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We calculate the neutral pion photoproduction on the proton near threshold in covariant baryon
chiral perturbation theory, including the A(1232) resonance as an explicit degree of freedom, up to chiral

order p’/?

in the & counting. We compare our results with recent low-energy data from the

Mainz Microtron for angular distributions and photon asymmetries. The convergence of the chiral series
of the covariant approach is found to improve substantially with the inclusion of the A(1232) resonance.
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I. INTRODUCTION

Single pion photoproduction on nucleons has been
abundantly studied since the early 1950s. The first low-
energy theorems (LET) trying to describe the reaction close
to threshold were obtained in the pioneering work of Kroll
and Ruderman [1] in a model-independent way by impos-
ing gauge and Lorentz invariance. Their results were later
improved by using current algebra and the partial con-
servation of the axial current [2,3]. These LET were quite
successful on the description of the charged pion channels
but showed clear discrepancies with data for the y + p —
p + n° process [4-7].

Bernard et al. [8,9] found some corrections coming from
loop-diagram contributions in a chiral perturbation theory
(ChPT) calculation, which significantly reduced these
discrepancies. Later, they calculated the reaction in
heavy-baryon ChPT (HBChPT). This approach, introduced
in Refs. [10,11], provides a systematic power-counting
scheme solving the problems found in Ref. [12] for the
loops with baryons. For the data available at the time, the
agreement with a fourth-order analysis was very good [13].

However, the advent of new and high precision threshold
data for both cross sections and photon asymmetries [14],
from the Mainz Microtron (MAMI), showed that this
approach is not sufficient for the full description of the
process. In fact, the agreement of the HBChPT calculation
up to O(p*) with data is good only up to about 20 MeV
above threshold, as shown in Ref. [15]. For higher energies,
the convergence is spoiled and would require an even
higher-order calculation with many unknown low energy
constants (LECs).

On the other hand, there are some alternative renorm-
alization schemes to deal with the power-counting problem
of the baryon loops. In particular, the extended on mass
shell (EOMS) ChPT [16,17], though technically more
complicated, keeps covariance and satisfies analyticity

*Corresponding author.
astrid.blin @ific.uv.es

2470-0010/2016,/93(9)/094018(19)

094018-1

constraints, both lost in the HBChPT formulation.
Furthermore, it usually converges faster. This model
succeeded in describing processes like pion scattering
and many baryon observables in the low-energy regime.
Examples are masses, magnetic moments, axial form
factors, among others [18-30]. Unfortunately, as the
description of the neutral pion photoproduction on protons
goes, the fully covariant calculation up to fourth order [31]
seems even slightly worse than what the HBChPT
approaches had obtained so far.

A possibility to improve the convergence, which we
explore in this work, is the explicit inclusion of the A(1232)
resonance as an additional degree of freedom. At higher
energies, the A clearly dominates the neutral pion photo-
production cross section [32]. Even close to threshold, its
consideration could speed up the convergence of the chiral
series if the size of the resonance tail is still large as
compared to the purely nucleonic mechanisms. The possible
relevance of the A mechanisms in our process was already
suggested by Hemmert er al. [33] as well as later in
Refs. [14,15].

Recently, the A resonance has been included as a
dynamic degree of freedom in many works. For instance,
Refs. [34-36] study pion electro- and photoproduction
although their focus is at higher energies. There are also
EOMS ChPT analyses of Compton scattering [37,38] and
zN scattering [39]. For the case of neutral pion photo-
production close to threshold, the A mechanisms have been
investigated in HBChPT [13,33], getting only moderate
effects. As was discussed in Ref. [40], this small effect
could be due to the fact that both were static calculations,
which omitted the fast energy dependence that comes from
the full consideration of the A propagator. There is also a
more recent work in progress in HBChPT at O(p*) which
shows a clear improvement when the A resonance is
included [41].

In Ref. [40], we studied the process y + p — p + z° in
covariant ChPT, incorporating the A resonance as an explicit
degree of freedom. The calculation was of chiral order p3 in
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the § counting, which will be discussed below. This amounts
to a nucleonic sector with tree-level and loop diagrams, but
only tree diagrams containing A. Furthermore, the A pieces
only depended on two relatively well known couplings, g,
and h,. The results were very promising and showed a good
agreement with data for both differential cross sections and
asymmetries up to above 200 MeV. These results were also
shown in Ref. [42], where the low-energy constants were
discussed in more detail.

In this work, we extend the calculation to the next order
in the & counting, namely O(p’/?), which basically adds
loop diagrams with A propagators. The loop diagrams do
not require any additional coupling. There is only one new
LEC, g, which appears in a tree diagram and is poorly
known. Furthermore, we are able to describe the process
consistently with LECs which are mostly constrained by
other observables.

