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In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of
static and homogeneous parallel electric field E and magnetic field B. We use a Nambu-Jona-Lasinio model
with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a
finite temperature for a wide range of E and B. We study the effect of this background on the inverse
catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the
effect of the equilibration of chiral density n5, produced dynamically by an axial anomaly on the critical
temperature. The equilibration of n5, a consequence of chirality-flipping processes in the thermal bath,
allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a
function of the temperature and field strength by coupling the number equation to the gap equation and
solving the two within an expansion in E=T2, B=T2, and μ25=T

2. We find that even if chirality is produced
and equilibrates within a relaxation time τM, it does not change drastically the thermodynamics, with
particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at
equilibrium is not too large.
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I. INTRODUCTION

There has recently been an increasing interest for the
study of systems with a finite chiral density, namely,
n5 ≡ nR − nL ≠ 0. Such a chirality imbalance can be
obtained dynamically because of the Adler-Bell-Jackiw
anomaly [1,2] when fermions interact with nontrivial gauge
field configurations characterized by a topological index
named the winding number, QW . In the context of quantum
chromodynamics (QCD), such nontrivial gauge field con-
figurations at a finite temperature in Minkowski space are
named sphalerons, whose production rate has been esti-
mated to be quite large [3,4]. The large number of
sphaleron transitions in a high temperature suggests the
possibility that net chirality might be abundant (locally) in
the quark-gluon plasma phase of QCD; when one couples
this thermal QCD bath with an external strong magnetic
field B, produced in the early stages of heavy ion collisions,
the coexistence of n5 ≠ 0 and B ≠ 0 might lead to a charge
separation phenomenon named the chiral magnetic effect
(CME) [5,6], which has been observed experimentally in
zirconium pentatelluride [7]. Beside CME, other interesting
effects related to the anomaly and chiral imbalance can be
found in Refs. [8–22].
In order to describe systems with finite chirality in

thermodynamical equilibrium, it is customary to introduce
a chiral chemical potential μ5, conjugated to the n5 [23–36].
The chiral chemical potential describes a system in which

chiral density is in thermodynamical equilibrium; however,
because of the anomaly as well as of chirality-changing
processes due to a finite quark condensate, n5 is not a
strictly conserved quantity—hence, the meaning of μ5 is
not so clear; however, naming τM the typical time scale in
which chirality-changing processes take place, one might
assume that μ5 ≠ 0 describes a system in thermodynamical
equilibrium with a fixed value of n5 on a time scale much
larger than τM, the latter representing the time scale needed
for n5 to equilibrate.
In this article, we study the chiral phase transition and

chiral density production in the context of quark matter in
background static and homogeneous parallel electric, E,
and magnetic, B, fields. One of our goals is to investigate
the effect of the background fields on chiral symmetry
breaking at zero temperature and on the critical temperature
for chiral symmetry restoration, Tc. This part of the study
embraces previous studies about chiral symmetry breaking
or restoration in the background of external fields [37–46],
completing them by adding the computation of the critical
temperature versus the strength of E and B. We find that the
effect of the electric field is to lower the critical temper-
ature, in agreement with the scenario of inverse catalysis
depicted in Refs. [38,39,47], where, however, only the zero
temperature case has been considered; the inverse catalysis
scenario does not change considerably when the magnetic
field is added, as long as the magnetic field is not very large
compared to the electric one. This finding is in agreement
with a previous study at zero temperature [37], where the
role of the second electromagnetic invariant, E · B, has

*marco.ruggieri@ucas.ac.cn
†gxpeng@ucas.ac.cn

PHYSICAL REVIEW D 93, 094021 (2016)

2470-0010=2016=93(9)=094021(13) 094021-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.094021
http://dx.doi.org/10.1103/PhysRevD.93.094021
http://dx.doi.org/10.1103/PhysRevD.93.094021
http://dx.doi.org/10.1103/PhysRevD.93.094021


been recognized as an inhibitor of chiral symmetry
breaking.
We are also interested to study the effect of chiral density

on the thermodynamics of the system. The model studied
here has the advantage that a chiral density is obtained
dynamically without the need to introduce, a priori, a chiral
chemical potential. As a matter of fact, chirality can be
produced by combining E, which produces pairs via the
Schwinger mechanism, and B, which aligns particle spin
along its direction. The mechanism producing chirality is
very simple: We assume for the sake of simplicity a very
large B, so that only the lowest Landau level (LLL) is
occupied; moreover, we assume the system to be made only
of one flavor of quarks, namely, u quarks, and we focus on
a single uū created by the Schwinger effect. The u quark
must have its spin aligned along B, because it sits in the
LLL, and its momentum will be initially rather parallel or
antiparallel to B, so the initial helicity can be either positive
or negative. On the other hand, the effect of E∥B is to
accelerate u along the direction of B so after some time the
u quark will have positive helicity. An analogous discus-
sion can be done for the ū. Therefore, as a consequence of
the Schwinger effect, LLL, and E∥B each time a pair is
created, there is an increase of a factor of 2 of the net chiral
density of the system.
The dynamical evolution of n5 produced by this mecha-

nism can be computed explicitly [48], and it has been
shown to be the one expected from the Adler-Bell-Jackiw
anomaly: This is not surprising, because E · B ≠ 0, mean-
ing that the axial current is not conserved at the quantum
level and n5 should evolve according to the anomaly
equation. If n5 evolution was governed only by the
anomaly, however, there would be no chance for reaching
a thermodynamical equilibrium, because n5 would grow
indefinitely (assuming the fields as external fields and
neglecting any backreaction from the fermion currents).
But in the thermal bath there are also chirality-flipping
processes related to the existence of the chiral condensate
as well as of the finite current quark mass: We introduce a
relaxation time for chirality, namely, τM, giving the time
scale necessary for the equilibration of n5. Then it is
possible to show that, for times t ≫ τM, the chiral density
equilibrates to neq5 , the actual value depending on the quark
electric charge, field magnitude, and temperature.
Because n5 equilibrates, it is possible to introduce the

