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We derive the Landau-Khalatnikov-Frandkin transformation (LKFT) for the fermion propagator in
quantum electrodynamics (QED) described within a brane-world inspired framework where photons are
allowed to move in dγ space-time (bulk) dimensions, while electrons remain confined to a de-dimensional
brane, with de < dγ , referred to in the literature as reduced quantum electrodynamics, RQEDdγ ;de .
Specializing to the case of graphene, namely, RQED4;3 with massless fermions, we derive the
nonperturbative form of the fermion propagator starting from its bare counterpart and then compare its
weak coupling expansion to known one- and two-loop perturbative results. The agreement of the gauge-
dependent terms at order α and α2 is reminiscent of the structure of LKFT in ordinary QED in arbitrary
space-time dimensions and provides strong constraints for the multiplicative renormalizability of
RQEDdγ ;de .
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I. INTRODUCTION

Gauge symmetry is the cornerstone of our current
understanding of the fundamental interactions among the
building blocks of the Universe. Quantum electrodynamics
(QED) is probably the best-known example of a quantum
field theory with an underlying gauge symmetry where the
theoretical predictions (based upon its the multiplicative
renormalizability character) and the experimental results
meet with remarkable agreement; for example, the anoma-
lous magnetic moment of the muon is in agreement with
the experimental value up to six significant digits [1,2]. The
gauge principle in QED at the level of the corresponding
Green functions is reflected in sets of relations among
different n-point functions. Ward [3], Ward-Green-
Takahashi [3–5], and transverse Ward identities [6–10]
relate (nþ 1)-point to n-point functions in constructions
resembling divergence and curl of currents, while Nielsen
identities [11,12] guarantee the gauge invariance of poles of
propagators at one loop [13] and to all orders in perturba-
tion theory [14,15]. A different family of transformations
dealing with the gauge covariant character of QED is the
Landau-Khalatnikov-Fradkin transformations (LKFT)
[16,17], which describe in coordinate space the specific
manner in which a given Green function, either perturbative
or nonperturbative in nature, transforms covariantly in
different gauges. These transformations have been derived
by different authors and different approaches in the past
decades [18–22]. For the fermion propagator, these trans-
formations have been extensively used to establish multi-
plicative renormalizability of the theory, by imposing
perturbative constraints on the charged-particle-photon

vertex in spinless [23,24] and spinor QED [25,26].
The nonperturbative nature of the LKFT allows us to fix
some of the coefficients of the all-order expansion of the
fermion propagator. Starting with a perturbative propagator
at a fixed order no in perturbation theory in Landau gauge,
all the coefficients dependent of the gauge parameter of the
propagator at order (no þ 1) get fixed by the weak coupling
expansion of the LKF-transformed initial one. The LKF
transformation for the fermion propagator has been exten-
sively used in three-dimensional QED (QED3) [27–33] and
more recently extended to QCD [34,35]. In the particular
case of QED3—which is regarded as an effective model of
high-energy, large fermion family number approximation
to QCD—the LKFT allows a direct description in momen-
tum space and hence has been widely implemented to
address gauge-invariant issues in nonperturbative studies of
dynamical chiral symmetry breaking and confinement
within the Schwinger-Dyson equations framework
[29,36–38]. QED3 has also been traditionally used to
describe a number of condensed matter systems, including
quantum Hall effect systems [39], high-Tc superconductors
[40], and more recently graphene [39,41] and other Weyl
semimetals [42].
The new era of materials science emerging after graphene

has opened new avenues to explore applying ideas in the
particle physics realm to condensed matter systems. Dirac-
Weyl semimetals are a class of crystals which have conic
dispersion relations near the Dirac points in the first Brillouin
zone in such a way that the charge carriers, which are
confined to two-dimensional membranes, are described by
an effective low-dimensional Dirac equation, while the
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electromagnetic field quanta move unconstrained throughout
space. Such dynamics resembles brane-world scenarios
where the photon plays the role of the graviton and is
allowed to move in bulk dimensions dγ , while the matter
fields—electrons—are restricted to have dynamics on a de-
dimensional brane with de < dγ . The framework describing
this scenario has been dubbed reduced QED (RQEDdγ ;de)
[43]. The particular case of RQED4;3 with massless fermions
is regarded as the physical realization of low-energy gra-
phene and other Weyl-Dirac systems. Hence the importance
of investigating the gauge covariance properties of the
fermion propagator in RQEDdγ ;de .
The multiplicative renormalizability character of

