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At the extreme energies of the Large Hadron Collider, massive particles can be produced at such high
velocities that their hadronic decays are collimated and the resulting jets overlap. Deducing whether the
substructure of an observed jet is due to a low-mass single particle or due to multiple decay objects of a
massive particle is an important problem in the analysis of collider data. Traditional approaches have relied
on expert features designed to detect energy deposition patterns in the calorimeter, but the complexity of the
data make this task an excellent candidate for the application of machine learning tools. The data collected
by the detector can be treated as a two-dimensional image, lending itself to the natural application of image
classification techniques. In this work, we apply deep neural networks with a mixture of locally connected
and fully connected nodes. Our experiments demonstrate that without the aid of expert features, such
networks match or modestly outperform the current state-of-the-art approach for discriminating between
jets from single hadronic particles and overlapping jets from pairs of collimated hadronic particles, and that
such performance gains persist in the presence of pileup interactions.
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I. INTRODUCTION

Collisions at the LHC occur at such high energies that
even massive particles are produced at large enough
velocities that their decay products become collimated.
In the case of a hadronic decay of a boosted W boson
(W → qq0), the two jets produced from these two quarks
then overlap in the detector, creating a single merged jet.
The substructure of the jet’s energy deposition can dis-
tinguish between jets which are due to a single hadronic
particle or due to the decay of a massive object into multiple
hadronic particles; this classification is known as jet
“tagging” and is critical for understanding the nature of
the particles produced in the collision [1].
This classification task has been the topic of intense

research activity [2–5]. The difficult nature of the
problem has lead physicists to reduce the dimensionality
of the problem by designing expert features [6–15] which
incorporate their domain knowledge. In the current state-
of-the-art applications, jets are either classified based on
one of these features alone or by combining multiple
designed features with shallow machine learning classi-
fiers such as boosted decision trees (BDTs). It is possible,
however, that these designed expert features do not
capture all of the available information [16–18], as the
data are very high dimensional. Despite extensive theo-
retical progress in the microphysics of jet formation
[19–21] and development of theoretically motivated tools
to mitigate the impact of unrelated interactions [22]
which makes the expert features robust and physically

meaningful, there exists no complete analytical model for
classification directly from theoretical principles, though
see Ref. [23]. On the other hand, the existence of
effective simulation tools [24,25] allows for the gener-
ation of large simulated samples. Therefore, approaches
that use the higher-dimensional but lower-level detector
information to learn this classification function may
outperform those which rely on fewer high-level
expert-designed features.
Measurements of the emanating particles can be pro-

jected onto a cylindrical detector and then unwrapped and
considered as two-dimensional images, enabling the natu-
ral application of computer vision techniques. Recent work
demonstrates encouraging results with shallow classifica-
tion models trained on jet images [26–28]. Deep networks
have shown additional promise in particle-level studies
[29]. However, deep learning has not yet been applied to
more realistic scenarios which include simulation of the
detector response and resolution, and most importantly, the
effect of unrelated simultaneous pp interactions, known as
pileup which contributes significant energy depositions
unrelated to the particles of interest.
In this paper, we perform jet classification on images

built from simulated detector response using deep neural
network models with a combination of locally connected
and fully connected layers. Our results demonstrate that
deep networks can distinguish between detector clusters
due to single or multiple jets without using domain
knowledge, matching or exceeding the performance of
shallow classifiers used to combine many expert features.
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II. THEORY

A typical application of jet classifiers is to discriminate
single jets produced in quark or gluon fragmentation from
two overlapping jets produced when a high-velocity W
boson decays to a collimated pair of quarks. The goal is
then to learn the classification function, or equivalently, the
likelihood ratio:

PW→qqðjetÞ
Pq=gðjetÞ

:

