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For the flavor-singlet heavy-quark system of charmonia in the pseudoscalar [ηcð1SÞ] channel, we
calculate the elastic (EFF) and transition form factors (TFFs) [ηcð1SÞ → γγ�] for a wide range of photon
momentum transfer squared (Q2). The framework for this analysis is provided by a symmetry-preserving
Schwinger-Dyson equation and Bethe-Salpeter equation treatment of a vector × vector contact interaction.
We also employ an algebraic model, developed earlier to describe the light-quark systems. It correctly
correlates infrared and ultraviolet dynamics of quantum chromodynamics (QCD). The contact interaction
results agree with the lattice data for lowQ2. ForQ2 ≥ Q2

0, the results start deviating from the lattice results
by more than 20%. Q2

0 ≈ 2.5 GeV2 for the EFF, and ≈25 GeV2 for the TFF. We also present the results for
the EFF, TFF, and ηcð1SÞ parton distribution amplitude for the algebraic model. Wherever the comparison
is possible, these results are in excellent agreement with the lattice, perturbative QCD, results obtained
through a Schwinger-Dyson equation–Bethe-Salpeter equation study, employing refined truncations, and
the experimental findings of the BABAR experiment.

DOI: 10.1103/PhysRevD.93.094025

I. INTRODUCTION

The internal dynamics of mesons, orchestrated by
quantum chromodynamics (QCD), dictates their observ-
able properties. Electromagnetic elastic (EFFs) and tran-
sition form factors (TFFs) provide important examples. In
experiment, these quantities are extracted through the
meson interaction with a virtual photon which probes them
at different resolution scales. Several experimental setups
such as the BABAR, Belle and the upcoming Belle II, and
12 GeV upgrade of the Jefferson Laboratory hold the
potential to measure these form factors for a large range of
probing photon virtualities. For example, for the ηcð1SÞ →
γγ� transition form factor, BABAR has provided us with
results in the range of 0⪅Q2 ⪅ 40 GeV2.
Within the well-established framework of Schwinger-

Dyson (SDEs) and Bethe-Salpeter equations (BSEs), we
can investigate the nonperturbative dynamics of the bound
states through first principles in the continuum. SDEs for
QCD have been extensively applied to deepen our under-
standing of the light-quark [1–3] and gluon propagators
[4–6], quark-gluon and quark-photon interactions [7–14],
meson spectra below themasses of 1GeV, and their static and
dynamic properties. The form factors for the light mesons
through such studies have been reported in theRefs. [15–22].
The problem of a heavy meson’s static properties has

been addressed within a consistent rainbow-ladder (RL)
truncation of the SDE-BSE kernels with a varying degree of
sophistication for the interaction kernels in Refs. [1,23–35]
as well as in the lattice-regularized QCD [36]. Furthermore,
within the lattice QCD approach, radiative transitions and
two photon decays of charmonium have been computed

recently with a satisfactorily agreeable comparison with
experimental data [36–39].
The extension of the above program to the form factors

of heavy mesons in the SDE-BSE approach is not straight-
forward. It becomes numerically cumbersome as the
quark propagator has to be sampled in a large region of
the complex plane. However, a few years ago, a simple
alternative model was crafted to have a qualitative guideline
to study light-meson properties. It was assumed that the
quarks interact not via massless vector-boson exchange but
instead through a symmetry preserving vector-vector con-
tact interaction (CI) [19–21,40,41]. This interaction is
capable of providing a good description of the meson
and baryon ground and excited-states masses for light
quarks [19,20,40,41]. The results obtained for the static
properties through the CI are also quantitatively compa-
rable to those arrived at by employing sophisticated model
interactions which mimic QCD closely [27,42–44]. The
form factors are expectedly harder, but a qualitative guide is
important to make comparison and contrast with real QCD
predictions and experiment.
In a previous work [32], we extended this CI model to

the heavy-quark sector to obtain the mass spectrum of
charmonia and the decay constants for the pseudoscalar and
vector channels. In most cases, the agreement achieved
with available experimental data was gratifying. The
present article applies this model, with exactly the same
input parameters, to the computation of form factors
associated with the processes ηcγ

� → ηc and ηc → γγ�,
namely, ηc EFF and its TFF to γγ�, respectively.
In addition to the CI, we also employ a SDE-based

algebraic model (AM), introduced in Ref. [45] and refined
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later in Ref. [22]. This model was constructed in the light-
quarks sector to capture both the infrared and ultraviolet
dynamics of QCD in a single, simple, and algebraically
maneuverable formalism. It has been successfully
employed to gain insight into the internal nonperturbative
dynamics of the charged and neutral pions [22,45–47]. We
extend it to the case of ηc, calculating the elastic and
transition form factors, as well as the ηc parton distribution
amplitude (PDA), achieving remarkable agreement with
lattice QCD as well as experiment, whenever possible.
This paper is organized as follows. In Sec. II, we present

the necessary SDE-BSE tools and ingredients to study
mesons and compute the EFFs and the TFFs of charmonia.
We summarize the main features of the CI model for the
sake of completeness. We also introduce the AM and
present its extension for charmonia. Sections III and IV
have been dedicated to the computation of ηc EFF and TFF
with the CI and AM, providing comparison with lattice
QCD, other models, and existing experimental results
wherever possible. In Sec. V, we calculate the ηc PDA
through the AM and compare it with the lattice QCD and
perturbative calculations. Finally, in Sec. VI, we present our
conclusions.