RQEDdγ ;de for massless fermions has been verified up to
the two-loop order in Refs. [44–46]. Here we verify this
statement by investigating the gauge covariance properties of
the fermion propagator in RQED4;3 through the correspond-
ing LKFT. We adapt the successful strategy implemented in
Refs. [24,27,30–32,34], starting with the fermion propagator
at tree level in Landau gauge and LKF-transform it non-
perturbatively to other gauges. Then, we perform a weak
coupling expansion of our findings and compare against the
perturbative results of Ref. [44] allowed by the structure of
LKFT. For that purpose, we have organized the remaining of
this article as follows: in Sec. II we review the fermion
propagator in the light of LKFT in ordinary QED in arbitrary
space-time dimension d but specialize in the case d ¼ 3. We
briefly describe RQEDdγ ;de and derive the corresponding
LKFT in Sec. III. Perturbative constraints of the structure of
the fermion propagator in RQED4;3 are discussed in Sec. IV.
We conclude in Sec. V and present some auxiliary integrals
in the Appendix.

II. FERMION PROPAGATOR IN QED

We start our discussion by considering the general
structure of the Dirac fermion propagator in QED. In
momentum space, the fermion two-point function Sðp; ξÞ
has the general form

Sðp; ξÞ ¼ −
Fðp; ξÞ

p2 þM2ðp; ξÞ ðipþMðp; ξÞÞ; ð1Þ

whereFðp; ξÞ is the so-called wave function renormalization
andMðp; ξÞ is the fermion mass function. We have included
the gauge parameter ξ dependence of these functions
because we are interested in the form of the propagator in
different covariant gauges. On the other hand, in coordinate
space, Sðx; ξÞ can generally be written as

Sðx; ξÞ ¼ xXðx; ξÞ þ Yðx; ξÞ: ð2Þ

Equations (1) and (2) are valid for any space-time dimen-
sionality d and related to each other by a Fourier trans-
formation, namely,

Sðp; ξÞ ¼
Z

ddxeip·xSðx; ξÞ; ð3Þ

Sðx; ξÞ ¼
Z

ddp
ð2πÞd e

−ip·xSðp; ξÞ: ð4Þ

Correspondingly, in momentum space, the free gauge
boson propagator DμνðpÞ takes the form

DμνðpÞ ¼
−i
p2

�
gμν −

pμpν

p2

�
þ ξ

pμpν

ðp2Þ2 ; ð5Þ

in any number of space-time dimensions. The longitudinal
part of this propagator, proportional to the gauge parameter
ξ (ξ ¼ 0 corresponds to the Landau gauge) and inversely
proportional to p4, points to the specific manner in which
this two-point function varies from gauge to gauge and is
crucial to the derivation of the LKFT for the fermion
propagator [16–22]. This transformation is more clearly
written in coordinate space and states that the fermion
propagator in an arbitrary covariant gauge Sðx; ξÞ is related
to the corresponding propagator in Landau gauge Sðx; 0Þ
through the transformation

Sdðx; ξÞ ¼ Sdðx; 0Þe−i½Δdð0Þ−ΔdðxÞ�: ð6Þ

The function ΔdðxÞ, which essentially defines the LKF
transformation Eq. (6), is defined as [16,17]

ΔdðxÞ ¼ −iξe2μ4−d
Z

ddq
ð2πÞd

e−iq·x

q4
; ð7Þ

where e is the fermion electric charge, and μ is a mass scale
introduced such that e is dimensionless in four dimensions,
but yields a dimensionful coupling α ¼ e2=ð4πÞ in QED3.
Equation (7) is related to the Fourier transform of the
longitudinal part of the gauge boson propagator [16,17],
and the momentum integration is over the gauge boson
momentum. Performing the required integrations, ΔdðxÞ, is
explicitly given by [27]

