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We introduce a novel method for computing the (μ, T)-dependent pressure in continuum QCD, from
which we obtain a complex phase diagram and predictions for thermal properties of the dressed-quark
component of the system, providing the in-medium behavior of the related trace anomaly, speed of sound,
latent heat, and heat capacity.
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I. INTRODUCTION

Strong interactions in the Standard Model are described
by quantum chromodynamics (QCD), which is supposed to
describe a vast array of phenomena, from gluon and quark
interactions at the highest energies achievable with the
Large Hadron Collider to the nature of nuclear material at
the core of a compact star. This last challenge initiated the
quest to uncover the equation of state (EOS) for superdense
nuclear matter [1]. The intervening years have seen
remarkable activity, highlighted by the discovery of a
new state of matter, viz. a strongly coupled quark-gluon
plasma (sQGP) [2]. These efforts have delivered a sketch of
the QCD EOS in the plane spanned by baryon chemical
potential (μB) and temperature (T) [3,4].
In vacuum, i.e. in the neighborhood μB ≃ 0≃ T, QCD

exists in a phase characterized by two emergent phenom-
ena: confinement and dynamical chiral symmetry breaking
(DCSB). Confinement is most simply defined empirically:
those degrees of freedom used in defining the QCD
Lagrangian—gluons and quarks—do not exist as asymp-
totic states. The forces responsible for confinement appear
to generate more than 98% of the mass of visible matter [5].
This phenomenon is known as DCSB. It is a quantum field
theoretical effect, which is expressed and explained via the
appearance of momentum-dependent mass functions for
quarks [6–9] and gluons [10–14] even in the absence of any
Higgs-like mechanism.
On the other hand, in medium, i.e. as μB and/or T are

increased beyond certain critical values, the property of
asymptotic freedom [15–17] suggests that QCD undergoes
phase transitions. In the new phases, DCSB disappears and/
or gluons and quarks are deconfined. Indeed, the possibility

that the transitions are related and coincident in the (μB, T)
plane is much discussed.
The QCD EOS and related thermal properties are

important for numerous reasons [18]; e.g. they are crucial
inputs to the hydrodynamic simulations used to connect
basic theoretical predictions with modern experimental
data. In this context, the current sketches are not adequate:
a better picture is needed in order to understand the data and
hence the qualities of a sQGP.
The T ≠ 0 properties of QCD have been scrutinized via

simulations of the lattice-regularized theory (LQCD). This
is apparent, e.g., in Refs. [19,20], which also highlight
problems impeding the extension of lattice methods to
μB ≠ 0. At this stage, a picture of the phase diagram in the
entire (μB, T) plane requires other methods, so models
continue to be widely employed. However, they are
numerous in number and various in formulation, and too
often provide conflicting predictions [20]. Herein, there-
fore, we analyze aspects of the thermal properties of QCD
using methods of continuum quantum field theory; namely,
the Dyson-Schwinger equations (DSEs) [21–25].

II. DRESSED-QUARK PRESSURE

We focus on the matter sector of QCD and hence begin
with the quark gap equation:

Sð~p; ~ωnÞ−1 ¼ i~γ · ~pþ iγ4 ~ωn þmþ Σð~p; ~ωnÞ; ð1aÞ

Σð~p; ~ωnÞ ¼ T
X∞
l¼−∞

Z
d3q
ð2πÞ3 g

2Dμνð~p − ~q;Ωnl;T; μÞ

×
λa

2
γμSð~q; ~ωlÞ

λa

2
Γνð~q; ~ωl; ~p; ~ωnÞ; ð1bÞ

where m is the current-quark bare mass; ~ωn ¼ ωn þ iμ,
ωn ¼ ð2nþ 1ÞπT is the quark Matsubara frequency and μ
is the quark chemical potential (μB ¼ 3μ), Ωnl ¼ ωn − ωl;
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Dμν is the dressed-gluon propagator; and Γν is the dressed-
quark-gluon vertex.
The kernel of Eq. (1) is determined by the quark-gluon