II. FORMALISM

Meson bound states appear as poles in a four-point
function. The condition for the appearance of such a pole in
a particular JPC channel is given by the BSE [48–50]

½ΓHðp;PÞ�tu ¼
Z

d4q
ð2πÞ4Ktu;rsðp; q;PÞχðq;PÞsr; ð1Þ

where χðq;PÞ ¼ SfðqþÞΓHðq;PÞSgðq−Þ; qþ ¼ qþ ηP,
q− ¼ q − ð1 − ηÞP; p (P) is the relative (total) momentum
of the quark-antiquark system; Sf is the f-flavor quark
propagator; ΓHðp;PÞ is the meson Bethe-Salpeter ampli-
tude (BSA), where H specifies the quantum numbers and
flavor content of the meson; r, s, t, and u represent color,
flavor, and spinor indices; and Kðp; q;PÞ is the quark-
antiquark scattering kernel. For a comprehensive recent
review of the SDE-BSE formalism and its applications to
hadron physics, see, for example, Refs. [42,51].
The f-flavor dressed-quark propagator Sf that enters

Eq. (1) is obtained as the solution of the quark SDE [52–55]

S−1f ðpÞ ¼ iγ · pþmf þ ΣfðpÞ; ð2Þ

ΣfðpÞ ¼
Z

d4q
ð2πÞ4 g

2Dμνðp − qÞ λ
a

2
γμSfðqÞΓa

νðp; qÞ; ð3Þ

where g is the strong coupling constant, Dμν is the dressed-
gluon propagator, Γa

ν is the dressed-quark-gluon vertex, and
mf is the f-flavor current-quark mass. Since the CI, to be
defined later, is nonrenormalizable, it is not necessary to

introduce any renormalization constant. The chiral limit is
obtained by setting mf ¼ 0 [52–54].
BothDμν and Γa

ν satisfy their own SDE, which in turn are
coupled to the equations containing higher n-point func-
tions and so on ad infinitum. Therefore, the quark SDE,
Eq. (2), is only one of the infinite set of coupled nonlinear
integral equations. A tractable problem is defined once we
have spelled out our truncation scheme, i.e., once the gluon
propagator and the quark-gluon vertex are specified.

A. Contact interaction

It has been shown in Refs. [19,20,40,41] that a momen-
tum-independent vector × vector CI is capable of providing
a description of light pseudoscalar and vector mesons static
properties, quantitatively comparable to those obtained
using more refined QCD model interactions [27,42–44].
Furthermore, the π and ρ EFFs [19,21] and TFFs of the π,
[20] have also been calculated in this interaction. In a
previous work [32], we have employed this interaction to
evaluate the mass spectrum of charmonia and the decay
constants of the pseudoscalar and vector meson channels.
In this article, we apply it to the computation of the EFF and
TFF of the ηc. Therefore, we use

g2DμνðkÞ ¼
4παIR
m2

g
δμν ≡ 1

m2
G
δμν; ð4Þ

where mg ¼ 800 MeV is a gluon mass scale which is in
fact generated dynamically in QCD (see, for example,
Ref. [56]) and αIR is a parameter that determines the
interaction strength. For the quark-gluon vertex, the rain-
bow truncation will be used:

Γa
μðp; qÞ ¼

λa

2
γμ: ð5Þ

Once the elements of the kernel in the quark SDE have been
specified, we can proceed to generate and analyze its
solution. The general form of the f-flavored dressed-quark
propagator, the solution of Eq. (2), can be written in terms
of two Lorentz-scalar dressing functions in the following
equivalent and convenient forms:

S−1f ðpÞ ¼ iγ · pAfðp2Þ þ Bfðp2Þ ð6Þ

¼ Z−1
f ðp2Þðiγ · pþMfðp2ÞÞ: ð7Þ

In the latter expression, Zfðp2Þ is known as the wave-
function renormalization, and Mfðp2Þ is the dressed,
momentum-dependent quark mass function, which con-
nects current and constituent quark masses [52–54].
Using Eqs. (4) and (5), the quark SDE equation can be

written as
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S−1f ðpÞ ¼ iγ · pþmf þ
4

3

1

m2
G

Z
d4q
ð2πÞ4 γμSfðqÞγμ: ð8Þ

The solution of Eq. (8) now has the form

S−1f ðpÞ ¼ iγ · pþMf: ð9Þ

In other words, for the CI, Zfðp2Þ ¼ 1, and Mf is
momentum independent. It is because the last term on
the right-hand side of Eq. (8) is independent of the external
momentum. The mass Mf is determined as the solution of

Mf ¼ mf þ
16Mf

3π2m2
G

Z
d4q
ð2πÞ4

1

q2 þM2
f

: ð10Þ

Since Eq. (10) is divergent, we must adopt a regularization
procedure. We employ the proper time regularization
scheme [57] and write