ΔdðxÞ ¼ −
iξα

4π
d−2
2

Γ
�
d − 4

2

�
ðμxÞ4−d; ð8Þ

where α ¼ e2=ð4πÞ is the coupling constant, and ΓðzÞ is the
Euler Gamma function.
The LKFT for the fermion propagator has been widely

studied [24,27,31,32], in particular in QED in three
and four dimensions for massive and massless fermions.
The typical strategy to explore the structure of the fermion
propagator through the LKFT works as follows
[24,27,31,32]: to obtain the fermion propagator in any
gauge from Eq. (6) we provide the fermion propagator in a
particular gauge, usually Landau gauge. This is most easily
done in coordinate space. After this, we Fourier transform
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with Eq. (3) to obtain the fermion propagator in momentum
space. However, knowledge of the full fermion propagator S
even in a particular gauge is formidable. Nevertheless, being
nonperturbative in nature, the LKFT actually provides
valuable information on the structure of the fermion propa-
gator: we can rely on perturbation theory to provide the
starting point Sðx; 0Þ or Sðp; 0Þ, although this has some
caveats; see Ref. [27]. Nonetheless, we take Fðp; 0Þ and
Mðp; 0Þ as given by the lowest order of perturbation theory:

Fðp; 0Þ ¼ 1;

Mðp; 0Þ ¼ m; ð9Þ

where m is the current fermion mass. In the relevant case
d ¼ 3, formassless fermions, the LKFT strategy reveals that
the nonperturbative fermion propagator in an arbitrary
covariant gauge is (see, for instance, Ref. [27])

Fðp; ξÞ ¼ 1 −
αξ

2p
arctan

�
2p
αξ

�
: ð10Þ

Thus, aweak coupling expansion reveals that all terms of the
form ðαξÞj are fixed from Eq. (10). This is a major asset of
the LKFT. Below we shall derive the corresponding trans-
formation for RQEDdγ ;de, and in particular for
dγ ¼ 4, de ¼ 3.

III. THE LKF TRANSFORMATION FOR
REDUCED QED

Reduced QED for massless fermions is described from
the action [43,46]

Idγ ;de ½Aμγ ;ψ ðdeÞ� ¼
Z

ddγxLdγ ;de ; ð11Þ

where the Lagrangian

Ldγ ;de ¼ ψ̄ðxÞiγμeDμeψðxÞδðdγ−deÞðxÞ −
1

4
FμγνγF

μγνγ

−
1

2ξ
ð∂μγA

μγ Þ2 ð12Þ

includes matter fields ψðxÞ restricted to a de-dimensional
brane (μe ¼ 0; 1;…; de − 1) and gauge fields Aμγ ðxÞ propa-
gating in dγ-bulk dimensions (μγ ¼ 0; 1;…; dγ − 1), with
dγ > de. HereDμ represents the covariant derivative and Fμν

the field strength tensor. The free photon propagator along
bulk dimensions is of the same form as in Eq. (5), namely,

Dμγνγ ðpÞ ¼
−i
p2

�
gμγνγ −

pμγpνγ

p2

�
þ ξ

pμγpνγ

ðp2Þ2 ; ð13Þ

but when reduced to the de-dimensional brane, it becomes
[45,46]

DμeνeðpÞ ¼ Dðp2Þ
�
gμeνe −

pμepνe

p2

�
þ ~ξDðp2Þpμepνe

p2
:

ð14Þ

Here,

Dðp2Þ ¼ i
ð4πÞεe

Γð1 − εeÞ
ð−p2Þ1−εe ; ð15Þ

where εe ¼ ðdγ − deÞ=2 and ~ξ ¼ ð1 − εeÞξ. The longitudinal
piece of the propagator changes the form of the LKFT for the
fermion propagator. Considering that the propagator changes
from gauge to gauge according to