vertex and the gluon propagator. We use Γν ¼ γν, which
defines rainbow-ladder (RL) truncation, i.e. the leading
order in the most widely used symmetry-preserving DSE
approximation scheme [26,27], which is accurate for
ground-state light-quark hadrons [21–25]. It is appropriate
here because while a certain class of vertex improvements
can influence critical exponents associated with second-
order transitions, viz. those leading to inclusion of long-
range color-singlet correlations [28], no form available
today alters the order of a transition or has a material impact
on its location [29–31].
The gluon propagator in Eq. (1) has the general form

g2

8π2
Dμνð~k;ΩÞ ¼ PT

μνDTð~k2;Ω2Þ þ PL
μνDLð~k2;Ω2Þ; ð2Þ

where PT;L
μν are, respectively, ~k transverse and longitudinal

projection operators, and PT
μν þ PL

μν ¼ δμν − kμkν=k2;
DT ¼ DðsΩ; 0Þ, DL ¼ DðsΩ; m2

gÞ, where m2
g ¼

ð16=5ÞðT2 þ 6μ2=½5π2�Þ describes a gluon screening mass,
the value of which is determined from leading-order
perturbative QCD [32]; and (sΩ ¼ Ω2 þ ~k2 þm2

g) [33],

DðsΩ;m2
gÞ¼

D
ω4

e−sΩ=ω
2þ γmF ðsΩÞ

ln½τþð1þsΩ=Λ2
QCDÞ2�

; ð3Þ

with zF ðzÞ ¼ ð1 − e−z=4ω
2Þ, ω ¼ 0.5 GeV, τ ¼ e2 − 1,

γm ¼ 12=25, ΛQCD ¼ 0.234 GeV. DðsΩ; m2
gÞ is shape con-

sistent with solutions of in-vacuum gap equations [14];
with Dω ¼ ð0.8 GeVÞ3 and a renormalization-group-
invariant current-quark mass m̂u;d ¼ 6 MeV, the solutions
of Eq. (1) support a reliable in-vacuum description of
ground-state hadrons in RL truncation [33]. (N. B. By using
Landau gauge we minimize sensitivity to truncation-
induced violations of gauge covariance [34].)
The in-medium extension of the gap equation’s kernel,

Eq. (3), preserves agreement with QCD at large momenta.
However, in assuming that D is (μ, T) independent it
overlooks screening of the interaction’s infrared strength.
We remedy that by writing [29,30]

DðT; μÞ ¼ D

(
1 T < Tp

a
bðμÞþln½ ~T=ΛQCD� T ≥ Tp;

ð4Þ

where ~T2 ¼ T2 þ 6μ2=½5π2� and Tp marks the onset of
thermal screening. With Tp ¼ Tc, the critical temperature
for chiral symmetry restoration, then a ¼ 0.029, b ¼ 0.47
yield a dressed-quark thermal massmT ¼ 0.8T at T ¼ 2Tc,
in agreement with LQCD simulations [35]. Naturally,
Tc ¼ TcðμÞ: we set TpðμÞ ¼ TcðμÞ at μ ≠ 0, ensuring
DðTcðμÞ; μÞ ¼ D by evolving the value of bðμÞ.

In RL truncation and stationary phase approximation, the
dressed-quark pressure density is [36]

P½S� ¼ T lnZ ¼ −T
�
Tr ln ½TS� þ 1

2
Tr½ΣS�

�
; ð5Þ

where Eq. (1) determines S, Σ. At each (μ, T), Eq. (5)
possesses the same ultraviolet divergence, which may be
eliminated by subtracting the μ ¼ 0 ¼ T result. The sub-
traction can be accomplished by recalling that for any
function fðwÞ, compatible with a physical system [37],