1

q2 þM2
¼

Z
∞

0

dτe−τðq2þM2Þ →
Z

τIR2

τ2UV

dτe−τðq2þM2Þ

¼ e−τ
2
UVðq2þM2Þ − e−τ

2
IRðq2þM2Þ

q2 þM2
; ð11Þ

where τ2IR and τ2UV are, respectively, infrared and ultraviolet
regulators. Note that a nonzero value for τIR ≡ 1=ΛIR
implements confinement by ensuring the absence of quark
production thresholds [58]. Furthermore, since Eq. (4) does
not define a renormalizable theory, τUV ≡ 1=ΛUV cannot be
removed. Instead, it plays a dynamical role and sets the
scale for all dimensioned quantities. The importance of an
ultraviolet cutoff in Nambu–Jona-Lasinio type models has
also been discussed in Refs. [59,60]. Thus,

Mf ¼ mf þ
16Mf

3π2m2
G
I01ðM2

f; τIR; τUVÞ; ð12Þ

where

I0nðM2; τIR; τUVÞ ¼
ðM2Þ2−n
16π2ΓðnÞΓðn − 2; τ2UVM

2; τ2IRM
2Þ;

ð13Þ

and Γða; z1; z2Þ is the generalized incomplete gamma
function.

B. Axial-vector Ward-Takahashi identity

The phenomenological features of dynamical chiral
symmetry breaking (DCSB) in QCD can be understood
by means of the axial-vector Ward-Takahashi identity
(axWTI). In the chiral limit, it reads

−iPμΓ5μðp;PÞ ¼ S−1ðpþÞγ5 þ γ5S−1ðp−Þ: ð14Þ

The axWTI implies a relationship between the kernel in the
BSE, Eq. (1), and that in the quark SDE, Eq. (2),

Z
d4q
ð2πÞ4Ktu;rsðp; q;PÞ½γ5Sðq−Þ þ SðqþÞγ5�sr
¼ ½ΣðpþÞγ5 þ γ5Σðp−Þ�tu: ð15Þ

This relation must be preserved by any viable truncation
scheme of the SDE-BSE coupled system, thus constraining
the content of the quark-antiquark scattering kernel
Kðp; q;PÞ if an essential symmetry of the strong inter-
actions, and its breaking pattern, are to be faithfully
reproduced. Satisfying this identity is particularly impor-
tant when dynamical chiral symmetry breaking dominates
the physics.
However, from a practical point of view, Eq. (15)

provides a way of obtaining the quark-antiquark scattering
kernel, given an expression for the quark self-energy Σ. For
the CI under study, Eq. (15) can be easily satisfied. The
resulting expression for the quark-antiquark scattering
kernel is the RL truncation. This kernel is the leading-
order term in a nonperturbative, symmetry-preserving
truncation scheme, which is known and understood to be
accurate for the pseudoscalar and vector mesons. Moreover,
it guarantees electromagnetic current conservation [58],

Kðp;q;PÞtu;rs¼−g2Dμνðp−qÞ
�
λa

2
γμ

�
ts

�
λa

2
γν

�
ru
; ð16Þ

where g2Dμν is given by Eq. (4). Using the interaction that
we have specified via Eqs. (4) and (5), the homogeneous
BSE for a meson (η ¼ 1) takes a simple form:

ΓHðp;PÞ ¼ −
4

3

1

m2
G

Z
d4q
ð2πÞ4 γμSfðqþPÞΓHðq;PÞSgðqÞγμ:

ð17Þ

Since the interaction kernel given in Eq. (16) does not
depend on the external relative momentum for the CI, a
symmetry-preserving regularization will yield solutions
which are independent of it. With a dependence on the
relative momentum not supported by the CI, the general
form of the BSA for the pseudoscalar and vector channels is
given in Ref. [61],

ΓηcðPÞ ¼ γ5

�
iEηcðPÞ þ 1

2M
γ · PFηcðPÞ

�
; ð18Þ

ΓJ=Ψ
μ ðPÞ ¼ γTμEJ=ΨðPÞ þ 1

2M
σμνPνFJ=ΨðPÞ; ð19Þ

where M ¼ Mc=2 is a mass scale, with Mc being the
solution of Eq. (12). Results for the physical observables
are clearly independent of this choice.
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Since the BSE is a homogeneous equation, the BSA has
to be normalized by a separate condition. In the RL
truncation of the BSE, this condition is

Pμ ¼ Nc
∂

∂Pμ

Z
d4q
ð2πÞ4 Tr½Γ̄Hð−QÞSðqþÞΓHðQÞSðqÞ�;

ð20Þ

at Q ¼ P, with P2 ¼ −m2
H (we choose η ¼ 1).

Equation (20) ensures that the residue of the four-point
function at the mass pole is unity. Here, ΓH is the
normalized BSA, and Γ̄H is its charge-conjugated version.
For every channel, we will rescale ΓH such that Eq. (20) is
satisfied. Furthermore, for the vector channel, there is an
additional factor of 1=3 on the right-hand side to account
for all three meson polarizations.
Once the BSA has been normalized canonically with

Eq. (20), we can calculate observables from it. For
example, the pseudoscalar leptonic decay constant f0− is
defined by

Pμf0− ¼ Nc

Z
d4q
ð2πÞ4 Tr½γ5γμSðqþÞΓ0−ðPÞSðq−Þ�: ð21Þ

Similarly, the vector decay constant f1− is

m1−f1− ¼ Nc

3

Z
d4q
ð2πÞ4 Tr½γμSðqþÞΓ

1−
μ Sðq−Þ�; ð22Þ

where m1− is the mass of the vector bound state, and the
factor of 3 in the denominator comes from summing over
the three polarizations of the spin-1 meson.