The paper is organized as follows: In Sec. II, we present
the basic formalism to extract the neutral pion production
channel’s amplitudes and observables. In Sec. III, we
introduce all the theoretical tools necessary for our calcu-
lation. This includes the ChPT Lagrangians, as well as the
renormalization and power-counting scheme used. In
Sec. IV, we show and discuss our results for cross sections,
photon asymmetries, and multipoles. Finally, the summary
and outlook are given in Sec. V.

II. BASIC FORMALISM

The process we are studying is represented in Fig. 1. The
four-momenta k, g, p, and p’ belong to the photon, 7°,
incoming and outgoing protons, respectively.

We parametrize the scattering amplitude M as

e, M =a(p') (Vg - ers + Viq - €kys
+ Vieys + Vigekys)u(p), (1)

where Vy, Vg, Vg, and Vgg are complex structure
functions of the photon energy k, in the laboratory frame
and the angle 6 between the incoming photon and the
outgoing pion. The Dirac spinors u(p) and u(p’) =
u'(p')y, are those of the nucleon in the initial and final
states, respectively, and e is the photon polarization.

FIG. 1. Generic representation of the pion photoproduction
process. The incoming photon and proton momenta are given by
k and p, while those of the outgoing neutral pion and proton are
denoted by ¢ and p’, respectively.
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Another commonly used representation is explicitly
current conserving by definition and has the form

e, M = e,u(p') <Z41: AiM’i‘> u(p),

with

€ Ml = 1k€7/5,
e-My=i(p'-ek-q—q-ek-(p+p))rs.
€ My =i(ek-q—kq-e€)ys,
€-My=ilek-(p+p')—kp' -e—2mke)ys.

Here, m is the nucleon mass. Note that in the center-of-

mass system p - ¢ = 0. The conversion between paramet-
rizations is straightforward,

m
A= i(VEK—m(VEJFk'qVK)),

.V
A:
2 12k-p’

. k-q Vi
Ay = l——) -
=i(ve(125) a)

i

Ay =— k- .
4 2k'p(VE+ qV)

Finally, for the calculation of multipoles it is con-
venient to use the equivalent representation in terms of
the Chew-Goldberger-Low-Nambu (CGLM) ampli-
tudes [43],

4zW
e, M = ”_)(;,f)(i’
m

where y; and y, are the initial and final state Pauli spinors,

respectively, and W = /s is the center-of-mass energy. For
real photons and in the Coulomb gauge, the amplitude F
may be written as

F =i6-¢F, +6-406-k x¢F,
+i6-kg-eFy+i6-§4-€Fy,

with ¢ the Pauli matrices. The conversion between para-
metrizations is given by

with
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(Ei + m)(E -+ m) k2 262m B
71:\/ 8an - kO+E,-—|(3m Ay —k-qAs + —k3+2k0m+Eiim_kO(Ei+Ef.)_ko|q|Cosg Al
o 8zW Ej+m  (E+m)E;+m))"" (E;+m)(E;+m)"

~ (k k(2)+2k0m+k0(Ei+Ef)+k0|§|0059+ 2kym )A ]
° (E;+m)(E; +m) Ep+m)™]

\/(E,+m)(Ef+m) N 2E,»—|—Ef+k0—|—q0 k%

Fi= S lq||—ks E, +m Ay + kO+E,-+m (Ay = A3) |,
V(Ei+m)(Ef+m) ko+ E; + E; + qo ko k2

Fy= 2| & A 0 Ay —A3)|.

We compare our model with the full set of data of Refs. [14,31] on the unpolarized angular cross section

do _ |gm? ZTT[M* (P Am) - M- (p+m)] (2)
dQ  2zW(s —m?) £ 2 '
and X, the linearly polarized photon asymmetry
_ dGJ_ - dO'” (3)
dGJ_ + d6|| ’

with do, and do| the angular cross sections for photon polarizations perpendicular and parallel to the reaction plane,

respectively.
In the CGLM representation, the differential cross section and photon asymmetry are usually written with the help of the
response functions

Ry =|F >+ |F* + %sin2 O(|F 3> + | F4|*) —Re[2cos OF; F2 — sin? O(F; Fy + F5F3 + cos OF 5 F,)]
and
Ryy — %Sinz O(| 32 + |F42) + Re[sin? (F | Fy + F3F + cos OF3F,)].
with which one obtains
do _ 4| Ryr

—R Y=——.
Q" k r and

The lowest multipoles Ey,, M;,, M,_, and E, read [9]

x) 0 §[Po(x) = P (x)]

E,. 5Po(x) =3Py Fi(x)
My, :/ldx iPi(x) —iPa(x) 5[Pa(x) = Po(x)] 0 Fa(x)
M, -1 | =3Pi(x)  3Po(x)  §[Po(x) = Pa(x)] 0 Fi(x) |
Eyy Pi(x)  =iPy(x) 5[Po(x) = Py(x)] 5[P(x) = P3(x)] ) \Falx)

where x = cos(0) and P, are the Legendre polynomials. We furthermore use the reduced multipoles
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Ey,

M -
= and E,. :|T, (4)
q

4|
as for energies close to threshold these multipoles are
linearly related to the absolute value of the pion momentum.