In practice, there are two significant obstacles to calcu-
lating and applying this ratio.
First, while theoretical understanding of the processes

involved has made significant progress, a formulation of
this likelihood ratio from fundamental QCD principles is
not yet available. However, there do exist effective models
which have been successfully incorporated into widely
used tools capable of generating simulated samples. Such
samples can then be used to deduce the likelihood ratio, but
the task is very difficult due to its high dimensionality.
Expert features with solid theoretical grounding exist to
reduce the dimensionality of this problem, but it is unlikely
that they capture all of the information, as the theoretical
understanding is not complete and the concepts which
motivate them do not include the detector effects or the
impact of pileup interactions. The goal of this paper is to
attempt to capture as much of the information as possible
and learn the classification function from simulated sam-
ples which include these effects, without making the
simplifying theoretical assumptions necessary to construct
expert features.
Second, the effective models used in simulation tools do

not provide a perfectly accurate description of observed
collider data. A classification function learned from simu-
lated samples is limited by the validity of those samples.
While deep networks may provide a powerful method of
deducing the classification function, expert features which
encapsulate theoretical understanding of the process of jet
formation are valuable in assessing the success and failure
of these models. In this paper, we use expert features as a
benchmark to measure the performance of learning tools
which access only the higher-dimensional lower-level data.
We expect that deep networks may provide additional
classification power in concert with the insight offered by
expert features, and perhaps motivate the development of
modifications to such features rather than blindly replac-
ing them.

III. DATA

Training samples for both classes were produced using
realistic simulation tools widely used in particle physics.
Samples of boosted W → qq0 were generated with a

center of mass energy
ffiffiffi
s

p ¼ 14 TeV using the diboson

production and decay process pp → WþW− → qqqq lead-
ing to two pairs of quarks; each pair of quarks are
collimated and lead to a single jet. Samples of jets
originating from single quarks and gluons were generated
using the pp → qq; qg; gg process. In both cases, jets are
generated in the range of pT ∈ ½300; 400� GeV.
Collisions and immediate decays were simulated with

MADGRAPH5 [30] v2.2.3, showering and hadronization
simulated with PYTHIA [24] v6.426, and response of the
detectors simulated with DELPHES [31] v3.2.0. The jet
images are characterized by the energies deposited at
different points on the approximately cylindrical calorim-
eter surface.
The classification of jets as due to W → qq0 or single

quarks and gluons is sensitive to the presence of additional
in-time pp interactions, referred to as pileup events. We
overlay such interactions in the simulation chain, with an
average number of interactions per event of < μ> ¼ 50, as
an estimate of future ATLAS Run 2 data with the LHC
delivering collisions at a 25 ns bunch crossing interval. The
impact of pileup events on jet reconstruction can be
mitigated using several techniques. After reconstructing
jets with the anti-kT [32] clustering algorithm using
distance parameter R ¼ 1.2, we apply a jet-trimming
algorithm [22] which is designed to remove pileup while
preserving the two-pronged jet substructure characteristic
of boson decay. Jet trimming reclusters the jet constituents
using the kT [33] algorithm into subjets of radius 0.2 and
discards subjets with pT less than 3% of the original jet.
Then the final trimmed jet is built using the remaining
subjets. Trimmed jets with 300 GeV < pT < 400 GeV are
selected, in order to ensure the minimumW boson velocity
needed for collimated decays. In principle, the machine
learning algorithms may be able to classify jets without
such filtering; we leave this for future studies.
To compare our approach to the current state-of-the-art

approach, we calculate six high-level jet variables com-
monly used in the literature; calculations are performed
using FastJet [34] v3.1.2. First, the invariant mass of the
trimmed jet is calculated. Then, the trimmed jet’s constitu-
ents are used to calculate the other substructure variables,
N-subjettiness [9,35] τβ¼1

21 , and the energy correlation
functions [10,36] Cβ¼1

2 , Cβ¼2
2 , Dβ¼1

2 , and Dβ¼2
2 . A com-

prehensive summary of these six jet substructure variables
can be found in Ref. [2]. Figure 1 shows the distribution of
the variables for the two classes of jets, both with and
without pileup conditions.
In this paper, we investigate the power of classification

of the jets directly from the lower-level but higher-
dimensional calorimeter data, without the dimensional
reduction provided by the variables above. The strategy
follows that of well-established image classification tools
by treating the distribution of energy in the calorimeter as
an image. The images were preprocessed as in previous
work by centering and rotating into a canonical orientation.
The origin of the coordinate axis was set at the center of
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energy of each jet, then the image was rotated so that the
principal axis θ is in the same direction for each jet, where θ
is defined as

tanðθÞ ¼
X
i

ϕi × Ei

Ri

.X
i

ηi × Ei

Ri
ð1Þ

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2i þ ϕ2

i

q
: ð2Þ

Images are then reflected so that the maximum energy
value is always in the bottom half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 × 3.0 radian window, then binned into pixels to
form a 32 × 32 image, approximating the resolution of the
calorimeter cells. When two calorimeter cells were detected
within the same pixel, their energies were summed.
Example individual jet images from each class are shown
in Fig. 2, and averages over many jets are shown in Fig. 3.