1. Corollary of the axial-vector WTI

There are further nontrivial consequences of the axWTI
and the CI. They define our regularization procedure,
which must maintain

0 ¼
Z

d4q
ð2πÞ4

�
P · qþ

q2þ þM2
f

−
P · q−

q2− þM2
g

�

¼
Z

1

0

dx
Z

d4q
ð2πÞ4

1
2
q2 þM2

ðq2 þM2Þ2 ; ð23Þ

where M2 ¼M2
fxþM2

gð1− xÞ þ xð1− xÞP2. This ensures
that Eq. (14) is satisfied. Equation (23) states that the
axWTI is satisfied if, and only if, the model is regularized
so as to ensure there are no quadratic or logarithmic
divergences. Unsurprisingly, these are the circumstances
under which a shift in integration variables is permitted, an
operation required in order to prove Eq. (14) [19,20,40,41].
The constraint given by Eq. (23) will be implemented in all
our calculations so that Eq. (14) is unequivocally preserved.

C. Contact interaction for charmonia

In a recent work [32], we have developed a CI model for
charmonia. The results for the low-lying mass spectrum of
corresponding mesons are presented in Table I. They are in
excellent agreement with experimental data (with an
average percentage error of 1.14%) and, consequently,
with the findings of more sophisticated SDE-BSE model
calculations [26,31,33–35] and lattice QCD computations
[62,63]. The fact that a RL truncation with a CI describes
the mass spectrum of ground-state charmonia so well can
be understood in a simple way: since the wave function
renormalization and quark mass function are momentum
independent, the heavy quark–gluon vertex can reasonably
be approximated by a bare vertex. The decay constants
calculated in Ref. [32] for the ηc and J=Ψ channels
are given in Table II. For the pseudoscalar meson, the
result is in decent agreement with the lattice QCD result.
Though it is not exactly the case for the vector channel, it is
one of the best results in such models (see Ref. [32] for an
extended discussion). Note that the results presented in
Tables I and II correspond to a minimal extension of the CI
model developed primarily for the light quarks in

TABLE I. Ground-state charmonia masses obtained with
the best-fit parameter set: mg ¼ 0.8GeV, αIR ¼ 0.93π=20,
ΛIR ¼ 0.24GeV, and ΛUV ¼ 2.788 GeV. The current-quark mass
is mc ¼ 0.956� GeV, and the dynamically generated constituent-
like mass is Mc ¼ 1.497 GeV. Dimensioned quantities are in
GeV. (� ¼ This parameter set was obtained from the best fit to the
mass and decay constant of the pseudoscalar and vector chan-
nels). The average percentage error, with respect to experimental
data, is 1.14%.

Masses

mηcð1SÞ mJ=Ψð1SÞ mχc0 ð1PÞ mχc1 ð1PÞ

Experiment [67] 2.983 3.096 3.414 3.510
Contact interaction 2.950* 3.129 3.407 3.433
JM [1] 2.821 3.1 3.605 � � �
BK [26] 2.928 3.111 3.321 3.437
RB1 [31] 3.065 � � � � � � � � �
RB2 [31] 3.210 � � � � � � � � �
FKW [33] 2.925 3.113 3.323 3.489

TABLE II. The decay constants for the states ηcð1SÞ and
J=Ψð1SÞ obtained with mg ¼ 0.8 GeV, αIR ¼ 0.93π=20,
ΛIR ¼ 0.24 GeV, and ΛUV ¼ 2.788 GeV. The current-quark
mass is mc ¼ 0.956 GeV. Dimensioned quantities are in GeV.

Decay constants

fηc fJ=Ψ
Lattice QCD 0.395 [68] 0.405 [69]
S1rp [30] 0.239 0.198
S3ccp [30] 0.326 0.330
BK [26] 0.399 0.448
Contact interaction 0.305 0.220
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Refs. [19,20,40,41]. A naive application of this earlier
model to quarkonia yielded unacceptable results. The
reason can be traced back to the fact that the decay constant
is influenced by the high momentum tails of the dressed-
quark propagator and the BSAs [3,29,64]. These tails probe
the wave function of quarkonia at the origin. Contrastingly,
the CI yields a constant mass with no perturbative tail
for large momenta. Therefore, this artifact of quarkonia
had to be built into the model in an alternative manner.
Furthermore, we know that, as the masses become higher,
mesons become increasingly pointlike in configuration
space. The closer the quarks get, the weaker is the coupling
strength between them. We thus extended the CI model by
reducing the effective coupling αIR, accompanied by an
appropriate increase in the ultraviolet cutoff. However, we
retained the parameters mg and ΛIR of the light sector since
modern studies of the gluon propagator indicate that in the
infrared the dynamically generated gluon mass scale
virtually remains unaffected by the introduction of heavy
dynamical quark masses; see, for example, Refs. [65,66]. In
the subsequent sections, we shall use this extended CI to
evaluate the ηc EFF and TFF to γ�γ.