Sdeðx; ξÞ ¼ Sdeðx; 0Þe−i½ ~Δde ð0;εeÞ− ~Δde ðx;εeÞ�; ð16Þ

we define the function

~Δdeðx; εeÞ ¼ −ifðεeÞξe2μ4−dγ
Z

ddeq
ð2πÞde

e−iq·x

q4−2εe
ð17Þ

¼ −ifðεeÞξe2
Γðde−a

2
Þ

2aπde=2Γða
2
Þ ðμxÞ

a−de ; ð18Þ

where fðεeÞ ¼ Γð1 − εeÞð1 − εeÞ=ð4πÞεe and a ¼ 4 − 2εe.
This is the general form of LKFT for the fermion propagator
in RQEDdγ ;de and guarantees that e2 is dimensionless in
RQED4;de [44,46]. Note that when dγ ¼ de ¼ d we have
εe ¼ 0, fðεeÞ ¼ 1, and Eq. (17) reduces to Eq. (7), thus
recovering the usual LKF transformation for QED Eq. (6) in
any dimensiond. Furthermore, in order to obtain Eq. (18), we
have used the fact that 2εe þ de ¼ dγ in themass dimensions
of μ.
In graphene (dγ ¼ 4, de ¼ 3, εe ¼ 1=2), fermions are

massless and move on a plane, while the photon lives in the
usual four-dimensional space-time. Note that in Eq. (17),
the power of q in the denominator of the integrand is 3.
Furthermore, note that the covariant gauge parameter has
been “reduced” by a factor of 4 (fðεe ¼ 1

2
Þ ¼ 1=4). Both of

these modifications are a consequence of integrating out the
bulk degrees of freedom [43] in Eq. (8). Thus, we explicitly
find that the function defining the LKFT for the fermion
propagator in graphene is

~Δ3

�
x;
1

2

�
¼ −iξe2

16π2
Γ
�
1 − 2ϵ

2

�
ðμxÞ2ϵ−1; ð19Þ

with ϵ → 1=2. Expanding Eq. (19) around ϵ ¼ 1=2, defin-
ing δ ¼ ϵ − 1=2 and making use of the expansions

ax ¼ 1þ x lnðaÞ þOðx2Þ; ð20Þ

ΓðxÞ ¼ 1

x
− γE þ 1

12
ð6γ2E þ π2ÞxþOðx2Þ; ð21Þ
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γE representing the Euler-Mascheroni constant, we get

~Δ3

�
x;
1

2

�
¼ iξe2

16π2

�
1

δ
þ γE þ 2 lnðμxÞ þOðδÞ

�
: ð22Þ

Since the transformation function, Eq. (22), cannot be
evaluated at x ¼ 0, we introduce a cutoff xmin, such that

−i
�
~Δ3

�
xmin;

1

2

�
− ~Δ3

�
x;
1

2

��
¼ ln

�
x

xmin

�
−2ν

; ð23Þ

where we have defined ν ¼ ξα=ð4πÞ, and the dimensionless
coupling constant α ¼ e2=ð4πÞ.
With Eq. (23) at hand we are now in a position to

compute the fermion propagator in graphene for any gauge
from Eq. (16). For massless fermions Yðx; 0Þ ¼ 0, and
therefore Yðx; ξÞ ¼ 0 for any covariant gauge. Only Xðx; ξÞ
is nonzero. It is given by

Xðx; ξÞ ¼ Xðx; 0Þe−i½ ~Δ3ðxmin;
1
2
Þ− ~Δ3ðx;12Þ� ¼ −

x2νmin

4π
x−2ν−3: ð24Þ

Furthermore, since in the massless limit Yðx; ξÞ ¼ 0, then
Mðp; ξÞ ¼ 0 in any covariant gauge. This is consistent with
the well-known fact that fermion masses cannot be radi-
atively generated in QED. In this limit, the wave function
renormalization is given by

−iFðp; ξÞ ¼
Z

d3xðp · xÞeip·xXðx; ξÞ: ð25Þ

Using the formulas given in the Appendix, the wave
function renormalization for the fermion propagator is
explicitly given by