IV. TRAINING

Deep neural networks were trained on the jet images and
compared to the standard approach of BDTs trained on
expert-designed variables that capture domain knowledge
[2]. All classifiers were trained on a balanced training data
set of 10 million examples, with 500 thousand of these used
as a validation set. The best hyperparameters for each
method were selected using the Spearmint Bayesian
optimization algorithm [37] to optimize over the supports
specified in Tables I and II. The best models were then
tested on a separate test set of 5 million examples.
Neural networks consisted of hidden layers of tanh units

and a logistic output unit with cross-entropy loss. Weight
updates were made using the ADAM optimizer [38]
(β1 ¼ 0.9; β2 ¼ 0.999; ϵ ¼ 1e − 08) with mini-batches of
size 100. Weights were initialized from a normal distribu-
tion with the standard deviation suggested by Ref. [39]. The
learning rate was initialized to 0.0001 and decreased by a
factor of 0.9 every epoch. Training was stopped when the

FIG. 2. Typical jet images from class 1 (single QCD jet from q
or g) on the left, and class 2 (two overlapping jets fromW → qq0)
on the right, after preprocessing as described in the text.

FIG. 3. Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping jets
from W → qq0) on the right, after preprocessing.
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FIG. 1. Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between jets
due to collimated decays of massive objects (W → qq) and jets
due to individual quarks or gluons (QCD). Two cases are shown:
with and without the presence of additional in-time pp inter-
actions, included at the level of an average of 50 such interactions
per collision.

TABLE I. Hyperparameter support for Bayesian optimization
of deep neural network architectures. For the no-pileup case,
networks with a single hidden layer were allowed to have up to
1000 units per layer, in order to remove the possibility of the deep
networks performing better simply because they had more
tunable parameters.

Range Optimum

Hyperparameter Min Max No Pileup Pileup

Hidden units per layer 100 500 425 500
Fully connected layers 1 5 4 5
Locally connected layers 0 5 4 3
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validation error failed to improve or after a maximum of 50
epochs. All computations were performed using Keras [40]
and Theano [41,42] on NVidia Titan X processors.
We explore the use of locally connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity
constrains the network to learn spatially localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
receptive fields are shared. Fully connected layers were
stacked on top of the locally connected layers to aggregate
information from different regions of the detector image.
The network architecture—the number of layers of each
type, plus the width of the fully connected layers—was
optimized using Spearmint. Out of the 25 network archi-
tectures explored on the no-pileup task, the best had four
locally connected layers followed by four fully connected
layers of 425 units. This network has roughly 750,000
tunable parameters, while the best shallow network (one
hidden layer of 1000 units) had over 1 million parameters.
On the pileup data, 19 different network architectures were
tested; the best was again an 8-hidden-layer architecture,
with 3 locally connected layers, five fully connected layers,
and 500 hidden units in each layer. Convolutional networks
were also explored, but as expected, the translational
invariance provided by these architectures did not provide
any performance boost.
BDTs were trained on the six high-level variables using

Scikit-Learn [43]. The maximum depth of each estimator,
the minimum number of examples required to constitute an
internal node (parametrized as a fraction of the training set),
and the learning rate were separately optimized for the data
sets with and without pileup using Spearmint (110 and 140
experiments, respectively). The number of estimators was
fixed to 500; when evaluating the marginal improvement of
performance with the addition of each estimator, we
observed that in the best model, performance plateaued
after inclusion of less than 100 estimators. This suggests
that the number of estimators was not limiting. The
minimum number of examples required to form a leaf
node was fixed to be one fourth of that required to
constitute an internal node. In both cases, the best BDT
classifier had a maximum tree depth of 49, a minimum split

requirement of 0.0021, and a learning rate of 0.07. The best
BDT trained on the no-pileup data had approximately
700,000 tunable parameters, while the best BDT trained on
the pileup data had approximately 750,000.

