theory, Nc ¼ 3 for our analysis.
Note that the effective fugacities (zg=q) are not merely a

temperature-dependent parameter which encodes the hot
QCD medium effects. They lead to a nontrivial dispersion
relation both in the gluonic and quark sectors as

ωg ¼ qþ T2∂T lnðzgÞ;
ωq ¼ qþ T2∂T lnðzqÞ;

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
þ T2∂T lnðzqÞ; ð8Þ

and this lead to the new energy dispersions for gluons (ωg),
light quark antiquarks (ωq), and strange quark-antiquarks.
For a detailed discussion of the interpretation and physical
significance of zg and zq, we refer the reader to [30]. There
are other quasi-particle descriptions in the literature, and
those could be characterized as effective mass models
[33,34], effective mass models with gluon condensate [35],
and effective models with Polyakov loop [36]. Our model is
fundamentally distinct from all these models. Another
crucial point is regarding the definition of the energy
momentum tensor, Tμν. As described in [37], in the
presence of nontrivial temperature-dependent energy
dispersion (as in all these quasi-particle models), we need
to modify the definition of the Tμν so that the trace anomaly
effects in QCD can be accommodated in the definition. The
modified Tμν for the effective mass models is obtained in
[37] and for the current model in [38]. To model the (non)
near-equilibrium momentum distributions for the quarks
and gluons, we exploit the role of momentum anisotropy
present during the hydrodynamic expansion of the QGP in
RHIC. The momentum anisotropy may induce Weibel-type
instability in the hot QCD medium and may be responsible
for anomalous transport processes in the QGP.

B. Chromo-Weibel instability and anomalous
transport: Dupree-Vlasov equation

Recall that the momentum anisotropy present in quark
and gluon momentum distribution functions induces insta-
bility in the Yang-Mills equations in a similar way as the
Weibel instability in the case of electromagnetic (EM)
plasmas. This instability, while coupled with the rapid
expansion of the QGP, leads to anomalous transport and
modulates the transport coefficients of the plasma substan-
tially. This fact was realized by Dupree in the case of
EM plasmas in 1954 [39] and was later generalized for the
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non-Abelian plasmas in [3,40]. In the context of QGP,
the phenomenon of the anomalous transport is realized at
the later stages of the collisions due to the hydrodynamic
expansion of the QGP; one has appreciable momentum
anisotropy present in the thermal distribution functions of
quarks and gluons.
The first step towards estimating the near equilibrium

momentum distributions of the quarks and gluons in
rapidly expanding QGP with momentum anisotropy is to
set up the Dupree-Vlasov equation (linearized version) and
then solve it with the help of an ansatz to obtain the
correction to the isotropic distribution functions. Next, we
briefly outline the mathematical formalism in solving the
transport equation.

C. Formalism

We start with the following ansatz for the nonequilibrium
distribution function,

fð~q; ~rÞ ¼ zg;q expð−βuμqμÞ
1� zg;q expð−βuμqμ þ f1ð~q; ~rÞÞ

; ð9Þ

where zg;q are the effective gluon, quark fugacities coming
from the isotropic modeling of the QGP in terms of lattice
QCD equation of state. The parameter β is the temperature
inverse (in units of KB ¼ 1), and uμ is the fluid 4-velocity
considering the fluid picture of the QGP medium. Here,
f1ð~q; ~rÞ denotes the effects from the anisotropy (momen-
tum). To achieve the above-mentioned near equilibrium
situation, f1 must be a small perturbation. Under this
condition, we obtain,

fð~q; ~rÞ ¼ f0ðqÞ þ f0ð1� f0ðqÞÞf1ð~q; ~rÞ þOðf1ð~q; ~rÞ2Þ:
ð10Þ

The plus sign is for gluons, andminus sign is for the quarks/
antiquarks.
Next, the following form for the ansatz is considered for

the linear order perturbation to the isotropic gluons and
quarks distribution functions, respectively,

f1ð~q; ~rÞ≡ fg;q1 ¼ −
1

ωg;qT2
qiqjðΔg;qð~qÞð∇uÞij; ð11Þ

The quantities, Δg;q, denotes the strength of the momentum
anisotropy for the gluons and quarks, respectively. In the
local rest frame of the fluid (LRF) f0 ¼ feq ¼ ðfg0; fq0Þ,
and considering longitudinal boost invariance, we obtain
∇ · ~u ¼ 1

τ and ∇uij ¼ 1
3τ diagð−1;−1; 2Þ, leading to

fg;q1 ¼ −
Δg;qðqÞ
ωg;qT2τ

�
q2z −

q2

3

�
: ð12Þ

We utilize the above anisotropic quasi-quark (antiquark)
and quasi-gluon distribution functions to linearize the
effective transport equation below.