chiral chemical potential μ5, conjugated to neq5 at equilib-
rium. Differently from previous calculations with chirality
imbalance, in the present study we compute the value of μ5
self-consistently by coupling the gap equation to the
number equation, even if we limit ourselves to the
approximation of small fields and small μ5, namely,
working at the leading order in μ5=T, E=T2, and B=T2.
As a consequence, μ5 will depend on the temperature as
well as on external fields and on the relaxation time. We
focus on the effects of the external fields on the chiral phase

transition, with an emphasis on the role of chirality
production in the critical region. Because of the small field
approximation involved in the solution of the gap as well as
the number equations, we are aware that our picture about
thermodynamics might change in the case of large fields.
In this study, we compute the effect of the dynamically

produced n5 on Tc. As mentioned above, the E · B term
tends to lower the critical temperature; on the other hand,
the chiral chemical potential has the effect to increase Tc
[23,24,29–34]. Therefore, it is interesting to compute the
response of Tc to the simultaneous presence of μ5 and
fields, to check if the inverse catalysis scenario obtained at
μ5 ¼ 0 still persists at μ5 ≠ 0. We can anticipate our results,
namely, that chiral density does not affect drastically the
thermodynamics at the phase transition, confirming the
inverse catalysis induced by the fields, as long as
the average chiral chemical potential in the crossover
region turns out to be small with respect to the temperature.
In Sec. V, we present a detailed study of this effect, showing
concrete numbers and among other things how changing
the field strengths and/or the relaxation time magnitude
affects the inverse catalysis. In fact, we have found and
report about situations in which we can measure a net effect
of the chiral chemical potential on the constituent quark
mass and on the critical temperature, even if we take these
results with a grain of salt, as the value of μ5 at equilibrium
turns out to be of the order of the critical temperature, hence
potentially validating our quantitative predictions.
The relaxation time for chirality adds the greatest

theoretical uncertainty to our calculations: In the absence
of a specific calculation of τM, it is possible to give only a
rough estimate based on dimensional analysis as well as on
physical reasons; we chose τM ∝ 1=Mq, where Mq is the
constituent quark mass which is computed self-consistently
within the model: It depends on the temperature and fields,
and by construction it brings information about the chiral
condensate at zero as well as finite temperature. Because of
this uncertainty on τM, we feel it is not so important, in this
explorative study, to present the most complete calculation
possible taking into account the full propagators with the
full μ5 dependence: We suspect in fact that, even within
the most accurate calculation possible, the new effects of
the chiral density on the phase transition might be canceled
by changing τM, which still would remain unknown. We
therefore prefer to limit ourselves to a simple weak field
and small μ5 approximation to explore the effects the chiral
density will have on the phase diagram, leaving a more
complete calculation to a future study.
The plan of the article is as follows. In Sec. II, we briefly

review the model we use for our calculations. In Sec. III, we
present a few selected results at zero temperature which
show the interplay between the electric and magnetic fields
on chiral symmetry breaking. In Sec. IV, we discuss some
result at a finite temperature, with an emphasis on the chiral
phase transition without taking into account chirality
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production. In Sec. V, we compute the chirality at equi-
librium and the related chiral chemical potential and study
the effect of this chirality on the critical temperature.
Finally, in Sec. VI, we draw our conclusions.

II. THE MODEL

In this article, we are interested to study quark matter in a
background of an electric-magnetic fluc tube made of
parallel electric, E, and magnetic, B, fields. We assume
the fields are constant in time and homogeneous in space;
moreover, we assume they develop along the z direction. In
this section, we describe the model we use for our calcu-
lations. More specifically, we use a Nambu-Jona-Lasinio
(NJL) model [49,50] (see [51,52] for reviews) with a local
interaction kernel, in which we introduce the coupling of
quarks with the external electric and magnetic fields. The
setup of the gap equation has been presented in great detail in
Ref. [47], which we follow; therefore, we will skip all the
technical details and report here only the few equations we
need to specify the interactions used in the calculations. The
Euclidean Lagrangian density is given by

L ¼ ψ̄ðiD −m0Þψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð1Þ

with ψ being a quark field with Dirac, color, and flavor
indices,m0 is the current quark mass, and τ denotes a vector
of Pauli matrices on flavor space. The interaction with
the background fields is embedded in the covariant deriva-
tive D ¼ ð∂μ − iAμq̂Þγμ, where γμ denotes the set of
Euclidean Dirac matrices and q̂ is the quark electric
chargematrix in flavor space. In this work, we use the gauge
Aμ ¼ ðiEz; 0;−Bx; 0Þ.
Introducing the auxiliary field σ ¼ −2Gψ̄ψ and using a

mean field approximation, the thermodynamic potential
can be written as

Ω ¼ ðMq −m0Þ2
4G

−
1

βV
Tr log βðiD −MqÞ; ð2Þ

where the constituent quark mass is Mq ¼ m0 − 2Ghψ̄ψi,
β ¼ 1=T, and βV corresponds to the Euclidean quantiza-
tion volume. The constituent quark mass differs from m0

because of spontaneous chiral symmetry breaking, the
latter being related to a nonvanishing chiral condensate,
hψ̄ψi ≠ 0. Even if it would be more appropriate to discuss
chiral symmetry restoration via the quark condensate,
because it has its counterpart in QCD, in this article we
will refer to Mq for simplicity, keeping in mind that
whenever we discuss the chiral phase transition in terms
of Mq the decrease of the latter is related to the decreasing
chiral condensate.
In this model, the main task is to compute self-

consistently Mq at a finite temperature and in the presence
of the external fields. This is achieved by requiring the

physical value of Mq to minimize the thermodynamic
potential, and this in turn implies that Mq satisfies the
gap equation, ∂Ω=∂Mq ¼ 0, namely,