V. RESULTS

Deep networks with locally connected layers showed the
best performance. For example, the best network with 5
hidden layers has two locally connected layers followed by
three fully connected layers of 300 units each; this
architecture performs better than a network of five fully
connected layers of 500 units each.
Final results are shown in Table III. The metric used is

the area under the curve (AUC), calculated in signal
efficiency versus background efficiency, where a larger
AUC indicates better performance. In Fig 4, the signal
efficiency is shown versus background rejection, the
inverse of background efficiency. In the case without
pileup, as studied in Ref. [29], the deep network modestly
outperforms the physics domain variables, demonstrating
first that successful classification can be performed without
expert-designed features and that there is some loss of
information in the dimensional reduction such features
provide. See the discussion below, however, for comments
on the continued importance of expert features.
Our results also demonstrate for the first time that such

performance holds up under the more difficult and realistic
conditions of many pileup interactions; indeed, the gap
between the deep network and the expert variables in this
case is more pronounced. This is likely due to the fact that
the physics-inspired variables rest on arguments motivated
by idealized pictures.

VI. INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with τ21 or one of

TABLE II. Hyperparameter support for BDTs trained on 6
high-level features, and the best combinations in 110 and 140
experiments, respectively, for the no-pileup and pileup tasks.
Minimum leaf percent was constrained to be one fourth of the
minimum split percent in all cases.

Range Optimum

Hyperparameter Min Max No Pileup Pileup

Tree depth 15 75 49 49
Learning rate 0.01 1.00 0.07 0.07
Minimum split percent 0.0001 0.1000 0.0021 0.0021

TABLE III. Performance results for BDT and deep networks.
Shown for each method are both the signal efficiency at back-
ground rejection of 10, as well as the AUC, the integral of the
background efficiency versus signal efficiency. For the neural
networks, we report the mean and standard deviation of three
networks trained with different random initializations.

Performance

Technique

Signal efficiency
at background
rejection ¼ 10 AUC

No pileup
BDT on derived features 86.5% 95.0%
Deep NN on images 87.8%ð0.04%Þ 95.3%ð0.02%Þ

With pileup
BDT on derived features 81.5% 93.2%
Deep NN on images 84.3%ð0.02%Þ 94.0%ð0.01%Þ
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the energy correlation variables. Our results show that even
a straightforward BDT combination of all six of the high-
level variables provides a large boost in comparison. In
probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.
The deep network has clearly managed to match or

slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on the
underlying theoretical questions may naturally be curious
as to whether the deep network has learned a novel strategy
for classification which could inform their studies, or
rediscovered and further optimized the existing features.
While one cannot probe the motivation of the machine

learning (ML) algorithm, it is possible to compare distri-
butions of events categorized as signal-like by the different
algorithms in order to understand how the classification is
being accomplished. To compare distributions between
different algorithms, we study simulated events with

equivalent background rejection, see Figs. 5 and 6 for a
comparison of the selected regions in the expert features for
the two classifiers. The BDT preferentially selects events
with values of the features close to the characteristic signal
values and away from background-dominated values. The
deep neural network (DNN), which has a modestly higher
efficiency for the equivalent rejection, selects events near
the same signal values, but in some cases can be seen to
retains a slightly higher fraction of jets away from the
signal-dominated region. The likely explanation is that the
DNN has discovered the same signal-rich region identified
by the expert features, but has in addition found avenues to
optimize the performance and carve into the background-
dominated region. Note that DNNs can also be trained to be
independent of mass, by providing a range of mass in
training, or training a network explicitly parametrized
[44,45] in mass.
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FIG. 4. Signal efficiency versus background rejection (inverse
of efficiency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both with
(bottom) and without pileup (top). Typical choices of signal
efficiency in real applications are in the 0.5–0.7 range. Also
shown are the performance of jet mass individually as well as two
expert variables in conjunction with a mass window.
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FIG. 5. Distributions in simulated samples without pileup of
high-level jet substructure variables for pure signal (W → qq) and
pure background (QCD) events. To explore the decision surface of
the ML algorithms, also shown are background events with various
levels of rejection for deep networks trained on the images and
boosteddecision trees trainedontheexpert features.Bothalgorithms
preferentially select jets with values near the peak signal values.
Note, however, that while the BDT has been supplied with these
features as an input, the DNN has learned this on its own.
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VII. DISCUSSION

