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I. INTRODUCTION

Studies of correlations between particles produced
in high-energy collisions is a well-known method to
investigate the dynamics of the production process [1].
They are conveniently divided into “short range” when the
momenta of the studied particles are close to each other and
“long range” extending over large distances in momen-
tum space.
Already in the early 1970s, studies of the short-range

correlations in rapidity led to the discovery that particle
production proceeds through production of “clusters” [2].
This was later confirmed by more detailed studies in other
variables [1], although the very nature of these clusters is
unclear even now. The problem is of importance because it
touches the mechanism of hadronization, i.e., transition from
the parton system created at the early stage of the collision
into the produced hadrons. This apparently nonperturbative
transition essential to derive the structure of the produced
parton system from the observed hadrons cannot be easily
treated by theory. Thus, a phenomenological analysis is
needed.
An interesting approach to this problem was formulated

in the statistical cluster model [3,4] which assumes that the
transition from the early state of the process of particle
production dominated by parton interactions proceeds
through an intermediate stage of clusters emitting (isotropi-
cally) the final hadrons according to the rules of statistical
physics.1

The decay distribution of such a statistical cluster at rest
is taken in the form of the Boltzmann distribution, which
for a cluster moving with the four-velocity uμ becomes

dN1ðp; uÞ ∼ e−βpμuμd2p⊥dy; ð1Þ

where β ¼ 1=T is the inverse cluster temperature, and p⊥
and y are the transverse momentum and rapidity of the final
particle.
Although the model was originally constructed for

description of the “soft” processes (involving only small
transverse momenta), it remains an interesting question to
what extent it is also applicable to semihard and perhaps
even hard collisions. Indeed, the parton-hadron transition
being a soft process happening at the very end of the parton
cascade may very well be universal, i.e., (quasi)indepen-
dent of the mechanism of parton production. If this is
actually the case, the statistical clusters should be visible
also at higher transverse momenta and perhaps even in all
processes of particle production at high energies. This
attractive possibility was recently supported by the evalu-
ation [7] of the transverse momentum spectrum of the
produced charged hadrons. It turned out that if the
distribution of the cluster transverse Lorentz factor γ⊥
(γ2⊥ ¼ 1þ u2⊥, where u⊥ is the transverse component of the
cluster four-velocity) follows a simple power law ∼γ−κ⊥
then, surprisingly enough, the transverse momentum dis-
tribution of the emitted particles

dN1ðp⊥Þ
dp2⊥

∼
Z

dγ⊥
γκ⊥

K0ðβγ⊥m⊥ÞI0ðβu⊥p⊥Þ ð2Þ

closely resembles the Tsallis formula [8] which, as is
well known [9–11], closely resembles the shape of the data
[12–15]. See [7] for more details and [16] for further
discussion.
This apparent success of the concept of the statistical

cluster invites one to study its other consequences, particu-
larly, those which may provide more demanding tests of the
idea. Following this route, in the present paper we discuss
the two-particle correlations and show that, indeed, they give
strong constraints on the model and, eventually, can be even
used to pin down possible intercluster correlations.2

To determine T and κ, the only free parameters of the
model, we have fitted the cluster formula (2) to the
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1This is an attractive modification of the standard statistical

model because it allows us to explain the observed anisotropy of
the momentum spectra of particles produced in high-energy
collisions (which is a problem for the statistical model), while
keeping, at the same time, its successes in the description of
particle abundances [5,6].

2To our knowledge, the first application of the statistical model
for description of cluster decays was proposed by Hayot et al. [2].
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transverse momentum distribution of pions and kaons
produced in 2.76 TeV proton-proton (pþ p) collisions
[17]. The fit gives κ ¼ 5 and the cluster temperature
T ¼ 140 MeV. The result is shown in Fig. 1, where one
sees that the model reproduces the data with better than
20% accuracy, which is good enough for our purpose. It is
also remarkable that the same power-law distribution
(without change of normalization) describes well both pion
and kaon distributions. We also checked that the model
describes the charged particle spectra up to p⊥ ¼ 200 GeV
in pþ p at

ffiffiffi
s

p ¼ 7 TeV [18].
In the next section, the general formula for the two-

particle correlations in the statistical cluster model is
written down, and correlations in rapidity, azimuthal angle,
and in transverse momentum are derived. Our results are
described in Sec. III. Summary and comments are given in
the last section.