M]i:

III. THEORETICAL MODEL

We will analyze the MAMI pion photoproduction
data [14,31] using a fully covariant ChPT framework
and including the A(1232) resonance as an explicit
degree of freedom. While the baryon ChPT power-
counting problem [12] is solved in the EOMS scheme,
additional special care is needed when taking this spin-3/2
resonance into account. Besides the pion mass and
the external momenta, another small parameter appears,
0 =M, —m=~300 MeV, which is heavier than m,~
140 MeV, but small when compared to the spontaneous
symmetry-breaking scale A ~ m. In the low-energy range
of our study, we count &* as being of O(p), following
Ref. [37]. Thus one obtains the power-counting rule

D =4L + kV"—ZN,,—NN—%NA, (5)
k=1
according to which is given the order D of a diagram with L
loops, V¥ vertices from £*), N, pionic propagators, Ny
nucleonic propagators and N, A(1232) propagators. In
Ref. [40], we presented a calculation up to order p>. A tree
diagram of order p’/? and proportional to g was also
investigated. Our aim here is to extend the model up to
order p’/2. That only amounts to the consideration of new
loop diagrams with A propagators. Thus, no further low-
energy constants are required.

We start with the relevant terms of the Lagrangian for the
neutral pion production on the proton with real photons,
including only pions, nucleons, and photons as degrees of
freedom. We follow the naming conventions for the LECs
introduced in Ref. [44]. At first order we have

C,&}) = @(iD—m—l—%b{yS)\I’, (6)

where W is the nucleon doublet (p,n) with mass m and
D, = (9, +T,) is the covariant derivative with

1 . .
r,= > [ (0, —ir,)u+u(d, —il,)u'].
At a O(p) calculation, the low-energy constant g, corre-
sponds to the axial-vector coupling constant g, = 1.27.
The meson fields appear through

ig s V2rt
olf) ()

where at O(p) F corresponds to the pion decay constant
F, with numerical value 924 MeV, and also in
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u, = i[u’ (0, —ir,)u —u(d, —il,)u’]. The photon field

A, couples through

e
I"” = l” = 5./4,,(”2 + 13),

where 73 is the Pauli matrix and e is the (negative) electron
charge. At second order, the only relevant terms are

1 -
L7 = g Weafy + e THfR))o W - (7)

where  fr, = ufiu’ +u'fRu and for our

R = fh =0,r,—0,r, —i[r,, r,]. The tensor o is given
by 1 [*,7*]. In the particular case of the y + p — p + z°
scattering amplitude, the LECs c¢q and ¢ appear only as a
combination ¢q; = c¢ + ¢;. This constant can be fixed
from the nucleons’ magnetic moments. Using the model of
Ref. [26] leads to the value ¢q; = 2.3 at O(p?) and g7 =
2.5 when A loops are included.' Finally, at third order we
have

case

J A ﬁ {DemabTre[fu,)D, W} + Hee.
+ dy i {Wer e Tr[f ), uDs¥} + H.c.
Fdis g (TysTely Ju, )
iy (sl 10 4 Q

where f, = f, =1 Tr[f};] and yu = ulyu’ + uy'u. We
will work in the isospin limit as was done in Ref. [31],
hence taking y = m2, the pion mass squared.2 We use the
convention £"12® = —g;,,; = —1. Here, the LECs appear in
the combinations 2189 =dg + dy and 21168 =2d,¢ — di3g.
ChPT was initially developed for interactions between
mesons and photons [45-47]. The leading-order
Lagrangian for this kind of interactions is given by

2
2 =Tonp, Uy U U] ()
where U = u? and whose covariant derivative acts
as D,U =0,U —ir,U +iUl,.

To describe the A interactions we use consistent
Lagrangians which ensure the decoupling of the spurious
spin-1/2 components of the Rarita-Schwinger field A =
(A++, AT, A% A7) [48-51]. The relevant pieces are

'In Ref. [26], only the isovector combination was presented.