The signal from massive W → qq jets is typically
obscured by a background from the copiously produced
low-mass jets due to quarks or gluons. Highly efficient
classification is critical, and even a small relative
improvement in the classification accuracy can lead to
a significant boost in the power of the collected data to
make statistically significant discoveries. Operating the
collider is very expensive, so particle physicists need
tools that allow them to make the most of a fixed-size
data set. However, improving classifier performance
becomes increasingly difficult as the accuracy of the
classifier increases.
Physicists have spent significant time and effort

designing features for jet-tagging classification tasks.
These designed features are theoretically well motivated,

but as their derivation is based on a somewhat idealized
description of the task (without detector or pileup
effects), they cannot capture the totality of the informa-
tion contained in the jet image. We report the first studies
of the application of deep learning tools to the jet
substructure problem to include simulation of detector
and pileup effects.
Our experiments support two conclusions. First, that

machine learning methods, particularly deep learning, can
automatically extract the knowledge necessary for clas-
sification, in principle eliminating the exclusive reliance
on expert features. The slight improvement in classifi-
cation power offered by the deep network compared to
the combination of expert features is likely due to the fact
that the network has succeeded in discovering small
optimizations of the expert features in order to account
for the detector and pileup effects present in the simu-
lated samples. This marks another demonstration of the
power of deep networks to identify important features in
high-dimensional problems. In practice, while deep net-
work classification can boost jet-tagging performance,
expert features offer powerful insight [23] into the
validity of the simulation models used to train these
networks. We do not claim that these results make expert
features obsolete. However, it suggests that deep net-
works can provide similar performance on a variety of
related problems where the theoretical tools are not as
mature. For example, current tools do not always include
information from tracking detectors, nor do they offer
performance parametrized [44,45] in the mass of the
decaying heavy state.
Second, we conclude that the current set of expert

features when used in combination (via BDT or other
shallow multivariate approach) appear to capture nearly all
of the relevant information in the high-dimensional low-
level features describe by the jet image. The power of the
networks described here is limited by the accuracy of these
models, and expert features may be more robust to variation
among the several existing simulation models [46]. In
experimental applications, this reliance on simulation can
be mitigated by using training samples from real collision
data, where the labels are derived using orthogonal
information.
Data in high energy physics can often be formulated as

images. Thus, these results reported on the representative
classification task of single q or g jets versus massive jets
from W → qq0 are very likely to apply to a broader set of
similar tasks, such as classifying jets with three constitu-
ents, as in the case of top quark decay t → Wb → qq0b,
or massive jets from other particles such as Higgs boson
decays to bottom quark pairs. Note that in more realistic
data sets, calorimeter information often contains depth
information as well, such that the images are three-
dimensional instead of two; however, this does not
represent a difficult extrapolation for the machine
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FIG. 6. Distributions in simulated samples with pileup of high-
level jet substructure variables for pure signal (W → qq) and pure
background (QCD) events. To explore the decision surface of the
ML algorithms, also shown are background events with various
levels of rejection for deep networks trained on the images and
boosted decision trees trained on the expert features. Both
algorithms preferentially select jets with values near the peak
signal values. Note, however, that while the BDT has been
supplied with these features as an input, the DNN has learned this
on its own.
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learning algorithms. While the fundamental classification
problems are very similar from a machine learning
standpoint, the literature of expert features is somewhat
less mature, further underlining the potential utility of the
reported deep learning methods in these areas.
Future directions of research include studies of the

robustness of such networks to systematic uncertainties
in the input features and to change in the hadronization and
showering model used in the simulated events.
Data sets used in this paper containing millions of

simulated collisions are available for download [47].
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