Fðp; ξÞ ¼
ffiffiffi
π

p
2

Γð1 − νÞ
Γð3

2
þ νÞ

�
xminp
2

�
2ν

: ð26Þ

Introducing the cutoff Λ ¼ 2=xmin we finally have

Fðp; ξÞ ¼
ffiffiffi
π

p
2

Γð1 − νÞ
Γð3

2
þ νÞ

�
p2

Λ2

�
ν

: ð27Þ

This is the nonperturbative form of the fermion propagator
for graphene in any covariant gauge ξ. Its power-law
behavior is consistent with the multiplicative-renormaliz-
able character of the theory. Notice that it is a different
functional form of the corresponding transformation for
the massless fermion propagator in QED3 [Eq. (10)], and
although we have derived it from the general expression in
RQEDdγ ;de [Eq. (16)], we could have also defined it through
the LKFT in ordinary QED in four space-time dimensions,
−i½Δ4ðxminÞ − Δ4ðxÞ�, but integrating the fermion momen-
tum over a three-dimensional space-time. Proceeding in
this form, we readily take into account the reduction of the
power of q in the denominator of the longitudinal part of
the gauge boson propagator and redefinition of the gauge

parameter [43], while retaining the gauge covariance of the
propagator itself.
Since we eventually want to compare our full, non-

perturbative, result Eq. (27) with a perturbative evaluation
of Fðp; ξÞ, we expand Eq. (27) in powers of α:

Fðp; ξÞ ¼ 1þ ξα

4π
F1 þ

�
ξα

4π

�
2

F2 þOðα3Þ; ð28Þ

with the expansion coefficients F1 and F2 given by

F1 ¼ ln

�
p2

Λ2

�
− γE − ψ

�
3

2

�

¼ ln

�
p2

Λ2

�
þ 2γE þ lnð4Þ − 2; ð29Þ

F2 ¼
1

2

��
ln

�
p2

Λ2

�
− γE − ψð3=2Þ

�
2

− 2ζð2Þ þ 4

�

¼ 1

2

��
ln

�
p2

Λ2

�
þ 2γE þ lnð4Þ − 2

�
2

− 2ζð2Þ þ 4

�

ð30Þ
where ψðzÞ is the digamma function, ζðsÞ is the Riemann
zeta function, and we have made use of the identity
ψð3=2Þ ¼ −γE − lnð4Þ þ 2.
In the next section we compare the expansion in Eq. (28),

with the coefficients shown in Eqs. (29) and (30), against
the one- and two-loop perturbative calculation of the
fermion propagator.

IV. PERTURBATIVE CONSTRAINTS OF THE
FERMION PROPAGATOR IN GRAPHENE

The fermion self-energy in RQEDdγ ;de (and graphene in
particular) has been calculated recently up to two loops in
Refs. [44,46]. Our aim is to compare this perturbative
calculation with a weak coupling expansion of our non-
perturbative LKFT result [Eq. (28)].
In RQEDdγ ;de the massless free fermion propagator is

given by S0ðpeÞ ¼ ip=p2, where p ¼ ðp0;…; pde−1Þ lies in
the reduced fermion space, while the full fermion propa-
gator is given by the solution of the Dyson equation
SðpÞ ¼ S0ðpÞ þ S0ðpÞð−iΣðpÞÞSðpÞ, where ΣðpÞ is the
fermion self-energy. The general form of the solution of
the Dyson equation for a massless fermion is −ipSðpÞ ¼
1=ð1 − ΣVðpÞÞ, where ΣðpÞ ¼ pΣVðpÞ. The vector part of
the self-energy ΣVðpÞ is then related to the fermion wave
function renormalization by

Fðp; ξÞ ¼ 1

1 − ΣVðp; ξÞ
; ð31Þ

where we have made explicit the gauge dependence of both
quantities. As we mentioned above, ΣVðp; ξÞ has been
calculated up to two loops for RQED4;3. In the MS
regularization scheme, it is given by (see Ref. [44])
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1

1 − ΣVðp; ξÞ
¼ 1þ α

4π

�
4

9
−
1 − 3ξ

3
L̄

�

þ
�
α

4π

�
2
�ð1 − 3ξÞ2

18
ðL̄2 − 2ζð2Þ þ 4Þ

þ 4
ð3ξþ 7ÞL̄þ 48ζð2Þ

27

− 8ζð2ÞðL̄þ 2 − lnð4ÞÞ − 280

27

�
; ð32Þ

where

L̄ ¼ ln

�
−
p2

μ2

�
þ lnð4Þ − 2; ð33Þ

and μ is the renormalization mass scale. Note that the
nontrivial terms in Eq. (32) contain a contribution that is
proportional to the gauge parameter and one that does not
vanish in Landau gauge.
We now compare our LKFT result at weak coupling