D. Algebraic model for charmonia

We also consider the SDE-based algebraic model, with a
simple extension to the heavy-quark sector,

S−1ðpÞ ¼ iγ · pþM;

ρνðzÞ ¼
Γð3

2
þ νÞ

Γð1
2
ÞΓð1þ νÞ ð1 − z2Þν;

Γηcðk;PÞ ¼ iγ5N
M
fηc

Z
1

−1
dzρνðzÞ

M2

ðkþ zσP=2Þ2 þM2
;

ð24Þ

where P2 ¼ −m2
ηc . N plays the role of the canonical

normalization condition, Eq. (20), and M is fixed such
that fηc ¼ 0.361GeV and σ¼mπ=mηc . A small σ sup-
presses the angular dependence k · P of the BSA, character-
istic of heavy mesons, while σ ¼ 1 recovers the SDE-based
AM for the pion [22].
The parameter ν that appears in Eq. (24) strongly

influences the form of the resulting PDA [22]. For the
pion, ν ¼ 1 produces ϕπ ∼ xð1 − xÞ. This expression is in
agreement with the asymptotic QCD prediction. ν ¼ −1=2
yields ϕπ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

, in keeping with a realistic PDA at
the hadronic scale [45,70,71]. As the PDA of the pion plays
a crucial role in determining the asymptotic behavior of its
EFF and the TFF to γ�γ, the AM is an efficient model to
encode both its nonperturbative and asymptotic dynamics,
as exemplified in Ref. [22]. This model has also been used
to calculate a pion’s valence dressed-quark generalized
parton distribution (GPD) Hv

πðx; ξ; tÞ for “skewness”
ξ ¼ 0, [47].

Owing to the above discussion about the form of the pion
PDA and its relation to the ν parameter, we fix ν ¼ 1 for the
AM to study the ηc, Eq. (24). Once the AM parameters
have been fixed, through the values of mηc , fηc , and ν, one
can use it to calculate the EFF and TFF for ηc.

E. Electromagnetic interaction: Quark-photon vertex

The interaction of a virtual photon with a meson probes
its internal structure and dynamics. The impulse approxi-
mation allows electromagnetic processes to be described in
terms of quark propagators, bound-state BSAs, and the
quark-photon vertex. In combination with the RL trunca-
tion for the quark propagator and vertices, it ensures
electromagnetic current conservation [15,17,72–74].
Phenomenologically, this approximation has proven to
be very successful in describing EFFs and TFFs of light
pseudoscalar and vector mesons [15–17].
The coupling of a photon with the bound state’s charged

constituent is given by the quark-photon vertex. In addition
to being determined by its own SDE, which is highly
nontrivial to solve, the quark-photon vertex Γμðpþ; p−;QÞ
is constrained by the gauge invariance of quantum electro-
dynamics (QED) through the vector Ward-Takahashi
identity (WTI)

iQμΓμðpþ; p−;QÞ ¼ S−1ðpþÞ − S−1ðp−Þ: ð25Þ
Preserving this identity, and its Q → 0 limit, is key to the
conservation of electromagnetic current. In our present
truncation, the SDE for the quark-photon vertex, consistent
with Eq. (16) (truncated at the RL level), is

Γμðp;QÞ ¼ γμ −
4

3

1

m2
G

Z
d4q
ð2πÞ4 γαSðqþÞΓμðq;QÞSðq−Þγα;

ð26Þ
where qþ ¼ qþQ and q− ¼ q. Noting that the right-hand
side is independent of the relative momenta, the general
form of the quark-photon vertex is

ΓμðQÞ ¼ γTμPTðQ2Þ þ γLμPLðQ2Þ; ð27Þ

where Qμγ
T
μ ¼ 0, γTμ þ γLμ ¼ γμ. Furthermore, note that

with the usage of Eq. (9) and Eq. (27) the vector WTI is
trivially obeyed. Moreover, the bare vertex γμ also satisfies
the WTI for the contact interaction propagator Eq. (9).
However, the bare vertex does not contain vector meson
poles, which are relevant for the correct description of the
charge interaction radius; see, for example, Ref. [73].
Taking appropriate Dirac traces, and using the constraint

of Eq. (23), which stems from the axWTI, we find
PLðQ2Þ ¼ 1 and

PTðQ2Þ ¼ 1

1 − KJ=ΨðQ2Þ ; ð28Þ
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where KJ=Ψ is the Bethe-Salpeter bound-state kernel in the
vector channel, Eq. (19), in the present truncation [32].
Thus, because of the dressing of the quark-photon vertex,
our form factors (EFF and TFF) will have a pole at
Q2 ¼ −m2

J=Ψ, where mJ=Ψ is the vector meson mass.
In the computation of the ηc EFF and TFF in the AM, we

use the ansatz for the quark-photon vertex as given in
Eq. (8) of Ref. [22]. It has earlier been employed success-
fully in the description of the pion EFF and TFF. Such a
form is derived through the gauge technique. It satisfies the
WTI, is free of kinematic singularities, reduces to the bare
vertex in the free-field limit, and has the same Poincaré
transformation properties as the bare vertex.