Mq −m0

2G
−

1

βV
TrSðx; x0Þ ¼ 0; ð3Þ

where Sðx; x0Þ corresponds to the full fermion propagator
in the electric and magnetic field background. The com-
putation of the propagator has been already given in detail
in Ref. [47]; therefore, here we merely quote the final result
for the gap equation, that is,

Mq −m0

2G
¼ Mq

Nc

4π2
X

f

Z
∞

0

ds
s2

e−M
2
qsF ðsÞ

þMq
NcNf

4π2

Z
∞

1=Λ2

ds
s2

e−M
2
qs; ð4Þ

where we have introduced the functions

F ðsÞ ¼ θ3

�
π

2
; e−jAj

�
qfeBs

tanhðqfeBsÞ
qfeEs

tanðqfeEsÞ
− 1 ð5Þ

with θ3ðx; zÞ being the third elliptic theta function, and

AðsÞ ¼ qfeE

4T2 tanðqfeEsÞ
: ð6Þ

In Eq. (4), we have added and subtracted the zero field
contribution on the right-hand side which is the only one to
diverge, and we have regularized it by cutting the integra-
tion at s ¼ 1=Λ2; on the other hand, we have not added a
cutoff on the field-dependent part as it is not divergent. For
the parameter choice we use the standard parameter set for a
proper time regularization [51], namely, Λ ¼ 1086 MeV
and G ¼ 3.78=Λ2.
The presence of the 1= tanðqfeEsÞ in Eq. (5) implies the

existence of an infinite set of poles on the integration in s in
Eq. (4); these poles appear in Ω as well. Following the
original treatment by Schwinger [53], these poles are
moved to the complex plane by adding a small imaginary
part which allows one to perform the s integration in the
principal value; this leads to an imaginary part of the free
energy, which is a sign of the vacuum instability induced by
the static electric field [53,54] and leads to particle pair
creation. We will consider the effect of this vacuum
instability in Sec. V, because it can be directly connected
to chiral density production in the case of parallel E and B.

III. RESULTS AT ZERO TEMPERATURE

In this section, we present a few results at zero temper-
ature. In Fig. 1, we plot the constituent quark mass as a
function of the external field strength at T ¼ 0 for several
cases: The maroon dot-dashed line corresponds to the case
of a pure magnetic field; the green dashed line corresponds
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to a pure electric field; and, finally, the solid orange line
corresponds to the case E ¼ B. The left panel corresponds
to m0 ¼ 5.49 MeV, which is the value of the current quark
mass necessary to have mπ ¼ 139 MeV; the right panel
corresponds to the chiral limit m0 ¼ 0. For the case of a
pure magnetic field, we find the magnetic catalysis of chiral
symmetry breaking; on the other hand, the electric field has
the opposite effect, leading to an inverse magnetic catalysis
[51]. In this pure electric field case, there exists a critical
electric field at which chiral symmetry is restored in the
chiral limit: We find the transition to be of the second order.
In the case of massive quarks, the phase transition is
changed into a smooth crossover characterized by a smooth
but net change in the slope of the condensate, resulting in a
smaller value of the condensate itself, as happens for the
chiral phase transition at a finite temperature. In this case, it
is not possible to define in a rigorous way a critical field,
but it is still possible to identify a range of electric fields in
which Mq has its highest change with E and identify this
range with the pseudocritical region.
It is interesting to study what happens when E and B act

together: Naturally, one would expect a competition among
the effects of the magnetic (catalysis) and electric (inverse
catalysis) fields. In Fig. 1, we have shown the caseE ¼ B in
which it is clear that, regardless of whether we work in the
chiral or in the physical current quark mass limit, the
magnetic field has some catalysis effect increasing the value
of Mq (i.e., chiral condensate) and shifts the critical (or
pseudocritical) value of the electric field slightly upwards
compared to the case B ¼ 0. In Fig. 2, we show Mq as a
function of eB for several choices of E, starting from E ¼ 0
up to E ¼ B. Already for E ¼ 0.5B we find a sign of
competition among direct and inverse catalysis, which
manifests in a nonmonotonic behavior of Mq versus eB.
We can also read the results of Fig. 2 in the opposite way:

Given a background of an electric fieldE, even introducing a
magnetic field of the same magnitude of E does not result in
a considerable change of spontaneous chiral symmetry
breaking—compare the green dashed and orange solid lines
in Fig. 1; for B as large as ≈1.3E, we find that qualitatively
the behavior of the chiral condensate versus field strength is
like the one atB ¼ 0, even if for very small values of the field
strength we still find the mass increases; the net effect of the
magnetic field is to shift the critical value of the electric field
to larger values because of catalysis. In order to measure a
catalysis effect, one has to introduce a larger magnetic field,
for example, B ≈ 2E in Fig. 2. The inverse catalysis effect
induced by the electric field and the second electromagnetic
invariantE · B are in agreementwith previous studies at zero
temperature [37–41].
The behavior of Mq for small values of the fields can be

easily understood quantitatively by the gap equation atT ¼ 0
and m0 ¼ 0. We can find an analytical solution for the gap
equation (4) for small fields by writing Mq ¼ M0 þ δm,
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FIG. 1. Dynamical quark mass with the electric and/or mag-
netic field strength at zero temperature. The maroon dot-dashed
line corresponds to the case of a pure magnetic field; the green
dashed line corresponds to a pure electric field; and, finally, the
solid orange line corresponds to the case E ¼ B. The left panel
corresponds to m0 ¼ 5.49 MeV, while the right panel corre-
sponds to m0 ¼ 0.
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FIG. 2. Upper panel: Dynamical quark mass versus the mag-
netic field strength at zero temperature, for several values of the
background electric field. The maroon dot-dashed line corre-
sponds to the case of a pure magnetic field; the indigo dotted line
to E ¼ 0.25B; the dashed magenta line to E ¼ 0.5B; the dot-dot-
dashed brown line to E ¼ 0.75B; and, finally, the orange line to
E ¼ B. For comparison, we have also shown data for B ¼ 0
borrowed from Fig. 1; in this case, on the x axis we show eE in
units of m2