2πiT
X∞
n¼−∞

fðiωn þ μÞ ¼
Z

u0

u�
0

dwfðwÞ

−
Z

uμþη

u�μþη

dwfðwÞ
eðw−μÞ=T þ 1

−
Z

uμ−η

u�μ−η

dwfðwÞ
e−ðw−μÞ=T þ 1

; ð6Þ

where we have omitted a T-independent term that is zero as
long as μ < μcðTÞ, and uμ ¼ iΛþ μ with Λ → ∞, η → 0.
The first term on the right-hand side of Eq. (6) is
responsible for the divergence we wish to eliminate. The
physical piece of the dressed-quark pressure can thus be
calculated as the difference between the two terms in the
first line of Eq. (6), with fðwÞ computed via the functional
expression in Eq. (5). Practically, one proceeds as follows:
solve the gap equation at a given (μ, T) pair for a large
number of Matsubara frequencies, characterized by nm; at
each μ, obtain smooth interpolations in “w” for the scalar
functions obtained thereby, Eq. (1); evaluate P½S� with
these inputs; and then compute the difference between the
sum and integral, verifying that it is insensitive to the
interpolation procedure and choice of nm. That this pro-
cedure can work effectively is illustrated in Fig. 1, which
displays a comparison of our numerical result for the free-
quark pressure with the analytic form.

FIG. 1. Points are the numerical result for the free-quark
pressure obtained as described in connection with Eq. (1); the
solid (red) curve shows the analytical result.

GAO, CHEN, LIU, QIN, ROBERTS, and SCHMIDT PHYSICAL REVIEW D 93, 094019 (2016)

094019-2



Our approximation for the dressed-quark contribution to
the QCD EOS is now defined. Using the pressure, one can
define the trace anomaly: I ¼ ε − 3P, where the energy
density ε ¼ −Pþ Ts and sðTÞ ¼ ∂P½S�=∂T is the entropy
density. Notably, I ≡ 0 for an noninteracting ultrarelativ-
istic gas, which is described by PSB ∝ T4; hence, I is a
measure of the interaction energy stored in the system.
Now, since the confined dressed-quark contribution to the
physical pressure must vanish on T ≃ 0, it follows that I
exhibits a maximum at some TM, the value of which serves
to define a useful reference temperature.

III. PHASE DIAGRAM AND THERMODYNAMICS

We employ the DSEs because they possess the capacity
to study confinement and DCSB simultaneously in the
continuum [38]. Within this framework the ðμ ≠ 0; T ≠ 0Þ
EOS has only been computed using a very simple descrip-
tion of QCD’s gauge sector [39]. Owing to the importance
of the EOS in developing a complete picture of the
Standard Model, it is imperative to do better.
We depict the μ ¼ 0 trace anomaly in Fig. 2. In order to

facilitate comparisons between the profiles obtained in
different analyses, the temperature is expressed in units of
the appropriate value of TM. The value of TM exhibits
modest variation between the calculations: in our case
TM ¼ 0.14 GeV, which is roughly 30% smaller than that
found in modern LQCD studies owing to our omission of
the gluon contribution. Additionally, each computation in
Fig. 2 is normalized by the appropriate form of PSB:
represented in this way, there is qualitative agreement
between all results. Our prediction describes the quark-
only contribution to I . It matches the LQCD results in
shape and order of magnitude. These observations indicate
both that the gluon and quark contributions to the total

interaction energy behave similarly and that they are
commensurate in size when measured against their respec-
tive asymptotic contributions to the pressure.
The “speed of sound” in the system is obtained from

c2s ¼ ∂P=∂ε. It is a crucial factor in determining the flow of
material in the system, i.e. its transport properties. As
evident in Fig. 3, our prediction for the sound velocity in
the dressed-quark subcomponent is similar to results
obtained in LQCD for the velocity in the complete system.
A feature which distinguishes our framework from

LQCD is its ability to treat μ > 0 without further approxi-
mation. Thus, in Fig. 4 we display results for the dressed-
quark pressure and trace anomaly at a range of values of
μ > 0: while increasing μ produces an increase in the
pressure at all values of temperature, it only materially
increases the interaction energy on T < TM. Similar
behavior is seen in LQCD estimates for the μ dependence
of these quantities, obtained using various extrapolation
schemes [41,44–46]. In detail, P is a monotonic function of
T for small μ, and P and I are smooth; but qualitative
changes occur at μ ¼ μp ¼ 0.106 GeV: a peak appears in P
and that in I becomes sharper. Both functions remain
smooth, however, until μ ¼ 0.111 GeV, where the first
derivative of each diverges at T ¼ 0.128 GeV, signaling
that the transition has become first order. This effect locates
the critical endpoint (CEP) for the chiral symmetry restor-
ing transition at ðμχE ¼ 0.111; Tχ