1. Effective transport equation in
turbulent chromo-fields

The evolution of the quasi-quark and quasi-gluon
momentum distribution functions in the anisotropic
QGP medium can be described by the Vlasov-
Boltzmann equation [41]:

vμ
∂
∂xμ fðr;q; tÞ þ gFa · ∇qfaðr;q; tÞ ¼ 0. ð13Þ

Here, fðr;q; tÞ represents the parton distribution in phase
space, which sums over all parton colors, q≡ ~q and r≡ ~r.
The quantity faðr;q; tÞ denotes the color octet distribution
function. Here, we have neglected the collision term. Both
the distributions, f and fa, are defined in the semiclassical
formalism in [42] as the moments of the distribution
function ~fðr;q; Q; tÞ in an extended phase space that
includes the color sector

fðr;q; tÞ ¼
Z

dQ ~fðr;q; Q; tÞ; ð14Þ

faðr;q; tÞ ¼
Z

dQQa ~fðr;q; Q; tÞ: ð15Þ

Here, Qa denotes the color charge, vμ¼ qμ

q0, qμ¼ðq0¼
Eq; ~qÞ. Furthermore, the color Lorentz force is defined as

Fa ¼ Ea þ v × Ba: ð16Þ

Note that the color octet distribution function, fa,
satisfies a transport equation which also involves coupling
with the phase space distributions of higher color SUð3Þ
representations. In the present case, the near equilibrium
consideration allows us to truncate this hierarchy by
keeping only the lowest order term in the gradients for
both f and fa. In the case of equilibrium, the color octet
distribution vanishes, fa ≡ 0, implying that it is at least
linear in perturbation. With all the above considerations, the
transport equation for fa reads [41,42],

vμ
∂fa
∂xμ þ gfabcAb

μvμfc þ
gC2

N2
c − 1

Fa · ∇qf ¼ 0; ð17Þ

where C2 is quadratic Casimir invariant and fabc denotes
the structure constants of SUð3Þ. Here, Aμ represents the
gauge field. Next, the prime goal is to solve Eq. (17) and
obtain fa in terms of f and finally solve Eq. (13), in the
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case of turbulent Chromo fields. At this juncture, we need
to make additional assumptions about the field distribution
in the Vlasov force term. In the presence of anisotropy
(momentum), the color field is turbulent (random with a
certain spatial and temporal correlation structure for fields
at different space-time points). The octet distribution
function in terms of the siglet one is obtained in [3]. We
briefly outline the procedure here.
Next, Fourier transforming the fa [the dependence on

the space-time coordinate xμ ¼ ðt; rÞ], we obtain

faðq; xÞ ¼
Z

d4k
ð2πÞ4 e

−ik·xfaðq; kÞ: ð18Þ

Here, the singlet distribution, fðqÞ, is allowed to have
arbitrary particle distribution in momentum space but
neglects any space-time dependence.
Now, the solution of Eq. (17) is given by [43]

faðq;kÞ¼−ig
C2

N2
c−1

ðv ·kþ iϵÞ−1FaðkÞ ·∇qfðqÞ; ð19Þ

where v · k≡ vμkμ ¼ k0 − v · k.
Note that gauge connection, Uðx; x0Þ, is associated with

the space-time derivative, which parallel transports the
gauge field from one spatial point to another. In other
words, Uðx; x0Þ has the effect of introducing a path-ordered
factor:

Uacðx; x0Þ ¼ P exp

�
−
Z

x

x0
fabcAb

μdxμ
�
; ð20Þ

which parallel transports the gauge fields from x0 to x (here,
Aμ is the gauge field). With this consideration, returning
back to coordinate space in Eq. (19), fa reads

faðq; xÞ ¼ −ig
C2

N2
c − 1

Z
d4k
ð2πÞ4

Z
d4x0Uabðx; x0Þ

×
eik·ðx0−xÞ

v · kþ iϵ
Fbðx0Þ ·∇qfðqÞ: ð21Þ

Substituting this solution for fa into Eq. (13), the Vlasov
force term takes the following form:

gFaðxÞ ·∇qfaðq; xÞ ¼ −
ig2C2

N2
c − 1

FaðxÞ ·∇q

Z
d4k
ð2πÞ4

×
Z

d4x0Uabðx; x0Þ
eik·ðx0−xÞ

v · kþ iϵ

× Fbðx0Þ ·∇qfðqÞ: ð22Þ

The argument that has been invoked is that the soft
chromo-fields are turbulent, and their action on the quasi-
partons can be described by taking an ensemble average,
which can be factorized in the form

hFa
i ðxÞUabðx; x0ÞFb

j ðx0ÞfðqÞi
¼ hFa

i ðxÞUabðx; x0ÞFb
j ðx0Þif̄ðqÞ: ð23Þ

Here, Fa;b
i denotes the color electric and magnetic fields,

and Uabðx; x0Þ is the correction function/gauge connection.
The further assumption that is invoked here is that the
correlation functions of fields at different space-time points
(x and x0) depend only on R≡ jx − x0j and decay rapidly
with correlation time τm and correlation length σ as

hEa
i ðxÞUabðx;x0ÞEb

j ðx0Þi¼hEa
i E

a
j iΦðelÞ

τ ðjt− t0jÞ ~ΦðelÞ
σ ðRÞ;

hBa
i ðxÞUabðx;x0ÞBb

j ðx0Þi¼hBa
i B

a
j iΦðmagÞ

τ ðjt− t0jÞ ~ΦðmagÞ
σ ðRÞ:

ð24Þ

The Gaussian correlaters (given below) satisfy the above
conditions,

Φðel=magÞ
τ ðjt − t0jÞ ¼ exp ½ðt − t0Þ2=2τ2el=mag�; ð25Þ

~Φðel=magÞ
σ ðjx − x0jÞ ¼ exp ½ðx − x0Þ2=2σ2el=mag�: ð26Þ

We also assume that the color electric and magnetic fields
are uncorrelated. Next, performing first the integral over k0,
then over k, finally, the integral over x0 [3],

hgFa ·∇pfai ¼ −
g2C2

N2
c − 1

�
τelmhEa

i E
a
j i

∂2

∂qi∂qj
þ τmag

m hBa
i B

a
j iðv ×∇qÞiðv × ∇qÞj

�
f̄ðqÞ

≡ −∇q ·DðqÞ ·∇qf̄ðqÞ: ð27Þ

Now, consider only the color magnetic field generated by
plasma instability that points in the transverse direction,

hBa
i B

a
j i ¼

1

2
ðδij − δizδjzÞ; hEa

i E
a
j i ¼ 0: ð28Þ

Employing the notation −iq × ∇q ¼ LðqÞ for the generator
of rotations in momentum space, we can now write the
Vlasov term in the transverse color magnetic field as

∇q ·D · ∇q ¼ −
g2C2

2ðN2
c − 1ÞE2

p
hB2iτmag

m ½ðLðqÞÞ2 − ðLðqÞ
z Þ2�:

ð29Þ

Next, we consider the light-cone frame (E ¼ B) and
write B2 ¼ ðE2 þ B2Þ=2, and assuming same value for the
relaxation times for E and B (τmag

m ≡ τm), we obtain
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∇q ·D ·∇q ¼−
g2C2

4ðN2
c − 1ÞE2

p
hE2þB2iτm½ðLðqÞÞ2− ðLðqÞ

z Þ2�

≡FA: ð30Þ

In our case, Eq is replaced by ωg;q (energy dispersion for
quasi-particle) as v ¼ q=ω, and for f̄ð~qÞ, we employ fð~qÞ
in Eq. (10).
Now, we can replace the Vlasov-Boltzmann equation in

Eq. (13) by the ensemble averaged by the diffusive Vlasov-
Boltzmann equation [3],

vμ
∂
∂xμ f̄ − FAf̄ ¼ 0: ð31Þ

Here, f̄ denotes the ensemble-averaged thermal distribution
function of quasi-partons. In our case, f̄ ≡ fð~q; ~rÞ [given
in Eq. (9)].
The force term (FA) in the case of chromo-electromagnetic

plasma in the present case is

FAf̄ðqÞ≡ FAfð~q; ~rÞ

¼ g2C2

3ðN2
c − 1Þω2

g;q
hE2 þ B2iτm

× L2feqð1� feqÞqiqjð∇uÞij; ð32Þ

where C2 is the Casimir invariants (C2 ≡ ðNc; ðN2
c − 1Þ=

2NcÞ quadraticCasimirs ofSUðNcÞ). The quantities hE2i and
hB2i are the color-averaged chromo-electric and chromo-
magnetic fields (average over the ensemble of turbulent color
fields [3]), and τm is the time scale (relaxation time) for the
instability. Note that while obtaining the effective Vlasov-
Dupree equation in Eq. (36), the operator L2 is defined as