π . Lower panel: Comparison of the perturbative
solution Eq. (7) with the full one.
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whereM0 corresponds to the solution of the gap equation for
E ¼ B ¼ 0. Moreover, for small values of the fields we can
keep only the order OðM0Þ in the field-dependent term in
Eq. (4). Taking into account thatM0 is the solution of the gap
equation at E ¼ B ¼ 0, we find

δm ¼ 1

2NfjEið−M2
0=Λ

2Þj ðϒ1 þϒ2Þ; ð7Þ

where

ϒ1 ¼
q2u þ q2d
3M3

0

I1; ð8Þ

ϒ2 ¼ −
q4u þ q4d
45M7

0

ðI2
1 þ 7I2

2Þ; ð9Þ

with I1 ≡ ðeBÞ2 − ðeEÞ2 and I2 ≡ ðeEÞðeBÞ; moreover,Ei
denotes the exponential integral function EiðxÞ ¼
−
R
∞
−x dse

−s=s. The field dependence in the above equation
resembles that occurring in the Euler-Heisenberg Lagrangian
[54] as it should, since the latter canbeobtainedby integrating
the gap equation over Mq. From Eq. (7), we notice that, for
B ¼ 0, δm ∝ −E2=M3

0 neglecting higher-order contribu-
tions; the curvature of δm versus eE does not change as
long as eE > eB. ForE ¼ B, one has to take into account the
contribution OðE2B2Þ, which still shows δm ∝ −E2B2=M7

0

leading to a decreasing Mq. Finally, for eB > eE, the
catalysis sets in, at least for small values of the fields,
eventually leading to δm ∝ −B2=M3

0 for E ¼ 0. In the lower
panel in Fig. 2, we have compared the perturbative solution in
Eq. (7) with the full one, for two cases. We find a fair
agreement among the two for eE, eB≃ 5m2

π .

IV. RESULTS AT A FINITE TEMPERATURE

In this section, we discuss our results about chiral
symmetry restoration at a finite temperature. In the upper
panel in Fig. 3, we plot Mq versus T for E ≠ 0 and B ≠ 0

and compare it with the result at E ¼ B ¼ 0. The general
trend of data shown in the figure is in agreement with the
scenario depicted at T ¼ 0 discussed above. In particular,
the inverse catalysis due to the electric field implies the
lowering of the critical temperature; on the other hand, the
catalysis due to the magnetic field at T ¼ 0 is still present at
T ≈ Tc, leading to the increase of the pseudocritical
temperature at B ≠ 0. It has been discussed that the
magnetic catalysis of chiral symmetry breaking within
the NJL model at a finite temperature is due to the fact
the NJL interaction kernel does not take into account the
effects of screening as well as of coupling lowering which
instead occur in QCD and are important for inverse
catalysis [55,56]. Although it would be possible to insert
by hand a B dependence of the NJL coupling in order to
reproduce the inverse magnetic catalysis [57], we prefer to

not do this in our study, because it would hide the effect of
the electric field; we will add this important ingredient in
our upcoming works.
In the middle panel in Fig. 3, we plot jdMq=dTj: We

identify its maximum with the crossover temperature. For
E ¼ B ¼ 0, we find Tc ≈ 166 MeV. We notice that the
electric field not only makes the pseudocritical temperature
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FIG. 3. Upper panel: Dynamical quark mass versus the temper-
ature for E ¼ B ¼ 0 (red solid line), eB ¼ 8m2

π (cyan dot-dashed
line), and eE ¼ 8m2

π (dashed green line). Middle panel:
jdMq=dTj versus the temperature used to identify the pseudoc-
ritical temperature for the chiral crossover. The line convention is
the same as the upper panel. Lower panel: Dynamical quark mass
versus the temperature for E ¼ B ¼ 0 (red solid line), eB ¼ 8m2

π

(cyan dot-dashed line), and eE ¼ 8m2
π (dashed green line) in the

chiral limit.
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lower than the one in the caseE ¼ B ¼ 0, but it also smooths
the crossover because the variation of the quark mass with
the temperature is smaller in magnitude than in the casewith
no fields. Finally, in the lower panel in Fig. 3, we plot Mq

versus the temperature for the ideal case of quarks with
vanishing current mass: As expected, the effect of the
external fields is qualitatively the same we have found in
the realistic case of quarks with finite current mass.
In Fig. 4, we plotMq versus T for several values of E and

B: Thin lines correspond B ¼ 0, while with thick lines we
denote the results for E ¼ B. The blue solid line corre-
sponds to eE ¼ m2

π , the orange dotted line to eE ¼ 8m2
π ,

and the green dashed line to eE ¼ 15m2
π . Increasing the

electric field strength results in a lowering of the critical
temperature, and the effect of B ≠ 0 is just to increase a bit
the quark mass and shift the critical temperature towards
slightly higher values.
The results collected in Figs. 3 and 4 show that even

when B ¼ E the effect of the fields on the critical temper-
ature does not cancel and the electric field gives the more
important contribution, leading to an inverse catalysis. In
fact, one would need a larger value of B to observe an
increase of the critical temperature. This can be understood
easily: Close to the second-order phase transition (we work
now at m0 ¼ 0, which allows an analytical treatment), we
can make an expansion of the thermodynamic potential in
powers of Mq, namely,