III. ηc ELASTIC FORM FACTOR

Charge-conjugation eigenstates do not have EFFs. At the
quark level of a meson, this can be attributed to the equal
and opposite charge of the quark and the corresponding
antiquark. Nonetheless, by coupling a vector current to the
quarks inside, one can measure a “form factor” that gives
information about the internal structure of the state.
The ηc meson, analogously to the pion, has only one

vector form factor FηcðQ2Þ, defined by the ηcγ
� vertex

Ληcγ
�

μ ðPi; Pf;QÞ ¼ FηcðQ2ÞðPf þ PiÞμ; ð29Þ

where Q ¼ Pf − Pi is the momentum of the virtual photon
and FηcðQ2Þ is the ηc EFF, the information carrier of the
internal electromagnetic structure of the bound state. In our
approach, the impulse approximation for the ηcγ

� vertex
reads

Ληcγ
�

μ ðP;QÞ ¼ 2Nc

Z
d4k
ð2πÞ4 Tr½iΓηcð−PfÞSðk2ÞiΓμðQÞ

× Sðk1ÞiΓηcðPiÞSðkÞ�; ð30Þ

where Pi ¼ P −Q=2 and Pf ¼ PþQ=2 are the incoming
and outgoing meson momenta, respectively; Q ¼ Pf − Pi

is the virtual photon momentum; and the distribution of
momentum between the constituents is such that k1 ¼
kþ P −Q=2 and k2 ¼ kþ PþQ=2. Since the scattering
is elastic, P2

i ¼ P2
f ¼ −m2

H. In terms of P and Q, these
constraints are cast as P ·Q ¼ 0 and P2 þQ2=4 ¼ −m2

H,
where mH is the mass of the bound state.
In Fig. 1, we present our results for the ηc EFF, displayed

with and without the dressing of the quark-photon vertex.
Evidently, this dressing has a negligible effect on the EFF.
In other words, in the CI, the heavy quark–photon vertex is
almost the bare one for the Q2 range shown. However,
although the timelike sector has not been displayed in
Fig. 1, the ηc form factor has a pole at Q2 ¼ −m2

J=Ψ, where
mJ=Ψ is the mass of the vector bound state; see Table I. This
is a consequence of dressing the quark-photon vertex

appropriately. Our results compare well with the vector
meson dominance (VMD) model for Q2 > 5 GeV2 but are
harder than the ones predicted by the lattice QCD. Beyond
Q2 ≳ 2.5 GeV2, the CI EFF starts deviating from the
lattice QCD findings by more than 20%. Notice that
the lattice QCD curve is a fit to the data [37], computed
in the quenched approximation by assuming the form

FηcðQ2Þ¼ exp½− Q2

16β2
ð1þαQ2Þ�, where β¼ 0.480ð3ÞGeV

and α ¼ −0.046ð1Þ GeV−2 on the range ½0; 5.5� GeV2.
We also compute the ηc EFF using the AM, defined

through Eqs. (24). Just as for the case of pion EFF, this
model fares very well as compared to the lattice results in
all the range of virtual photon momentum transfer squared
Q2. The largeQ2 dependence of the EFF is 1=Q2 in contrast
with the corresponding asymptotic behavior obtained
through the CI, which is a constant for Q2 → ∞. It is
already known that the asymptotic form factors obtained
through the CI are harder than theQCDpredictions [19–21].
In Fig. 2, we compare the ηc EFF with that of the π, both

in the RL approximation with a CI and a dressed quark-
photon vertex. In both cases, the respective EFF tends to a
constant for Q2 → ∞, which is a consequence of the
momentum independence of the interaction. Note that
the pion EFF increases more steeply for Q2 < 0 since
the pole (the ρ pole for the pion EFF) associated with the
dressing of the light quark–photon vertex lies very close
to Q2 ¼ 0.
The ηc meson EFF, shown in Fig. 2, can be para-

meterized by the following functional form in the Q2 range
shown:

FηcðQ2Þ ¼ 1þ 0.167Q2 þ 0.004Q4

1þ 0.372Q2 þ 0.028Q4
: ð31Þ
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FIG. 1. CI results for the ηc elastic form factor with and without
the dressing of the quark-photon vertex. The lattice QCD curve is
from Ref. [37], and the VMD monopole result is defined by the
mass scalemV ¼ 3.096 GeV. We also include the result obtained
with the AM; see Eq. (24).
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Our values for the ηc charge radius, defined by

r2ηc ¼ −6
dFηcðQ2Þ

dQ2

����
Q2¼0

; ð32Þ

are presented in Table III. As can be seen, these compare
well with the ones obtained with the more sophisticated
Maris-Tandy model interaction [24] and with lattice-regu-
larized QCD [37]. Furthermore, we can compare the charge
radius of ηc with that of π, rπ ¼ 0.45 fm, computed in
Ref. [21]. Obviously, rηc < rπ; i.e., the heavier the meson,
the closer it is to being a point particle. We also report the ηc
charge radius using the algebraic model AM, Eqs. (24).
Expectedly, its prediction lies higher than the CI model
(which produces form factors harder than the ones com-
puted in real QCD) and is in line with the result of
lattice QCD. Furthermore, the charge radius result, pre-
sented in Table III, is also in excellent agreement with the
lattice QCD.