The corrections to the approximation of using a single pion
mass and also a single nucleon mass for the loop calculations is of
higher order. Nevertheless, doing so we cannot study the cusp
effects appearing at the opening of the charged pion channels.
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ih,

1 Ty 7o AL ab _a
) = TR IT44(9,A,)(D%7%) + Hee.,  (10)
£? = M Gramigaae)0.A,) + H 11
A”N72FM2A 4 ( 2T )( u 1/)+ -C., ( )
3iegy, - ~
E(z) =— ¥  P73(9,A)F* + H.c., 12
AyN 2m(m+MA) ( " v) + c ( )
3egg -
£(3> =—— """  P73%.(9,A)F* +H.c., 13
AyN 2m(m+MA) 7/5( H l/) + C ( )

where the tensor y#** reads § {[y*. "], 7*} and the covariant
derivative D{’z® = §*°0;n" —ieQ A;nb, with Q% =
—ie?®3. The electromagnetic field and its dual are given
by F* = " A* — " A" and F* = 1 e F ., respectively.
There are two couplings for the pion (4, k1) and two for
the photon, the magnetic piece (g,,) of chiral order two and
the electric piece (gg) of order three. At third order, the
Lagrangian contains an additional yNA Coulomb coupling
which vanishes for real photons. As the value for /; has
been found to be consistent with zero [51], we neglect this
piece in our calculation. The value for %, can be directly
obtained from the A width, while g,, and g were obtained
fitting pion electromagnetic production at energies around
the resonance peak. The conventions and definitions for the
isospin operators 7 follow Ref. [51],

Tl—i<_*/§ 0 1 0)1

Vel 0 -1 0 V3
_Si(V3 01 0
Tz\@<010\/§)’

\F 0100
T? = /= .
3(0 0 1 O)

In Figs. 2 and 3, we show the tree-level diagrams. The
full set of loop diagrams contributing to the considered
channel up to O(p’/?) can be found depicted in Figs. 9 and
10 in Appendix B. They have been evaluated applying the
EOMS renormalization scheme, with the help of FORM
[52,53] and FeynCalc[54,55]. First, we have removed the
infinities using the modified minimal subtraction (MS)

4 7
7/ 7/
770 R
/
p p ® p p p
(@) (b)

FIG. 2. Tree diagrams for z° photoproduction off protons.
Crossed terms are also included in the calculation. The black dots
represent vertices of chiral order 1 to 3. (b) Starts at order 3.
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p p

FIG. 3. A tree diagram for z° photoproduction off protons. The
crossed term is also included in the calculation.

scheme [56]. Then, after making an expansion of the
amplitudes,3 we have also absorbed the power-counting
breaking terms into LECs. Obviously, those diagrams from
Fig. 9 which exclusively contain mesonic loops do not
break the power counting. The analytical expression
obtained for the power-counting breaking terms in the
nucleonic sector reads

s 3 2 2
legam m; ms; 1
4v-3—" g 3 -3 ek —q - ek
32F,3771'2 |:<l/ 1/) 75+< IJ2> 7/5+yq €KY5

2m }
- q-€rs|-
v

The additional power-counting breaking terms coming
from the introduction of the A loops are obtained analo-
gously, but have large expressions which are therefore not
shown here.

In order to systematically take into account all the
higher-order contributions up to the studied order
O(p"/?), the wave-function renormalization (WFR) was
taken into account for the external proton and pion legs of
the tree diagrams of O(p), as the correction amounts to
multiplying this tree-level amplitude by Z p\/Z_ﬂ, which
adds corrections of O(p?). All the corrections to higher-
order amplitudes or to the external photon leg would be at
least of O(p*). The analytical expression for this correction
factor when including only nucleonic intermediate states
reads

3gamz
=1-= 2 2 _3m2
3272 F2m? (4m? — m2) (e = 3m°)

m
X \/4m? — m2 arccos | —
2m

+ (m3 —4m?) (<2mi = 3m*) log <%> B 2"12)}
+O(p), )

>The chosen expansion parameters were, as in Ref. [39], m,,
v=(s—u)/(4m) with s and u the Mandelstam variables of
O(p), and the Mandelstam variable ¢ of order O(p?), as well as
the parameter § explained above.
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where X, is the self-energy of the proton. Since we are
considering the A(1232) as an intermediate state, we also
have to take into account this additional self-energy loop
that enters the wave-function renormalization. Also in this
case, we took the O(p?) term and added it to Eq. (14). The
analytical expression for this piece Z[A, can be found in
Appendix A. The self-energy diagrams for the proton
external legs are depicted in Fig. 4.

As for the pion-leg WFR and renormalization of the
pion-decay constant, we use the well-known expansions
from Ref. [46],

2 2
F,=F+"= [L4 —Llog<mﬂ>} + O(p?),

F 1672 m?
m2 1 m2

Then, for the O(p) diagrams, the appearing factor \/Z,/F
can be expanded around the pion mass,

vZ, 1 3m? log(—mi') R
- - - —m 3 1
F F, 327°F} o). (16)

therefore leading to an expression which up to the con-
sidered order does not depend on L, anymore.

Also the other low-energy constants appearing in the
leading-order Lagrangian have to be corrected up to the
considered order. This means that the nucleon mass m in
the nucleon propagator of the leading-order tree-level
diagrams has to be calculated with corrections coming
from higher-order self-energy loops. The contributions to
the physical nucleon mass coming from the loops in Fig. 4
are given by

32 md 2
my =m—4cym2 — Iax [&10g<&>

647> F2 | m m?