Ω ¼ α2
2
M2

q þOðM4
qÞ; ð10Þ

where the coefficient α2 ¼ ∂2Ω=∂M2
q at Mq ¼ 0; α2 is

negative in the chirally broken phase and vanishes at the
phase transition. The coefficient α2 can be easily computed
taking the derivative of the gap equation [Eq. (4)] and

expanding for small values of the fields. It is then possible
to write α2 ¼ α2;0 þ α2;2, where α2;0 denotes a field-
independent term and α2;2 corresponds to a term
OðeE2; eB2Þ. The field-independent term is not interesting,
because it just determines the critical temperature when
the external fields are set to zero. On the other hand, the
field-dependent contributions are more relevant for the
discussion; a straightforward calculation leads to

α2;2 ¼ −
X

f

q2f
Nc

4π2

Z
dsΘ3ðT; sÞ

ðeBÞ2 − ðeEÞ2
3

−
X

f

q2f
Nc

48π2T2

Z
ds
s
e−

1

4T2sΔ3ðT; sÞðeEÞ2; ð11Þ

where we have used the shorthand notation

Θ3ðT; sÞ ¼ θ3

�
π

2
; e−

1

4T2s

�
; ð12Þ

Δ3ðT; sÞ ¼
dθ3ðz; xÞ

dx

����
z¼π

2
;x¼exp½−1=ð4T2sÞ�

: ð13Þ

The term on the right-hand side in the first line of Eq. (11)
shows that the correction to α2 due to the puremagnetic field
is negative, hence shifting the phase transition to larger
temperatures. On the other hand, the term proportional toE2

is positive and gets a further positive contribution from the
second line of Eq. (11): Indeed, the latter is proportional to
the derivative of the θ3ðx; zÞ function, which is a decreasing
function of its second argument. As a consequence, the
coefficient proportional toE2 is positive, and, because of the
additional contribution at a finite temperature, one needs a
value ofB > E in order to change the sign ofα2;2 and turn the
inverse catalysis into a direct one. This explains why for
E ¼ B we still find an inverse catalysis of chiral symmetry
breaking at a finite temperature.
In Fig. 5, we plot Tc versus eE (measured in units ofm2

π)
for several values of the external magnetic field: Black
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squares correspond to B ¼ 0, red diamonds to eB ¼ 5m2
π ,

and green triangles to eB ¼ 10m2
π . This figure summarizes

one of the main findings of our work, namely, that the
electric field leads to a lowering of the critical temperature
for chiral symmetry restoration, and the presence of the
parallel magnetic field does not change this result
unless B ≫ E.

V. CHIRAL DENSITY EFFECTS AT THE
CRITICAL TEMPERATURE

The electric-magnetic background considered in this
article is dynamically unstable because of the Schwinger
pair production [53,54]. This is due to the presence of poles
in the thermodynamic potential Ω, which in turn make the
quantum corrections to the electromagnetic Lagrangian
complex, with the imaginary part related to the vacuum
persistency probability. Because of the quantum anomaly,
the Schwinger mechanism eventually leads to a nonzero
chiral density n5; we assume for the moment that the
background magnetic field B is very large, so that it is
reasonable to assume that only the LLL is occupied, to
simplify the discussion; moreover, we assume the system to
be made only of one flavor of quarks, namely, u quarks. Let
us focus on one single uū created by the Schwinger effect.
The u quark must have its spin aligned along B because of
the LLL approximation; because of dimensional reduction
in the LLL, u momentum will be initially rather parallel or
antiparallel to B, so the initial chirality can be either
positive or negative. On the other hand, the effect of
E∥B is to accelerate u along the direction of B so after
some time u quark will have positive chirality. An analo-
gous discussion can be done for the ū. Therefore, as a
consequence of the Schwinger effect, LLL, and E∥B each
time a pair is created, there is an increase of a factor of 2 of
the net chiral density of the system, n5 ≡ nR − nL.
Obviously, higher Landau levels do not contribute to n5,
because particle spin can be either parallel or antiparallel to
B, leading to a cancellation of n5. Hence, chirality is
produced dynamically in the background field configura-
tion studied here. This makes the study very interesting,
because if chiral density relaxes to an equilibrium value, it
might affect the equilibrium properties of quark matter.
The time evolution of n5 in the case of massive particles

in the background with constant and homogeneous fields
has been derived for the first time by Warringa in [48],
where he has shown it can be directly obtained from the
Schwinger production rate for the case of E∥B, namely
[58–62],

Γ ¼ q2fðeEÞðeBÞ
4π2

coth

�
B
E

�
e
− πM2

jqfeEj; ð14Þ

indeed, only the LLL gives a contribution to n5, and this
LLL contribution can be easily extracted from the above

equation by taking the B → ∞ limit, because in such a limit
it is reasonable to assume that only the LLL is occupied;
because each pair in the LLL changes the chiral density of a
factor of 2, we have from the above equation in the B → ∞
limit

dn5
dt

¼ q2fðeEÞðeBÞ
2π2

e
− πM2

jqfeEj; ð15Þ

in agreement with Ref. [48]. If evolution of n5 was given
only by the above equation, then the system would never be
able to reach thermodynamical equilibrium (assuming the
fields as external fields neglecting any backreaction from
the fermion currents). However, Eq. (15) is just half of the
story: Because of the finite quark mass, there are chirality-
changing processes which should lead to the equilibration
of n5. In order to take into account these processes, we add
a relaxation term on the right-hand side of the above
equation:

dn5
dt

¼ q2fðeEÞðeBÞ
2π2

e
− πM2

jqfeEj −
n5
τM

; ð16Þ

where τM corresponds to the relaxation time of chirality-
changing processes. For t ≫ τM, the solution of Eq. (16)
relaxes to the equilibrium value

neq5 ¼ q2fðeEÞðeBÞ
2π2

e
− πM2

jqfeEjτM: ð17Þ

The equilibrium value of the chiral density depends on
the value of τM. It is reasonable to assume both by virtue of
dimensional considerations and by naive physical argu-
ments that τM ∝ 1=Mq, where Mq corresponds to the
constituent quark mass: For large values of Mq,
chirality-changing processes will be very fast, hence
reducing drastically the relaxation time and the net chirality
produced at equilibrium; on the other hand, for small Mq,
the system will be less efficient in changing chirality, which
implies a larger relaxation time and a larger chirality
produced at equilibrium. Thus, we assume