IV. γγ� → ηc TRANSITION FORM FACTOR

The interaction vertex describing the γ�γ → ηc transition
can be parametrized by just one form factorGγ�γηcðQ2

1; Q
2
2Þ,

which can be computed from

T μνðQ1; Q2Þ ¼ TμνðQ1; Q2Þ þ TνμðQ2; Q1Þ; ð33Þ

where Q1 and Q2 are the incoming photon momenta, P ¼
Q1 þQ2 is the ηc momentum, and

TμνðQ1;Q2Þ ¼
αem
πfηc

ϵμναβQ1αQ2βGγ�γηcðQ2
1;Q

2
2Þ

¼ Tr
Z

d4k
ð2πÞ4 Sðk1ÞΓηcðk1; k2;PÞSðk2Þ

× iQcΓμðk2; k3;Q2ÞSðk3ÞiQcΓνðk3; k1;Q1Þ;
ð34Þ

with k1 ¼ k −Q1, k2 ¼ kþQ2, k3 ¼ k,Qc ¼ ð2=3Þe, and
αem ¼ e2=ð4πÞ. The kinematic constraints are Q2

1 ¼ Q2,
Q2

2 ¼ 0, and Q1 ·Q2 ¼−ðm2
ηc þQ2Þ=2, where P2 ¼ −m2

ηc ,
with mηc the ηc mass.
In Fig. 3, we present the CI results for the γ�γ → ηc TFF.

Although not shown in Fig. 3, the form factor has a pole at
Q2 ¼ −m2

J=Ψ, where mJ=Ψ is the mass of the vector bound
state. The results compare fairly well with the BABAR data
and lattice QCD for low Q2. For this reason, the interaction
radius of the transition form factor, defined in Eq. (32) and
tabulated in Table IV, compares well with the lattice QCD
and BABAR findings, as it probes the slope of the TFF for
Q2 → 0. However, for intermediate to large Q2, CI pro-
vides a harder form factor, and the correct asymptotic Q2

behavior is not captured; see also Fig. 4.
Both the EFF and TFF obtained from the CI and

displayed in Figs. (1 and 3) tend to a constant when
Q2 → ∞. This is because the quark propagator mass

TABLE III. The charge radius for the state ηcð1SÞ with the CI
and various other calculations. The parameter set used to produce
the CI results is that used for Tables (I and II) and Fig. 1. We also
include the VMD result with a mass scale mV ¼ 3.096 GeV. The
value in parentheses is obtained when we use the bare quark-
photon vertex. We have also computed the ηc charge radius using
the AM, Eqs. (24).

ηc charge radius (fm)

SDE [24] Lattice QCD [37] VMD CI AM
0.219 0.25 0.156 0.219 (0.210) 0.256
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FIG. 3. CI for the transition γ�γ → ηc form factor. The lattice

QCD curve is a fit [37] to data of the form GLattice
γ�γηc ðQ2Þ ¼ μ2

μ2þQ2

with μ ¼ 3.43 GeV, while the BABAR data is a fit [39] of the
form GBABAR

γ�γηc ðQ2Þ ¼ 1
1þQ2=Λ with Λ ¼ 8.5 GeV2. The perturba-

tive QCD (pQCD) limit is due to Feldmann and Kroll [75]. We
also include the plot obtained with the algebraic model;
see Eq. (24).
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FIG. 2. CI results for the ηc and π elastic form factors. The
parameter set used for the calculation of the ηc form factor is that
used to produce Tables (I and II) and Fig. 1, while the one used to
compute the π form factor is that given in Ref. [21].
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function and BSAs are momentum independent, which is a
characteristic of the CI; see Eq. (4). The need thus arises to
calculate these objects, and the resulting form factors, with
a more realistic interaction, a computation that is underway
and will be reported elsewhere.
As this is numerically more demanding, we resort to the

AM, defined in Eq. (24). In Figs. (3 and 4), the numerical
results for Gγγ�ηc and Q2Gγγ�ηc , respectively, contain the
plots obtained through employing the AM, Eq. (24);
perturbative QCD calculation [75]; and BABAR data. As
can be seen from these figures, the AM produces results
which agree well with experiment for all the range of Q2,
where results are available. Moreover, it behaves like 1=Q2

for large Q2 and matches the perturbative QCD limit of
the TFF.

V. ηc PARTON DISTRIBUTION AMPLITUDE

The perturbative calculation of the ηc → γγ� TFF in
Ref. [75] is based upon a factorization of short- and long-
distance physics. In other words, it is a convolution of a
hard-scattering amplitude computed perturbatively from
QCD and a universal hadronic light-cone wave function.
This wave function cannot be determined completely
accurately, but the ηc decay constant, which probes the
wave function at origin, can provide stringent constraints
on the latter. On the other hand, the PDA is also connected
to the wave function, the former being the integration of the

latter over the transverse momentum. This interconnection
was exploited in Ref. [75] to propose the parametrization
for the ηc PDA for all spacelike values of Q2,