2
-4y /1 —%arccos <;nn’;ﬂ +m4 + O(p*), (17)

where m¥ is the correction arising from the loop with a A
propagator. Its expression can be found in Appendix A. The
O(p?) correction to my is consequently approximately
given by

FIG. 4. Diagrams contributing to the proton’s self-energy.
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my, = m—4c,m2
3gamz [my., (m3
= —log| —
S G422 |my  ° m

m?2 m,
—44/1 “am] arccos <M)] —my + O(p*).
(18)

Finally, the EOMS-renormalized expression for gu,
when including nucleonic intermediate states only, is given
by [20,39]

2

gam
— 4 2d _ b
ga = go +4amzdg 7167z2F,2rm2
g {(3931 + Z)Mi —28<gi - Dm?my <@>
m- —m

T

+ (364 +2)m* + ((4g% + 2)m?

-G+ Dmyiog(25) |+ 0. (19)

The inclusion of the A(1232)-loop diagrams leads to
further corrections to g4. They have been analyzed in an
EOMS SU(3) calculation [29], leading to small contribu-
tions (of the order of 5% to 10%). Here, we have not
considered these corrections, which in our case would
mean just a shift of the parameter d,3 without otherwise
affecting the quality of the fit.*

We opted to consistently introduce the corrections to
the constants in the Lagrangians by applying them only to
the first-order tree-level diagrams: There we took g, for the
axial-vector coupling, m, for the propagator mass, and F
for the pion-decay constant, and we multiplied the wave-
function renormalization. For all the higher-order tree and
loop diagrams, we took the physical constants g4, my, and
F,, as otherwise we would be introducing corrections of
order higher than O(p7/?). Furthermore, this scheme
allows for a better comparison with the results obtained
in the EOMS O(p?) calculation of pion-nucleon scattering
of Alarcon et al. [39]. The analytical expressions of the
amplitude can be found in Appendix B.

IV. RESULTS AND DISCUSSION

We compare the theoretical model introduced in the
previous sections to the experimental data from Ref. [14].
Data points were taken for the linearly polarized photon
asymmetry and differential cross section for an energy
range from pion-production threshold up to over 200 MeV

“In our calculation, Eq. (19) is just used to determine d;¢ from
g4 and the fit parameter gy. The constant d;¢ only enters in the
evaluation of two tree diagrams of O(p?), always in combination
with dlg.
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with an unprecedented precision. We will first review the
O(p?) calculation that was already studied in Ref. [40]. In
that work, the aim was to establish the relevance of the A
degree of freedom for the neutral pion photoproduction,
even close to threshold. Here, we will pay more attention to
the consistency of our results (LECs) with other calcu-
lations using the EOMS scheme and having the same
chiral order.

A. O(p?)

At this order, only tree diagrams and the loop diagrams
from Fig. 9 contribute. The loop diagrams from Fig. 10,
which include A propagators, start at O(p’/?). Also, the
mass and coupling-constant corrections of Egs. (17)—(19)
can be truncated at order p®. As previously discussed, we
fix g4, my, and F' to their physical values and use them for
all except the lowest-order diagrams. The zNA coupling
h4, which is basically determined by the A width, was fixed
to 2.85 [35]. The yNA coupling gr, which leads to an
O(p’/?) contribution, has been set to zero. The constant g
has been fixed to the value obtained at the same chiral order
in Ref. [29] (gy = 1.16). The remaining LECs cg7, 2189,
d 163, and gy, are left as fitting parameters.

Table I shows the results of the fit at this order. As in
Refs. [40,42], the agreement with data is excellent and the
y-squared value is very low. Notice, however, the
differences between the O(p?) calculation presented here
and that of Refs. [40,42]. On the one hand, we now set g, to
the physical value g, everywhere except in the O(p) tree-
level amplitude. Also, as mentioned before, we do not
include the term proportional to gg, in order to get a fully
consistent O(p?) calculation. The parameter ¢4; converges
to the value required by the nucleon magnetic moment
(ce7 = 2.3 [26] as discussed in the previous section). The

LEC ;189, for which we do not have any alternative
estimation in the particular renormalization scheme we
use here, gets a value of natural size. Finally, in our
calculation the LECs d;¢ and d;3 always appear in the

combination 3168 = 2d,6 — di3, and the individual con-
stants cannot be disentangled. Actually, in the amplitude, at
tree level, they are also fully correlated with g,. This can be
clearly seen by studying the error correlation matrix in fits
that include the g, as a free variable. As an example, fixing
go = 1.05, quite a reasonable value [29], modifies m,z\,Zing
from —10.1 to —6.9, while maintaining the other LECs and
producing the same y?. Using Eq. (19) and setting g, to its
physical value, we can estimate d;4 and thus calculate dg.