τM ¼ c
Mq

; ð18Þ

the above equation implicitly contains effects of the chiral
condensate in the chirally broken phase via the larger value
of Mq in this phase. Needless to say, the parameter c adds
the largest uncertainty in our calculations: Because neq5
depends linearly on τM, a change of an order of magnitude
in cwill produce the same change in neq5 . Wewill study how
changing c might affect our results.
Equation (17) shows that on a time scale larger than the

relaxation time an equilibrium value of n5, namely, neq5 , is
produced. Because of the different charges of u and d
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quarks, the equilibrium value of n5 for the two flavors to be
different at equilibrium, in fact, we find

neq5u
neq5d

¼ q2u
q2d

e−
πM2

jeEj ð 1
qu
− 1
jqd jÞ; ð19Þ

the actual value depending on E and on the temperature via
Mq. The existence of an equilibrium value for the chiral
density means it is possible to introduce a chemical
potential for the chiral charge, namely, the chiral chemical
potential μ5, conjugated to neq5 . A self-consistent compu-
tation of μ5 given the value of neq5 in Eq. (17) requires a
canonical ensemble calculation in which the gap equation
for the quark mass is solved self-consistently with the
number equation, namely,

neq5 ¼ −
∂Ω
∂μ5 ; ð20Þ

with μ5 introduced in the quark propagator with E∥B. This
full calculation is well beyond the purpose of the present
article and is left to a future study. Here we limit ourselves
to consider this problem only in the limit of small μ5 as well
as small fields, in which we can use the NJL model with
E ¼ B ¼ 0 but μ5 ≠ 0 to compute the relation between μ5
and neq5 , as well as to take into account self-consistently the
effect of μ5 in the gap equation. The cheap procedure we
use here to solve the problem self-consistently should be
accurate up to the lowest nontrivial order in μ5 and fields,
that is, Oðμ25; E2; B2Þ.
The NJL thermodynamic potential at E ¼ B ¼ 0 and

μ5 ≠ 0 can be written as [26]

Ω ¼ ðMq −m0Þ2
4G

− Nc

X

f

T
X

n

Z
d3p
ð2πÞ3 logðω

2
n þ E2þÞðω2

n þ E2
−Þ;

ð21Þ

with E2
� ¼ ðp� μ5fÞ2 þM2

q and μ5f denotes the chiral
chemical potential for the flavor f: We allow for a flavor
dependence of μ5, because the equilibrium value of n5
depends on the flavor itself. At lowest order in μ5 the
correction to the thermodynamic potential can be written as

δΩ ¼ −Nc

X

f

μ25fT
X

n

Z
d3p
ð2πÞ3

2ðω2
n þM2

q − p2Þ
ðp2 þ ω2

n þM2
qÞ2

; ð22Þ

which allows one to write the μ5-dependent correction to
the gap equation, namely,

∂δΩ
∂Mq

¼ −Nc

X

f

μ25fT
X

n

Z
d3p
ð2πÞ3

4Mqð3p2 − ω2
n −M2

qÞ
ðp2 þ ω2

n þM2
qÞ3

:

ð23Þ

Moreover, the relation among n5 ¼ −∂Ω=∂μ5 and μ5 is
given by

n5f ¼ μ5fNcT
X

n

Z
d3p
ð2πÞ3

4ðω2
n − p2 þM2

qÞ
ðp2 þ ω2

n þM2
qÞ2

; ð24Þ

and the number equation [Eq. (20)] can be written as

n5f ¼ neq5 : ð25Þ

We have verified that in the chiral limit Mq ¼ 0 the above
equation gives n5f ¼ μ5T2Nc=3 in agreement with Ref. [6];
in the case Mq ≠ 0, the relation between n5 and μ5 is more
complicated, and we have to compute it by performing
numerically the integration in Eq. (24).
Taking into account Eq. (23), the gap equation [Eq. (4)]

becomes

Mq −m0

2G
¼ Mq

Nc

4π2
X

f

Z
∞

0

ds
s2

e−M
2
qsF ðsÞ

þMq
NcNf

4π2

Z
∞

1=Λ2

ds
s2

e−M
2
qs −

∂δΩ
∂Mq

; ð26Þ

and μ5 has to be computed self-consistently according to
the number equation [Eq. (25)]. We notice that, although an
explicit dependence of μ5 on E and B is not present in the
above equations, the gap equation [Eq. (24)] is coupled
because of the dependence of neq5 on the Mq.
In Fig. 6, we plot Mq versus the temperature for several

cases: The maroon solid line corresponds to E ¼ B ¼ 0
and μ5 ¼ 0. The indigo dashed line corresponds to E ¼
B ¼ 0 and a common value μ5 ¼ 200 MeV for u and d
quarks: We plot these data to show that the NJL model we
use in the calculation is capable of capturing the catalysis of
chiral symmetry breaking at finite μ5 since bothMq and Tc

are shifted towards higher values in comparison with the
case μ5 ¼ 0. The orange dotted line corresponds to the case
E ¼ B ¼ 8m2