[Eqs. (28), (29), and (30)], to the perturbative calculation at
one- and two-loop orders [Eq. (32)]. At OðαÞ, our LKFT
result, Eq. (29), is proportional to the covariant gauge
parameter—LKFT gives only terms of the type ðαξÞj when
the starting point is the tree-level propagator. On the other
hand, at this order, the perturbative result [Eq. (32)] has
terms that are independent of the covariant gauge param-
eter. Since these terms cannot be obtained from a LKFT, we
should only compare terms that are proportional to αξ.
Thus, F1 defined in Eq. (29) should be equivalent to
L̄ [Eq. (33)]. This is indeed the case provided we identify

ln

�
p2

Λ2

�
þ 2γE → ln

�
−
p2

μ2

�
: ð34Þ

AtOðα2Þ, the perturbative result has terms that are linear
and quadratic in the covariant gauge parameter, apart from
terms that are independent of it. On the other hand, as can
be seen from Eqs. (28) and (30), the LKFTonly gives terms
proportional to ξ2 at order α2. This is expected given the
structure of the LKFT. The terms linear in the covariant
gauge parameter, to order α2, can only be recovered if
we use a one-loop expression for Fðp; 0Þ in Eq. (9) [or
equivalently in Xðx; 0Þ] as input into the LKFT [30]. This
means that we should compare our α2 result, F2, defined by
Eq. (30), only to the coefficient of ðαξ=ð4πÞÞ2 in the
perturbative result [Eq. (32)]. Therefore, we see that

F2 →
9

18
ðL̄2 − 2ζð2Þ þ 4Þ; ð35Þ

with the identification Eq. (34), as expected. Thus, we have
shown that there is full consistency between our LKFT
result [Eq. (28)] and the perturbative result [Eq. (32)] up to
order α2. We hence predict the form of all the coefficients of
the form ðαξÞj in the all-order perturbative expansion from
our LKFT result [Eq. (27)].

V. CONCLUSIONS

In this article, we have generalized the LKFT trans-
formation for the fermion propagator in RQEDdγ ;de . The
general transformation rule accounts for the integration of
the bulk degrees of freedom of gauge bosons in the
behavior of the longitudinal part of the corresponding
reduced propagator and the covariant gauge parameter.
For the specific case of graphene, massless RQED4;3,
starting with the tree-level fermion propagator, we have
obtained the full nonperturbative form of the fermion
propagator in any covariant gauge. The power-law behavior
of the wave function renormalization is in agreement with
the multiplicative renormalizability features of the theory.
We then confirmed that the weak coupling expansion of this
propagator is in complete agreement with a perturbative
calculation up to the two-loop level in terms of the form
ðαξÞ2. We predict further agreement to higher orders in αξ.
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APPENDIX: AUXILIARY INTEGRALS

Here we collect some useful integrals:

Z
π

0

dθsin2aθeib cos θ ¼ ffiffiffi
π

p
Γ
�
aþ 1

2

��
2

b

�
a
JaðbÞ; ðA1Þ

with a > −1=2, and

Z
∞

0

dttaJbðtÞ ¼ 2a
Γð1þaþb

2
Þ

Γð1−aþb
2

Þ ; ðA2Þ

with aþ b > −1, a < 1=2, where JaðzÞ is the Bessel
function of the first kind. From Eq. (A1) we can derive
another result that is useful too. Applying −i ∂

∂b to Eq. (A1),
using ∂

∂b b−aJaðbÞ ¼ −b−aJaþ1ðbÞ, which can be obtained
by using the identities 2 ∂

∂z JaðzÞ ¼ Ja−1ðzÞ − Jaþ1ðzÞ and
2aJaðzÞ ¼ zðJa−1ðzÞ þ Jaþ1ðzÞÞ, we have

Z
π

0

dθ cos θsin2aθeib cos θ

¼ i
ffiffiffi
π

p
Γ
�
aþ 1

2

��
2

b

�
a
Jaþ1ðbÞ; ðA3Þ

with a > −1=2.
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