TABLE 1. LEC values for the O(p?) calculation. Fixed values
are in boldface.

) Ce7 ;189 -my 21168 -my Im x°/d.o.f.
116 232 1.28 ~10.1 3.08 0.79
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This would lead to positive values for d;g in disagreement
with other calculations [39]. However, we have checked
that this particular result is very sensitive to choices, like the
use of g4 vs go for loops or the application of the wave-
function renormalization for the higher-order diagrams,
even when these choices amount to O(p*) corrections. We
have also estimated the size of the effects of the O(p*)
contributions by including the contact terms of that order in
the amplitude. The expressions can be obtained from

Appendix C of Ref. [57]. We have found that 21168 is very
sensitive to the e,g, €59, or €17, LECs. For instance, taking
243 = —4.5 GeV~> modifies m2, - d,gg from —10.1 to —0.4
and leads to d;g values negative and consistent with other
works [39]. The other constants and the y” are barely
affected.

Finally, the A coupling g, obtained in the fit is
consistent with the value given in Ref. [35] in a study of
pion electroproduction in the A region, as well as with the
value of g, = 3.16 + 0.16 obtained from the A electro-
magnetic decay in Ref. [38]. We understand this as
meaning that the neutral pion photoproduction data are
sensitive to the size of the A contribution even at threshold.
We have also checked that when including the g piece, of
O(p7/?) and present in Ref. [35], the fit result for g,
changes to 2.9 and g = —1 in full agreement with the
aforementioned work.

We also tried to do a fit without the inclusion of the
A(1232) diagrams. We were able to confirm the results
shown in Ref. [31]. Namely, in an EOMS calculation it is
impossible to reproduce the experimental steep growth of
the differential cross section with the photon energy at this
order. The inclusion of the A(1232) degrees of freedom
strongly improves the agreement with data up to energies
higher than 200 MeV.

B. Full model at O(p”/?)

Next, we have added all contributions of O(p7/?) in the
o-counting. This amounts to the A tree diagram with the gg
coupling, and the loop diagrams with A(1232) of Fig. 10.
All these loop amplitudes depend only on LECs that
already appear at O(p?). Thus, gg is the only new addi-
tional LEC. We already explored its role in Ref. [40] and
found that its contribution was small.

As in the previous section, the value for the constant g,
has been taken from Ref. [29]. In its model with the A
resonance, g, varies between 1.05 and 1.08. The remaining
LECs, ¢¢. dso, dyggs gy and gp, are left as fitting
parameters. The results of the fit are shown in Table II.
The first observation is that the quality of the fit is similar to
the lower-order calculation. This happens even though we
have an additional LEC. Therefore, the contribution of the
new loop terms does not improve the agreement with data.
This is reflected in the g,, parameter, which affects the A
mechanisms, that goes toward lower values. Also the zZNA
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TABLE II. LEC values in different versions of the O(p’/?)
model. Fixed values appear in boldface.

90 Ce7 2189 : mzzv 21168 mzzv 9m 9E ){Z/d~0-f-
1.05 2.45 1.67 -9.7 2.28  3.30 0.80
1.05 2.29 1.17 -10.4 290 3.53 0.96

coupling h, prefers smaller values, and the y> would
sensibly decrease if we allowed for a 10% reduction of
this constant. However, we prefer to keep the well estab-
lished result obtained from the A width. The values found
in the literature for g),, using the same Lagrangian as in the
present work, vary from 2.6 + 0.2 [58] in a heavy-baryon
calculation of Compton scattering to gy, = 2.8 + 0.2 [34]
(pion photoproduction), gy, = 2.9 [35,59] (pion electro-
production), and ¢, = 3.16 £ 0.16 [38] (A electromag-
netic decay). The latter two, which correspond to covariant
chiral calculations, prefer the larger values. We obtain a

PHYSICAL REVIEW D 93, 094018 (2016)

relatively low result, but we find that fixing g, = 2.9 the
quality of the fit would still be reasonable. This behavior is
very consistent with power counting, as obtaining g, from
the A electromagnetic decay amounts to a leading-order
approximation, which is sufficient for the O(p?) calcu-
lation of the previous section. However, next-to-leading
order effects in the determination of g, would also enter in
this O(p”/?) calculation of the pion photoproduction, and a
reasonable deviation from g;; = 3.16 +0.16 could be
expected. The parameter gp is less well known, and
numbers ranging from 2 to —7 can be found [34,35,58],
although the later works prefer g = —1. Opposite to the
lower-order calculation [40], this term is relevant, and its
absence worsens the fit. Without the O(p’/?) loop mech-
anisms our fit also converges to gg = —1 as stated above.
However, when these higher-order terms are included, gg
prefers positive values. This term is relevant for the Ef
multipole, and we have found that the contribution, close to
threshold, of the loop terms is very important in our model.

do /dQub.sr ]

FIG. 5. Differential cross section as a function of the pion angle at different energies. Solid line: Best-fit theoretical model at O(p7/?).
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FIG. 6. Photon asymmetry as a function of the pion angle at different energies. Solid line: Best-fit theoretical model at O(p’/?).