L2 ¼ ½~q × ∂ ~q�2 − ½~q × ∂ ~q�2z : ð33Þ

While obtaining the expression for the above force term, we
first considered a purely chromo-magnetic plasma and then
wrote the terms in light-cone frame [3,44].
Now, we start with the equilibrium distribution function

(local) feq ¼ 1=ðz−1g;q expðβu:qÞ∓1Þ, where zg=q is purely
temperature dependent. The action of the drift operator on
feq is given by

ðv · ∂Þfeq ¼ −feqð1þ feqÞfðq − ∂β lnðzg;qÞÞv · ∂ðβÞ
þ βðv · ∂Þðu · qÞg; ð34Þ

where we recognize that q − ∂β lnðzg=qÞ≡ ωg;q is the
modified dispersion relations.
After some straightforward computation [3,44], we

obtain

ðv · ∂ÞfeqðqÞ ¼ feqð1�feqÞ
�
qiqj
ωg;qT

ð∇uÞij −m2
DhE2iτelωg;q

3T2∂E=∂T
þ
�

q2

3ω2
g;q

− c2s

�
ωg;q

T
ð∇ · ~uÞ

�
; ð35Þ

where c2s is the speed of sound, m2
D is the Debye mass, E is

the energy density, and τel is the time scale of the instability
in chromo-electric fields. The physics of shear viscosity is
mainly captured by the first term in the right-hand side of
Eq. (35), and the other two terms lead to the thermal
conductivity and bulk viscosities, respectively.
Finally, we obtain the effective transport equation as

��
q2

3ωg;q
− c2s

�
ωg;q

T
ð∇ · ~uÞ þ qiqjð∇Þij

ωg;qT

�
fg;q0 ð1� fg;q0 Þ

¼ g2C2

3ðN2
c − 1Þω2

g;q
hE2 þ B2iτmL2fg;q1 fg;q0 ð1� fg;q0 Þ:

ð36Þ

The operator L2 is similar to the quadrapole operator,
and the most peculiar thing about it is that it only acts
nonvanishingly on the anisotropic piece of any function of
momentum (~q). Note that the randomly distributed electric
fields are well known to lead to an increase in the average
energy of the plasma particles [45] and thus heating of the
plasma. In contrast, the color magnetic fields only con-
tribute to the isotropization of the momentum distribution
and do not cause plasma heating [plasma heating effect
is captured in the second term in the right-hand side of
Eq. (35)]. Importantly, the first term in the left-hand side of
Eq. (36) contributes to the physics of isotropic expansion
(bulk viscosity effects), which is not taken into account in
the present work.
Solving Eq. (36) for Δg;q analytically, we obtain the

following expression [38,46]:

Δg;q ¼ 2ðN2
c − 1Þ ωg;qT

3Cg;qg2hE2 þ B2ig;qτm
: ð37Þ

Next, we relate the unknown quantities in the denom-
inator with the phenomenologically known parameter, the
jet-quenching parameter, in both the gluonic and quark
sector below.

2. Relation to the jet-quenching parameter, q̂

The two most relevant transport coefficients related to
anomalous transport due to the soft color fields are η
and the jet-quenching parameter q̂. Here, the strength of the
anisotropy, Δð~qÞ, is related to the physics of η. The q̂ is
proportional to the mean momentum square per unit length
on the an energetic parton imparted by turbulent fields [47].
This fact has been employed to relate the two below.
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In the QGP phase, q̂ for both gluons (q̂g) and quarks (q̂q)
has been estimated employing several different approaches
[48]. The five distinct approaches mentioned in [48] are
viz., the GLV-CUJET Model [49], Higher Twist Berkeley
Wuhan Model (HT-BW) [50], Higher-Twist-Majumder
Model (HT-M) [51], MARTINI Model [52], and
MCGILL AMY Model [53]. Combining all these models,
one obtains the quark transport parameter q̂q in the range,

q̂q
T3

¼ 4.6� 1.2 at RHIC;