ϕðxÞ ¼ NϕðaÞxð1 − xÞ exp ½−a2m2
ηcðx − x0Þ2�; ð35Þ

where NϕðaÞ is fixed such that
R
1
0 dxϕðxÞ ¼ 1 and

x0 ¼ 1=2. The conformal limit of this meson parton
distribution amplitude ϕasyðxÞ ¼ 6xð1 − xÞ is obtained
formally in the limit amηc → 0).
In Ref. [75], the determination of the ηc decay constant

suggests the value a ¼ 0.97 GeV−1 for the transverse size
parameter. This value is also consistentwith the estimates for
the charge radius squared or the quark velocity in potential
models [76]. The behavior of the PDA, Eq. (35), plotted in
Fig. 5, resembles the theoretically expected and experimen-
tally confirmed behavior of heavy-hadron fragmentation
functions; see Ref. [75] and references therein.
In our current work, we refer to the novel method,

developed in Ref. [45], to compute the meson PDA from
the projection onto the light front of the meson’s Poincaré-
covariant Bethe-Salpeter wave function. Carrying out this
exercise for the AM, Eq. (24), produces a ≅ 1 GeV−1.
Note that the values of a and σ ¼ mπ=mηc , used in defining
the AM, are correlated: a small value of σ gives a closer to 1
while a value ≈1 recovers the PDA of the pion obtained
with the AM.
This computation produces plots displayed in Fig. 5. In

the same figure, we also present the AM result for the PDA,
evolved from 4 to 50 GeV2 through the leading-order QCD
Efremov-Radyushkin-Brodsky-Lepage (ERBL) evolution
equation [78–81]. Interestingly, the AM result is practically
indistinguishable from the result of Ref. [75]. For the sake
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FIG. 4. Numerical results for Q2Gγ�γηc. See the caption
for Fig. 3.

TABLE IV. Interaction radius of the transition γ�γ → ηc form
factor as defined in Eq. (32). The BABAR and lattice QCD results
were extracted from their respective monopole parametrization of
the data. We also report the results obtained with the AM,
Eq. (24).

Interaction radius (fm)

BABAR [39] Lattice QCD [37] CI AM
0.166 0.141 0.133 0.17

0 0.2 0.4 0.6 0.8 1
x
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FIG. 5. Numerical results for the ηc PDA, ϕðxÞ, obtained with
the AM. We have also plotted the resulting PDA evolved to
50GeV2, using the leading-order QCD ERBL evolution equation
(see text). For the sake of comparison, we have also included the
perturbative QCD (pQCD) results of Ref. [75], the asymptotic
QCD expression 6xð1 − xÞ (Conformal QCD), and the recent
SDE prediction (SDE-DB) of Ref. [77].
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of comparison, we also superimpose the result reported in
Ref. [77], obtained with a sophisticated DCSB-improved
SDE truncation (SDE-DB).
Together with the results for the form factors, this

analysis essentially means that the SDE-based AM already
encodes a reliable description of the ηc meson and that a
full numerical calculation with a realistic interaction should
reproduce similar results.

VI. CONCLUSIONS

We have computed the EFF and the TFF [ηcð1SÞ → γγ�]
for the ηc meson, and the corresponding charge radii, in a
CI as well as an SDE-BSE formalism inspired AM. Within
the CI, we employ the dressing of the quark-photon vertex,
consistent with the model truncation and the WTI. It
ensures the form factor possesses a vector meson pole at
Q2 ¼ −m2

J=Ψ. Since the massmJ=Ψ is large, the effect of the
meson vector pole on the charge radii is very small; i.e., the
heavier the meson, the closer it is to a point particle. Our CI
is based upon a good description of the masses of the
ground state in four different channels: pseudoscalar
[ηcð1SÞ], vector [J=Ψð1SÞ], scalar [χc0ð1PÞ], and axial
vector [χc1ð1PÞ], as well as the weak decay constants of the
ηcð1SÞ and J=Ψð1SÞ and the charge radius of ηcð1SÞ.
For the form factors, expectedly, the CI results agree with

QCD-based prediction and/or experiments only up to a
certain value of the virtual photon momentum transfer Q2.
This observation is in line with earlier similar calculations
for the π and the ρ [19–21], where it is argued that the
form factors of hadrons in a CI are harder than the real

QCD-based results. Therefore, for the CI, both form factors
tend to a constant for Q2 → ∞, which is a consequence of
the momentum-independent interaction.
Furthermore, we have also extended an SDE-BSE based

AM, proposed for the light-quark sector, to study the ηc. We
calculate EFF, TFF [ηcð1SÞ → γγ�], and also the ηc PDA
with this model. For the EFF, the results are in excellent
agreement with the lattice findings for all Q2 available. An
extra advantage of the AM is that its simplicity allows us to
extend the computation to any desired values of spacelike
Q2. We show the results tillQ2 ¼ 15 GeV2 for the EFF. For
the TFF [ηcð1SÞ → γγ�], we calculate the results till
Q2 ¼ 50 GeV2. For all the regime of momentum transfer
squared Q2, the results match perfectly with the experi-
ment. Moreover, for large Q2, the perturbative QCD limit
of Ref. [75] is faithfully reproduced.
This essentially means that the AM already gives a good

description of the ηc meson and that a full numerical
calculation with a realistic interaction should be able to
produce similar results. We are currently in the process of
extending our work to the sector of bottomonia.
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