Experimental points from Refs. [14,60].

The changes from the O(p?) calculation have been

rather mild for the parameters Zigg and c¢g;. In particular,
it is interesting that cg4; is slightly larger. This change and
the final value are consistent with the results of Ref. [26]
when the A loops were included. Additionally, these LECs
do not have strong correlations with the other parameters of
the fit.

However, the d 168 parameter is strongly correlated to g.
Changes of the order of 10% in g, lead to changes of 30%
in 21168 without modifying either the y?> or the other
constants’ values. As already discussed in the previous
section, d 163 18 also very sensitive to higher-order contri-
butions. To estimate their effects, we have included some of
the O(p*) contact terms in our fit. For instance, the
consideration of the term proportional to esg, when
choosing 2,5 = —6.0 GeV=3, leads to m? - dieg = 3.1
(and thus a negative dyg), m3 -dgg = 1.1, gy = 2.9,
gr = 2.1, and y?/d.o.f = 0.67. Namely, most LECs are

quite stable except for g that changes by 40% and d 163 that
is strongly modified. Similar results are obtained including
the other contact terms. Therefore, we should expect large
changes for these two parameters in a higher-order
calculation.

In Fig. 5, we show the angular differential cross section
of our best fit at O(p’/?) vs the experimental data. Notice
the quite small error bars of the data and the overall good
agreement with the model for cross sections that vary more
than 1 order of magnitude. The distributions are basically
backward peaked. At the higher energies, there is a slight
but systematic under-/overestimation at forward and back-
ward angles, respectively.

The linear photon asymmetries have been plotted in
Fig. 6. Although the experimental uncertainties are larger,
they also provide a very stringent test on the models,
especially as the signal grows as a function of the photon
energy. In fact, even though the number of data is much
smaller and the error bars are larger than for the angular
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distributions, its contribution to the full y? is similar. This
may reflect the quality of data but could also point out some
shortcoming of the model.

In Fig. 7, the calculation at two extreme energies of the
data set is depicted. Here, we plot the results of the full
model without A and of the A diagrams alone (always with
the parameter set of our best fit). A fit of O(p?) including
only nucleonic mechanisms is also shown.

Let us first discuss the purely nucleonic fit. As mentioned
before, it is impossible to get a good fit at O(p?) within our
model. The reason is clear from the figure, whereas the
asymmetry and the shape of the angular distribution are
acceptably reproduced, the energy dependence is not strong
enough, and the fit overestimates the low-energy data and
underestimates the high energy ones. A higher-order cal-
culation is mandatory for this A-less approach.

As soon as the A is incorporated, the situation radically
changes. The relative size of the A mechanisms is much
larger at high energies, and this helps to reproduce the energy
dependence of the cross section. The detailed shape, and size,
depends on the interference of the two kinds of mechanisms.

C. Multipoles

In Fig. 8, we compare our model with the empirical
multipoles from Ref. [14]. There were some assumptions in
the extraction of their values. The imaginary parts of the P-
wave multipoles were neglected, which is consistent with
what we obtain in our model. For the imaginary part of E ,

do /dQub.sr!]

PHYSICAL REVIEW D 93, 094018 (2016)

which can be fixed from unitarity, it was found that it leads
to smaller uncertainties than the statistical errors. Another
important source of uncertainty, mainly for ES, is the
influence of D-waves that can be sizable and grow fast as
one departs from threshold.

The calculated E, M{, and M7 multipoles agree well
with the empirical ones. The quality of the agreement for M7
and Ef is similar to that of the O(p*) covariant ChPT
calculation from Ref. [31]. However, we reproduce well the
large M multipole which gets a substantially lower slope in
Ref. [31], a higher-order calculation. This fact can be
explained by the absence in their model of the explicit
inclusion of the A, which plays a major role in this multipole.

For the E(T case, we reproduce well the empirical
estimation close to threshold, but our model leads to higher
absolute values at larger energies. A similar trend is observed
in the O(p*) purely nucleonic calculation [31], although the
discrepancy is lower in this case. As mentioned before, there
is some uncertainty in the extraction of this multipole due to
the presence of D-waves. The relevance of this partial wave
has been explored in Refs. [61,62]. They found that its
contributions could seriously compromise the analysis and
extraction of EJ; see e.g. Fig. 3 from Ref. [61]. In our
calculation, we have a relatively small D-wave contribution
coming fundamentally from the crossed tree diagrams. As
discussed in Appendix C of Ref. [31], there could be large D-
wave contributions coming from the O(p*) Lagrangian
terms. They could strongly modify E5 that mixes with Ej,

P
Jo.3
3
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m
(e}
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(o]
It
K
Jo.0
0 -0.1
0.10}
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FIG.7. Photon asymmetry and differential cross section as a function of the pion angle at two different energies: close to threshold and
at above 200 MeV. Solid line: full model; dashed line: full model without A; dash-dotted line: only A; dotted line: best nucleonic fit

(without A). Experimental points from Refs. [14,60].
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Real part of S- and P-wave multipoles from Ref. [14]—see also Ref. [15]—vs our full-model calculation, as a function of the

photon energy. The error bars are only statistical errors. The gray band above the energy axis shows the systematic error of data [14].

and the changes could be large enough as to solve the
discrepancies at large energies.