π and μ5 ¼ 0: These data are the samewe have
shown in Fig. 4. Finally, the green dot-dashed line
corresponds to E ¼ B ¼ 8m2

π , with both Mq and μ5
computed self-consistently by solving the number equation
[Eq. (25)] and the gap equation [Eq. (23)] simultaneously.
Although eE ¼ 8m2

π sounds large for the approximation to
be reliable, we present this result first because it magnifies
the effect of the self-consistent μ5 which would be other-
wise not easy to see. In the lower panel in Fig. 6, we plot the
chiral chemical potential for u (thick dot-dashed line) and d
(thin dot-dashed line) quarks versus the temperature,
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corresponding to Mq shown in the upper panel. For
comparison, we have also shown the chiral chemical
potential obtained by Mq computed with μ5 ¼ 0 shown
in the upper panel. Comparing the results obtained with
μ5 ¼ 0 and self-consistent μ5, we notice a slight back-
reaction of the equilibrium chiral density on the quark
condensate, which reflects in a small change of Mq;
moreover, the catalysis induced by μ5 is observed thanks
to a slight shift of the inflection point of Mq towards a
larger temperature. However, still the combined effect of n5
at equilibrium and E∥B is to lower Tc with respect to the
case E ¼ B ¼ 0.
We have verified that this scenario is in qualitative

agreement with the one obtained for smaller values of E

and B, in which case our approximation should be
quantitatively more reliable. In the upper panel in Fig. 7,
we plot Mq versus the temperature for E ¼ B ¼ 8m2

π

(orange lines) and E ¼ B ¼ 3m2
π (green lines), as well

as for the case E ¼ B ¼ 0, which we use as a benchmark
(solid maroon line). In the lower panel in Fig. 7, we plot the
chiral chemical potentials for u and d quarks at equilibrium
computed self-consistently. We find no qualitative differ-
ence between the cases of small and large fields.
For completeness, we report the average value of n5 in

the crossover region, namely, in the temperature range
(150–200) MeV, which can be obtained directly by using
Eq. (17). We find it runs in the range 0.015–0.16 fm−3 in
the case of E ¼ B ¼ 3m2

π and 0.25–1.10 fm−3 in the case
of E ¼ B ¼ 8m2

π .
The reason why Mq is poorly affected by μ5 for small

values of the fields is the different relative change of critical
temperature induced by μ5, on the one hand, and the electric
field, on the other hand. In the case eE ¼ eB ¼ 3m2

π in
Fig. 7, the average values of μ5 are less than 10 MeV in the
crossover region. By taking μ5 ¼ 0, the effect of E and B is
to lower the critical temperature by about 5%; on the other
hand, by taking E ¼ B ¼ 0 and μ5 ¼ 10 MeV, the shift of
Tc is practically zero. Even by increasing by hand the value
of μ5 of a factor of 10, the increase of Tc due to μ5 is
practically negligible compared to the lowering induced by
the fields.
The results shown in Fig. 7 have been obtained for c ¼ 1

in Eq. (18). We have checked the stability of the results in
the case eE ¼ 3m2

π by increasing the relaxation time by an
order of magnitude: We collect the results of this check in
Fig. 8. In the upper panel in Fig. 8, we plot Mq versus the
temperature in the pseudocritical region. Maroon and green
lines represent the same quantities as in Fig. 7; indigo stars
correspond toMq computed with τM ¼ 10=Mq in Eq. (17),
and a turquoise plus denotes the solution of the gap
equation for a fixed value of μ5 ¼ 75 MeV. We find that
for large temperatures the effect of the larger relaxation
appears as a tiny shift ofMq towards larger values; this can
be understood because the values of μ5u, μ5d in this case are
larger than those found with c ¼ 1; see the lower panel in
Fig. 8. However, still the average value of the chiral
chemical potentials is quite small in the pseudocritical
region. For comparison, we have shown the results of a
computation at fixed value of μ5 ¼ 75 MeV in the figure:
This value of the chemical potential approximately corre-
sponds to the average value ðμ5u þ μ5dÞ=2 computed self-
consistently in the case τM ¼ 10=Mq at T ¼ 175 MeV; see
the indigo stars in the lower panel in Fig. 8. We find a fair
agreement among the calculations with fixed and self-
consistent μ5, showing that the values of Mq we obtain in
the self-consistent calculation are indeed those expected.
We notice that in the case τM ¼ 25=Mq, shown in Fig. 8 by
orange data, we measure a slightly larger increase of Mq
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FIG. 6. Upper panel: Mq versus the temperature. The maroon
solid line corresponds to E ¼ B ¼ 0 and μ5 ¼ 0. The indigo
dashed line corresponds to E ¼ B ¼ 0 and μ5 ¼ 200 MeV for u
and d quarks. The orange dotted line corresponds to the case
E ¼ B ¼ 8m2

π and μ5 ¼ 0: These data are the same we have
shown in Fig. 4. The green dot-dashed line corresponds to
E ¼ B ¼ 8m2

π , with both Mq and μ5 computed self-consistently
by the condition n5 ¼ neq5 with n5 given by Eq. (24) and the gap
equation [Eq. (23)]. Lower panel: Self-consistent μ5 (green lines)
for u (thick dot-dashed line) and d (thin dot-dashed line) quarks
versus the temperature, corresponding to Mq shown in the upper
panel. For comparison, we have also shown the chiral chemical
potential obtained by Mq computed with μ5 ¼ 0 shown in the
upper panel.
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due to μ5 ≠ 0 in the crossover region. This result clearly
shows how a large μ5 would affect the thermodynamics
balancing the effect of the external fields; the concrete value
of the average μ5 we have in this case, however, runs in the
range (40–320) MeV, so the result should not be trusted
quantitatively.