q̂q
T3

¼ 3.7� 1.4 at LHC: ð38Þ

The gluon-quenching parameter q̂g is related to q̂g by a
factor of 9

4
(in terms of Casimir invariants of the SUð3Þ

group),

q̂g ¼
9

4
q̂q: ð39Þ

A relevant point to be noted is that q̂ for the QGP scales
with T3. If one considers the highest temperatures
reached at central Au-Au at RHIC and Pb-Pb at LHC,
T ¼ 370 MeV and T ¼ 470 MeV, respectively. The cor-
responding numbers for q̂q for a 10 GeV quark jet are

q̂q ¼ 1.3� 0.3 GeV2=fm; 1.9� 0.7 GeV2=fm; ð40Þ

for RHIC and LHC, respectively.
Let us now discuss the temperature variations at RHIC

and LHC while obtaining q̂ enlisted in Eq. (38). For Au-Au
at 200 GeV=n, T0 ¼ 346–373 MeV and for Pb-Pb at
2.76 TeV=N, T0 ¼ 447–486 MeV with initial time τ0 ¼
0.6 fm=c for RHIC energy and τ0 ¼ 0.3 fm=c for the LHC
energy. In the present context, the unknown quantities
hE2 þ B2iτm, which capture the physics of anisotropy and
chromo-Weibel instability [1], can be written in terms of q̂
both in gluonic and matter sectors as [54]

q̂ ¼ 2g2Cg=f

2ðN2
c − 1Þ hE

2 þ B2iτm; ð41Þ

where Cg ¼ Nc, Cf ¼ ðN2
c−1Þ
2Nc

for the gluons and quarks,
respectively.
Invoking the definition of q̂ from Eq. (41) in Eq. (37), we

obtain the following expressions:

Δg;q ¼
4ω2

g;qT

9q̂g;q
: ð42Þ

Finally, we obtain the following near equilibrium
distribution functions in terms of the jet-quenching
parameter q̂,

fg;qð~qÞ ¼ fg;q0 − fg;q0 ð1� fg;q0 Þ 4ωg

9q̂g;qðτTÞ
�
q2z −

q2

3

�
:

ð43Þ

IV. RESULTS AND DISCUSSIONS

The momentum variation of the drag and diffusion
coefficients of the charm quark is depicted in Figs. 1
and 2 with and without instability at RHIC energy by
invoking Eq. (43) in Eqs. (2) and (6), respectively.
The initial temperature (Ti) at RHIC energy is assumed

to be equal to Ti ¼ 360 MeV, and the q̂ corresponding
to the temperature 360 MeV is taken as 4.6. The initial
thermalization time (τt) at RHIC energy is taken as 0.6 fm.
The impact of instability is quite significant (mainly at low
momentum range), which decreases the drag coefficient at
low momentum, hence, allowing the heavy quarks to move
freely. It is worth mentioning that the temperature depend-
ence of the drag coefficient plays a significant role [19] to
describe heavy quarks RAA and v2 simultaneously, which is
currently a challenge to almost all the models of HQ
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FIG. 1. Variation of the drag coefficient with momentum at
RHIC energy.
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FIG. 2. Variation of the diffusion coefficient with momentum at
RHIC energy.
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dynamics. A constant or weak temperature dependence of
the drag coefficient is essential to reproduce the heavy
quarks RAA and v2 simultaneously. In the presence of
instability, the drag coefficient decreases at high temper-
ature (at low momentum), and it does not affect the low
temperature part of the drag coefficient. Hence, the pres-
ence of instability alters the temperature as well as the
momentum dependence of the drag coefficient and may
have a significance role on RAA and v2 relations. We
address these aspects in future works. The variation of the
corresponding diffusion coefficient with momentum is
shown in Fig. 2 at the RHIC energy with and without
instability. In the case of the diffusion coefficient, the
impact of instability is noticeable throughout the momen-
tum range considered in this work.
The momentum variation of drag and diffusion coef-

ficients of charm quarks with and without instability at the
LHC energy are displayed in Figs. 3 and 4, respectively,
showing behavior qualitatively similar to that of the RHIC
energy. In the case of LHC energy, we use T ¼ 480 MeV
and q̂ ¼ 3.7. The initial thermalization time at LHC energy
assumed to be τi ¼ 0.3 fm. At the qualitative front, HQ

drag and diffusion coefficients both at RHIC and LHC
show similar trends at lower as well as higher momentums.
This may be due to that fact that the temperature depend-
ence of q̂ at RHIC and LHC is not very different.
It is worth mentioning that the allowed region of

perturbative treatment in Eq. (10) depends on both the
light quark/gluon momentum (q) and the value of q̂=T3. In
terms of anisotropy (q̂=T3), we are already in the upper
limit, just to highlight what could be the maximum effect.
To be well within the allowed region of perturbative
treatment and for a more realistic simulation, larger values
of q̂=T3 is more appropriate. Keeping this view in mind, we
choose q̂=T3 in the range of 10–20 for the analysis in the
next section.