V. SUMMARY

We have studied the neutral pion photoproduction on the
proton at low energies in covariant ChPT with the explicit
inclusion of the A(1232) resonance. We have used the
EOMS renormalization scheme and made a full calculation
up to order p’/? in the § counting. Comparing the O(p’/?)
and O(p?) calculations, we have found a good chiral
convergence, in the sense that changes are quite small.
However, as pointed out in previous works, even at the low
energies discussed here, some O(p*) contributions could be
relevant. For instance, in our model, there is a quite small D-
wave. The consideration of higher-order terms could modify
that and, indirectly, affect the extraction of the E(T multipole.

The model agrees well with the differential cross-section
and photon-asymmetry data of Ref. [14], from threshold up
to above 200 MeV. This extends the range of convergence
from previous works of a higher chiral order, O(p*), in
both HB and covariant ChPT. Our model without A only
reproduces data very close to threshold, confirming the
results from Ref. [31], and showing that the improvement is
basically due to the consideration of the A(1232)
mechanisms.

This is a nontrivial outcome of our work, because the
LECs are mostly constrained by other observables. In
particular, gq, C47, hy, and gy, are bound by the nucleon
axial-vector coupling, the proton magnetic moment, the

strong and the elecromagnetic decays of the A(1232),
respectively. Our fits are compatible with these constraints.
The LECs ;1168 and g¢gg, appearing in higher-order
Lagrangians, are partially constrained as well.” However,
we find that they are sensitive to higher-order corrections to
the description of the process studied here.
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APPENDIX A: THE A(1232) LOOP
CONTRIBUTION TO THE NUCLEON
SELF-ENERGY

The expression for Zﬁ coming from the A loop in Fig. 4

is given by

5Goldberger—Treiman relation and nucleon-to-A EMR relation,
respectively.
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APPENDIX B: DIAGRAMS’ AMPLITUDES

The tree-level diagrams of Fig. 2 have the following amplitude expressions:

2p -k 2p 2(m + m,)
& . , Bl
(m2+2p k—m% mz_zp/ k %) s+ 2—2p’~k—m%€ q7s |p> ( )
. ega 1 1 4m
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4ie(dg + do)

My = 7

1 1
(el o2 4 s 42 p-Kears 4 (p ) Kers + e als|Ip). - (B4)

Note that the nucleon mass m is set to the physical nucleon mass my everywhere except in the propagator of the O(p)
amplitude, where we perform the correction shown in Eq. (18).

The amplitudes of the diagrams of Figs. 9(a) to 9(c) combined have the following simple expression. The sum over
isospin channels has already been performed,

iemm2g m2 1 1 2
Moy o(p)9(c) = WZFGA </1 —log {mz} ) (r'.q| [(p’k oy k) ekys + TRE s Ip). (BS)

where A = 2+ log(4r) — yx + 1 + O(e) is the piece that is EOMS renormalized according to the MS scheme. Note that we
are using the nucleon mass m as the chiral-symmetry breaking scale. As for the other Fig. 9 diagrams’ expressions, they are
listed here before being evaluated, as they have rather large expressions,

ega [ d’z E+a)p+K—t+m)eys  ers(p—g—2i+m)(Z—4)
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Moy =

The contributions of the direct and crossed diagrams in Fig. 9(e) exactly cancel each other.
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FIG. 9. Loop diagrams for z° photoproduction off protons, including only nucleonic intermediate states. The crossed terms are not

shown, but are also calculated.
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As for the diagrams including A propagators, we introduce the definition
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for simplicity, where D is the Minkowski-space dimension. The tree-level amplitudes of Fig. 3 then read
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The loop diagrams of Fig. 10 also have very large expressions after evaluation, and therefore we opt to show the expressions
before momentum integration and action of the Dirac equation. The sum over the isospin channels was already performed,
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The contribution of the diagrams corresponding to Fig. 10(c) vanishes after dimensional regularization,
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FIG. 10. Loop diagrams for z° photoproduction off protons for A intermediate states. The crossed terms are not shown, but are also
calculated.
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The diagrams of Fig. 10(k) do not contribute to the amplitude at the considered order, due to isospin cancellation,
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