E ¼ 0.128Þ GeV. The
behavior of both P and I on μ=T ≃ 0 is consistent with
hard thermal loop perturbation theory [32].
We now draw the diagrams associated with QCD phase

transitions as determined from the dressed-quark pressure.
Chiral symmetry restoration is straightforward. It may be
charted via the (μ, T) dependence of the chiral condensate
[47–49], but we prefer a method [29] based on the chiral
susceptibility, χðμ; TÞ.
Before discussing deconfinement, however, one must

have a definition of color confinement. We consider
confinement as a violation of reflection positivity by
colored Schwinger functions. Thus, it is associated with

FIG. 2. Trace anomaly (normalized, μ ¼ 0): I=PSB. PSB
is the pressure of a noninteracting ultrarelativistic gas containing
the number of gluons and quarks appropriate to the calculation.
The solid (black) curve is the dressed-quark contribution,
computed via Eq. (6). For comparison, LQCD results are
obtained using various discretization schemes. Complete pres-
sure: short-dashed (blue) curve [40], long-dashed (green) curve
[41], and dot-dashed (red) curve [42]. Gluon-only contribution:
dotted (pink) curve [43].

FIG. 3. Temperature dependence of c2s , where cs is the sound
velocity in the system. The solid (black) curve is our result,
computed from the dressed-quark pressure; the points (blue) are
the LQCD results from Ref. [41]; and the band (green) shows the
LQCD results from Ref. [42].
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dynamically driven changes in the analytic structure of
QCD’s propagators and vertices [50–55] that occur because
both gluons and quarks acquire running mass distributions,
which are large at infrared momenta. This leads to the
emergence of a length scale ς ≈ 0.5 fm, whose existence
and size is evident in all continuum and LQCD studies of
dressed gluons and quarks: ς characterizes the material
change in their analytic structure [6,35,56,57]. From
this perspective, deconfinement occurs when ς → 0 and
reflection positivity is thus recovered. This criterion
has been used effectively in dense-hot QCD (e.g.,
Refs. [30,39,58–62]); we employ it herein, following a
local implementation elucidated in Refs. [9,63,64].
We display the phase diagram computed from the

dressed-quark pressure in Fig. 5. Comparison with
Fig. 3 in Ref. [29] shows that our improved DSE kernel,
which agrees with the one-loop QCD renormalization
group, does not qualitatively alter the phase diagram.
The solid curve in Fig. 5 is the locus of transition: the
Nambu phase is energetically favored for those values of
(μ, T) that lie within the domain bounded by the axes and
this curve:

TP
c ðz ¼ μ=TP

c0Þ ¼ TP
c0
1þ 0.52z2 − 0.058z4

1þ 0.91z2
: ð7Þ

The μ ¼ 0 pseudocritical temperature associated with the
chiral transition is TP

c0 ¼ 0.15 GeV. For comparison, a
LQCD estimate of the critical temperature for chiral
symmetry restoration in QCD with two light flavors and
a physical strange quark mass is Tc ¼ 0.15� 0.01 GeV
[65]. Within a factor of 2, the z ¼ 0 slope of TP

c ðzÞ=TP
c0

from Eq. (7) agrees with estimates from LQCD [41].

With (μ, T) increasing from the origin, the dot-dashed
curve in Fig. 5 bounds the domain of positive Nambu-phase
chiral susceptibility. The dotted curve, on the other hand,
marks the line where the Wigner-phase chiral susceptibility
switches from negative to positive. These curves coincide
with the transition locus, Eq. (7), up to the chiral tran-
sition’s CEP:

CEPχ ¼ ðμχE ¼ 0.111; Tχ
E ¼ 0.128Þ GeV; ð8Þ

which confirms the result obtained in connection with
Fig. 4, top panels; the computed ratio μχE=T