A. Impact of strength of the anisotropy

To explore the impact of the instability/anisotropy on the
heavy quark dynamics, we vary the parameter q̂=T3 from
10–20 as shown in Fig. 5. As we increase the value of q̂=T3,
conversely decreasing the strength of the anisotropy, the
heavy quark drag coefficient, γ, at low p (less than 4 GeV)
increases, in contrast with its behavior at high p (larger than
4 GeV). The impact is more pronounced at low momentum.
The larger the strength of anisotropy is, the smaller the γ is,
meaning that the anisotropy is creating relatively lesser
hindrance for the HQs to travel in the QGP medium at low
momentum, in contrast to the role played by the anisotropy
at high p.
We vary the parameter q̂=T3 from 10–20 as shown in

Fig. 6 for the diffusion coefficient. As we increase the value
of q̂=T3, the heavy quark diffusion coefficient decreases
(in low momentum) in contrast to the drag coefficient. The
quantity Q in the figure legends (Figs. 5–8) is defined
as Q≡ q̂=T3.
Note that while deriving the anisotropic momentum

distribution functions for the quasi-quarks and quasi-
gluons, we ignored the collision term. This is based on
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FIG. 3. Variation of the drag coefficient with momentum at
LHC energy.
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the assumption that the anomalous process (the effect of
turbulent chromo-fields) causes substantial suppression of
the transport coefficients such as shear viscosity. The total
viscosity is mainly decided by the anomalous process only

as the transport rates are inverse additive not the viscosities.
In contrast, for the HQs, the dynamics is primarily con-
trolled by the collisional processes. It will be interesting to
see the interplay of collisional and turbulent fields while
exploring the dynamics of HQs along with contributions
from the radiative processes in the near future.

V. CONCLUSIONS AND OUTLOOK

We have estimated the drag and diffusion coefficients of
heavy quarks propagating through a QGP medium con-
sidering the role of momentum state anisotropy. The initial
momentum anisotropy in the early stages coupled with the
rapidly expanding QGP is modeled by setting up an
effective transport equation, and its solution in near
equilibrium approximation leads to the modeling of
(non)near equilibrium distribution functions for quark-
antiquarks and gluons. We have coupled these distribution
functions to the kinetic theory description of heavy quark
drag and diffusion coefficients and studied their temper-
ature and momentum dependence.
We found that both at RHIC and LHC energies impact

of the anisotropy on heavy quark transport is quite
significant as compared to the case when HQs are moving
in an isotropic QGP medium. The presence of anisotropy
alters both the temperature as well as momentum depend-
ences of the heavy quarks drag and diffusion coefficients.
Moreover, the presence of anisotropy reduces the drag
coefficient at the initial stage (at high temperature) of the
QGP, whereas the impact of anisotropy will be very
nominal at the later stages of the QGP (low temperature).
Hence, the presence of anisotropy will make the temper-
ature dependence of the drag coefficients smoother,
which may help to develop larger v2 than in the isotropic
case for the same RAA [19].
It is crucial to note that the nuclear modification

factor, RAA, is very sensitive to the early stages of the
expansion (at high temperatures) where the energy
density is the highest [55–58]. Therefore, collisions
take place at a high rate in the early stages of the
evolution. This translates into a strong initial suppres-
sion of RAA, which subsequently gets saturated within
3–4 fm due to the radial flow that is able to compensate
the energy loss. However, such a strong interaction in
the early stages will not be accompanied by a buildup
of v2 because the bulk medium has not yet developed a
sizable part of its elliptic flow. We intend to investigate
this issue further in near future.
In the present case, we have only studied the impact of

anisotropy on heavy quark collisional loss. Anisotropy may
affect the heavy quark radiative loss. It will be interesting to
study the impact of anisotropy on heavy quark radiation.
The impact of these results on RAA and v2 will be a matter
of future investigation. We also intend to explore the impact
of bulk viscosity along the similar lines of the analysis.

0 2 4 6 8 10
p (GeV)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

γ 
(f

m
-1

)

Without instability
Q=10
Q=15
Q=20

FIG. 7. Dependence on the strength of the anisotropy/instability
of the drag coefficient at LHC.
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