We have performed the stability check against variations
of c or the case E ¼ B ¼ 8m2

π discussed above. We plot in
Fig. 9 the result of this check for the cases of τM ¼ 1=Mq

(diamonds) and τM ¼ 2=Mq (triangles). We have found that
taking c ¼ 2 affects Mq considerably, hence showing a net
effect of chiral density on the phase transition. However, we
take this result not too seriously, because doubling c would
roughly correspond to doubling μ5, which is already quite
large in the pseudocritical region as it is shown in Fig. 7,
hence making the use of our approximation questionable.
Our conclusion is that, as long as the values of E and μ5 are
not too large, our approximate solution to the self-
consistent problem is fairly good, while for larger values
of the background field it has to be taken with a grain of salt.
In Fig. 10, we plot Mq versus the temperature for eE ¼

3m2
π and several values of eB. The computations have been

performed by taking into account the dynamically gener-
ated n5 for u and d quarks. It is interesting that, even if the
magnetic field acts as a catalyzer of chiral symmetry
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FIG. 7. Upper panel: Mq versus the temperature. The maroon
solid line corresponds to E ¼ B ¼ 0 and μ5 ¼ 0. The indigo
dashed line corresponds to E ¼ B ¼ 0 and μ5 ¼ 200 MeV for u
and d quarks. The green lines correspond to E ¼ B ¼ 8m2

π , the
orange lines to E ¼ B ¼ 8m2

π . Open symbols denote calculations
at μ5 ¼ 0, while thick lines are for results with μ5 computed self-
consistently by the number equation and the gap equation.
Middle panel: Enlargement of the upper panel in the temperature
range of the chiral crossover. Lower panel: Self-consistent μ5 for
u (thick lines) and d (thin lines) quarks versus the temperature,
corresponding to Mq shown in the upper panel.
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breaking at small temperatures, the presence of the electric
field helps an inverse catalysis in the critical region: For
example, in the case B ¼ 2E we find that Mq close to the
critical temperature still sits on the zero field result;
increasing the magnitude of E just moves the critical
temperature to a lower value. This is in agreement with
the analytical discussion in Sec. IV.

VI. CONCLUSIONS

In this article, we have studied spontaneous chiral
symmetry breaking for quark matter in the background
of static, homogeneous, and parallel electric field E and
magnetic field B. We have used a Nambu-Jona-Lasinio
model with a local kernel interaction to compute the
relevant quantities to describe chiral symmetry breaking
at a finite temperature for a wide range of E and B.
Part of our study has been devoted to a mean field

calculation of the response of the chiral condensate to the
external fields, both at zero and at nonzero temperature. We
have derived both numerically and analytically the

magnetic catalysis and the electric inverse catalysis at zero
temperature; we have also studied the behavior of the quark
condensate at a finite temperature, finding a competition
between the magnetic and electric fields which affects the
critical temperature. We have not considered a by-hand
modification of the NJL coupling constant in order to
reproduce inverse magnetic catalysis for small B at a finite
temperature, because this would have masked the genuine
response of the model to an electric field, but we will
certainly consider this necessary modification to the inter-
action term in the future. Our result in this direction is that
the critical temperature for chiral symmetry restoration, Tc,
is lowered by the simultaneous presence of the parallel
electric and magnetic fields.
We have then focused on the effect of equilibration of the

chiral density, n5, produced dynamically by an axial
anomaly on the critical temperature. A chiral density is
produced thanks to Schwinger tunneling and spin align-
ment in the magnetic field. The equilibration of n5 happens
as a consequence of chirality-flipping processes in the
thermal bath; we have introduced the relaxation time for
chirality, namely, τM, giving the time scale necessary for the
equilibration of n5. In the absence of a specific calculation
of τM, it is possible to give only an ansatz; we chose
τM ∝ 1=Mq, where Mq is the constituent quark mass.
Because this dynamical system reaches a thermodynam-

ical equilibrium state for t ≫ τM, with a specified value of
n5 ¼ neq5 depending on the actual values of the field and of
the temperature, it is possible to introduce the chiral
chemical potential μ5, conjugated to neq5 at equilibrium.
The value of μ5 has been computed by coupling the gap
equation to the number equation, at the leading order in
eE=T2, eB=T2, and μ5=T. Because of the different electric
charges of u and d quarks at equilibrium, neq5u ≠ neq5d and the
ratio of the two is about 5∶6 in the critical region; we have
therefore introduced two chemical potentials μ5u and μ5d
conjugated, respectively, to neq5u and neq5d.
We have found that the equilibrated chiral density does

not change drastically the thermodynamics as long as μ5 at
equilibrium is not too large; namely, the inverse catalysis
effect induced by the background fields is not spoiled by
the presence of the μ5 background. The weak effect of μ5 on
the shift of Tc in the presence of the background fields can
be understood, because the change of Tc induced by μ5
itself is smaller than the ones induced by the background
fields. For example, in the case μ5 ¼ 0, the effect of the
background fields is to lower the critical temperature by
about 5%; on the other hand, taking E ¼ B ¼ 0 and
μ5 ¼ 10 MeV, which corresponds to the average value
of the chemical potential we find in the crossover region,
the shift of Tc is practically zero. This conclusion might be
no longer valid in the case of large μ5. For larger values of
the fields, we have found that Mq is effectively pushed
towards larger values in the critical region by μ5 ≠ 0. A firm
conclusion about this finding can be achieved, however,
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only by solving the problem beyond the perturbative
analysis used in our study.
We remark that the results presented here have to be

considered only explorative: The study of this problem
beyond the weak field and small μ5 approximation will be
the topic of upcoming research. Moreover, the theoretical
calculation of the equilibrium value of μ5 has an uncertainty
because of the lack of information about the relaxation time

for chirality-flipping processes, τM in Eq. (18), whose
computation will be the theme of near future research.
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