χ
E ¼ 0.87 is

commensurate with those in Refs. [29,66–68]. The chiral
crossover becomes a first-order transition at CEPχ : the
Nambu and Wigner phases coexist, with the Nambu phase
dominant below the transition locus and the Wigner phase
dominant otherwise.
The dashed curve marks the boundary for the deconfine-

ment transition, which is second order until

CEPς ¼ ðμςE ¼ 0.185; Tς
E ¼ 0.106Þ GeV; ð9Þ

μςE=T
ς
E ¼ 1.75. Wigner phase domains exhibit neither

confinement nor DCSB at any values of (μ, T). In the
chiral limit the solid and dashed curves coincide and
CEPχ ¼ CEPς: chiral symmetry restoration and deconfine-
ment are coincident, but the dislocation at m̂ ≠ 0 entails the
existence of a small domain wherein quarks are deconfined
but chiral symmetry is broken. This is the set fμ; Tg
enclosed within the dot-dashed and dashed curves. Pockets
of Nambu phase material in this subset of the phase
coexistence region possess that character. In the domain

FIG. 4. Upper panels: Temperature dependence of the dressed-
quark pressure (left) and trace anomaly (right) at several chemical
potentials. Lower left panel: Latent heat of the chiral symmetry
restoring transition. Lower right panel: heat capacity of the
system’s dressed-quark subcomponent.

FIG. 5. Deconfinement and chiral symmetry restoration phase
boundaries, computed via pressure in Eq. (6). The solid (black)
curve is for the chiral transition, with DCSB favored below the
curve; the dashed (green) curve is for the deconfinement
transition, with dressed quarks confined below the curve; the
dot-dashed (blue) curve is the Nambu phase chiral susceptibility,
where χN is positive below the curve and zero above; the dotted
(red) curve is the Wigner phase chiral susceptibility, where χW is
positive above the curve and negative below. CEPs: chiral is
shown with a filled circle; the deconfinement is shown by an
asterisk.
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of (μ, T) enclosed between the axes and the dashed and
dotted curves, the system is in a pure phase with confine-
ment and DCSB, whereas chiral symmetry is restored and
quarks are deconfined in the domain above the dot-
dashed curve.
We can now compute the heat-capacity density of the

dressed-quark system, cV ¼ ∂ε=∂T, and the latent-heat
density of transition: L ¼ TΔs ¼ Δε − μΔρ, ρðTÞ ¼
∂P=∂μ is the quark number density and ΔF is the difference
between the quantity F in the two distinct phases, which are
the Nambu (chirally asymmetric) and Wigner (chiral sym-
metry restored) phases here. We depict L, computed along
the phase boundary, which is the trajectory in Eq. (7), in the
lower-left panel of Fig. 4. Naturally, L ¼ 0 for
T ≥ Tχ

E because the transition is no longer first order.
Otherwise, our prediction is qualitatively consistent in shape
with what may be inferred from LQCD simulations [41].
The lower-right panel of Fig. 4 displays our prediction

for cV : it diverges as ðμ; TÞ → CEPχ . Actually, in the
neighborhood of the CEP one may write [69]
cV ∝ jg − gχEj−ϵ, where g ¼ μ, T; the quark number sus-
ceptibility χ ¼ ∂ρ=∂μ behaves in the same fashion.
Analyzing our results, we find ϵ ¼ 0.67� 0.02 in both
cases. These are the critical exponents of a mean-field
transition, which is the nature of RL truncation.

IV. SUMMARY

We introduced a practical procedure for computing the
(μ, T)-dependent dressed-quark pressure in continuum
QCD, which we illustrated using a gap equation whose
solutions are key to a successful description of the

properties of ground-state hadrons in vacuum. Without
further approximation, the associated richly structured
phase diagram in the (μ, T) plane was computed. We drew
the transition lines for deconfinement and chiral symmetry
restoration and confirmed that these transition are identical
in the chiral limit. Likewise, we calculated the speed of
sound in the system and provided the (μ, T) dependence of
the trace anomaly, latent-heat and heat-capacity densities.
Where comparisons are possible, our predictions are
consistent with results from lattice QCD. Notably, predic-
tions obtained from the dressed-quark pressure are quali-
tatively equivalent to those computed using the complete
pressure, which suggests that the dressed-quark pressure
alone can be used as a practical guide to some of QCD’s
thermal properties. No material improvement over our
results can be envisaged in a continuum analysis before
a symmetry-preserving kernel, including long-range corre-
lations, is derived for the gap equation. Our method for
computing the pressure will also be applicable then.
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