II. TWO-PARTICLE CORRELATIONS

The two-particle distribution is the sum of the contri-
bution from one cluster and that from two different clusters
dN2 ¼ dNð1cÞ

2 þ dNð2cÞ
2 . Ignoring correlations in cluster

decay (see Sec. IV for further discussion), we have

dNð1cÞ
2 ðp1; p2Þ ¼

Z
duWðuÞdN1ðp1;uÞdN1ðp2; uÞ ð3Þ

and

dNð2cÞ
2 ¼

Z
du1

Z
du2Wðu1; u2ÞdN1ðp1; u1ÞdN1ðp2; u2Þ;

ð4Þ

where WðuÞ is the distribution of the (four)velocity of a
cluster, and Wðu1; u2Þ is the corresponding distribution of
two clusters.3 For the two-particle correlation function

Cðp1; p2Þd2p1⊥dy1d2p2⊥dy2 ≡ dN2ðp1; p2Þ
− dN1ðp1ÞdN1ðp2Þ; ð5Þ

with dN1ðpÞ ¼
R
duWðuÞdN1ðp; uÞ, we, thus, have

Cðp1; p2Þd2p1⊥dy1d2p2⊥dy2
¼ dNð1cÞ

2 ðp1; p2Þ

þ
Z

du1

Z
du2Cuðu1; u2ÞdN1ðp1; u1ÞdN1ðp2; u2Þ;

ð6Þ

where

Cuðu1; u2Þ ¼ Wðu1; u2Þ −Wðu1ÞWðu2Þ ð7Þ

is the two-cluster correlation function.
If clusters are independent, i.e., Cuðu1; u2Þ ¼ 0, we have

Cðp1; p2Þd2p1⊥dy1d2p2⊥dy2 ¼ dNð1cÞ
2 ðp1; p2Þ: ð8Þ

Consider a cluster4 at rapidity Y moving in the transverse
direction with the velocity v⊥. We have

u0 ¼ γ⊥ coshY; uz ¼ γ⊥ sinhY;

u⊥ ¼ γv⊥; vz ¼ tanhY; ð9Þ

and the formula (1) becomes

dN1ðp; uÞ ¼ e−βγ⊥m⊥ coshðy−YÞþβp⊥u⊥ cosðϕu−ϕÞ; ð10Þ

where ϕu and ϕ are the azimuthal angles of the cluster and
of the produced particle, respectively.
Following [7], we take

WðuÞdu ∼ γ−κ⊥ dγ⊥dϕuGðYÞdY; ð11Þ

where GðYÞ is the distribution of clusters in rapidity.5

A. Correlation in rapidity and azimuthal angle

We start with the correlations in rapidity and azimuthal
angle. Using the formulas of the previous section, we have

FIG. 1. The single-particle distributions for pions and kaons as
measured by ALICE in pþ p collisions at

ffiffiffi
s

p ¼ 2.76 TeV,
compared to the statistical cluster model with T ¼ 140 MeV
and κ ¼ 5. The ratios data/model are shown at the bottom.

3R WðuÞdu ¼ hNi; R
du1du2Wðu1u2Þ ¼ hNðN − 1Þi, where

N denotes the number of clusters.
4Henceforth, we assume that clusters are uncorrelated.
5We note that our results do not depend on the specific shape

of GðYÞ.
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dNð1cÞ
2 ¼ dy1d2p1⊥dy2d2p2⊥

×
Z

γ−κ⊥ dγ⊥
Z

dϕudYGðYÞ

× e−βγ⊥½m1⊥ coshðy1−YÞþm2⊥ coshðy2−YÞ�

× eβu⊥½p1⊥ cosðϕu−ϕ1Þþp2⊥ cosðϕu−ϕ2Þ�: ð12Þ

To obtain the distributions of y1 − y2 ≡ Δy and ϕ1 − ϕ2 ≡
Δϕ at fixed p1⊥ and p2⊥, we integrate over ϕu, yþ ¼
y1 þ y2, ϕþ ¼ ϕ1 þ ϕ2, and Y. The result is

CðΔy;ΔϕÞ ∼
Z

dγ⊥
γκ⊥

K0½βγ⊥DmðΔyÞ�I0½βu⊥DpðΔϕÞ�;

ð13Þ
where I0 and K0 are the modified Bessel functions of the
first and second kind, respectively, and

DmðΔyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1⊥ þm2
2⊥ þ 2m1⊥m2⊥ coshðΔyÞ

q
;

DpðΔϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1⊥ þ p2

2⊥ þ 2p1⊥p2⊥ cosðΔϕÞ
q

: ð14Þ

Correlations inΔϕ at fixed p1⊥ and p2⊥ can be obtained by
integrating independently y1 and y2 with the result6

CðΔϕÞ ∼
Z

dγ⊥
γκ⊥

K0½βγ⊥m1⊥�K0½βγ⊥m2⊥�I0½βu⊥DpðΔϕÞ�:

ð15Þ
For fixed Δy, we have, similarly,

CðΔyÞ ∼
Z

dγ⊥
γκ⊥

K0½βγ⊥DmðΔyÞ�I0½βu⊥p1⊥�I0½βu⊥p2⊥�:

ð16Þ

B. Correlation in transverse momentum

It is also interesting to consider the distribution of moduli
of transverse momenta ½p1⊥; p2⊥�. Integrating Cðp1; p2Þ
over y1, y2, ϕ1, ϕ2, Y, ϕu, one obtains

Cðp1⊥; p2⊥Þ ∼
Z

dγ⊥
γκ⊥

K0½βγ⊥m1⊥�K0½βγ⊥m2⊥�

× I0½βu⊥p1⊥�I0½βu⊥p2⊥�: ð17Þ

III. RESULTS

As explained in the Introduction, the two parameters
of the model—the temperature in the cluster decay
T ¼ 140 MeV and the power κ ¼ 5—were determined

from the fit to the pion and kaon single-particle transverse
momentum distributions measured by ALICE [17].
The correlation functions in azimuthal angle and rapidity

given by (15) and (16) are shown in Figs. 2 and 3. In Fig. 2,
the correlation function CðΔy;p1⊥; p2⊥Þ (normalized to 1
at Δy ¼ 0) is plotted vs Δy ¼ jy1 − y2j, for pairs of pions
and kaons, at various values of the transverse momenta.
One sees that C gets narrower with increasing p1⊥ and p2⊥,
and there is also some mass dependence. The correlation
function CðΔϕ;p1⊥; p2⊥Þ is plotted in Fig. 3. Similar
features are also seen, except that the dependence on
particle mass is more pronounced.

FIG. 2. The two-particle correlation function (16) from a
statistical cluster for pairs of pions and kaons with various values
of the transverse momenta plotted vs Δy ¼ y1 − y2, the rapidity
separation between the two particles. T ¼ 140 MeV and κ ¼ 5.C
is scaled to 1 at Δy ¼ 0.

FIG. 3. The two-particle correlation function (15) from a
statistical cluster for pairs of pions and kaons and with various
values of the transverse momenta plotted vs Δϕ ¼ ϕ1 − ϕ2, the
relative azimuthal angle between the two particles. In this
calculation, T ¼ 140 MeV and κ ¼ 5. C is scaled to 1 at Δϕ ¼ 0.

6We skip the factors [2π − Δϕ] (for Δϕ < π) and ½Δϕ� (for
Δϕ > π) since they are canceled when CðΔϕÞ is divided by the
distribution of mixed events.
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Numerical calculations show that for sufficiently high
transverse momenta (above ∼2 GeV) and vanishing par-
ticle masses, the two-particle correlation functions in
rapidity and in azimuthal angle can be approximated by
Gaussians with the width squared proportional to T2 and
inversely proportional to the product p1⊥p2⊥. The propor-
tionality factor is close to 2κ.
Recently, the CMS Collaboration [19] published exten-

sive studies of the two-particle azimuthal correlation
functions in pþ Pb collisions at

ffiffiffi
s

p ¼ 5.02 TeV. In
Fig. 4, they are compared with the predictions of the
statistical cluster model. One sees that the data are
reasonably close to the model predictions at transverse
momenta in the region of 1–2 GeV. At higher transverse
momenta, the model gives correlation functions which
seem somewhat too narrow.7

This result agrees with the idea that the model is
applicable only at relatively small transverse momenta.
On the other hand, it may perhaps also indicate the
presence of cluster-cluster correlations [described by
the second term in the rhs of (6)] at transverse momenta
above 2 GeV. Possible resolution of this dilemma would
require more sophisticated studies and goes beyond the
scope of this paper.
It would be also interesting to study balance functions

[20–22]. This is not possible at the present stage of the
model since it requires additional information on the
distribution of the cluster charges.
The transverse momentum correlation (17) divided by

the product of the two single-particle distributions8

cðp1⊥; p2⊥Þ ¼
Cðp1⊥; p2⊥Þ

N1ðp1⊥ÞN1ðp2⊥Þ
ð18Þ

is shown in Figs. 5 and 6. cðp1⊥; p2⊥Þ normalized to 1 at
p1⊥ ¼ p2⊥ is plotted in Fig. 5 vs the ratio jp1⊥ − p2⊥j=p1⊥
(with p2⊥ ≤ p1⊥) for various values of p1⊥ ¼ 1, 1.5,
5 GeV.9 In Fig. 6, the value of c at p⊥ ¼ p1⊥ ¼ p2⊥ is
plotted vs p⊥. One sees a rather fast increase of c with
increasing p⊥.

FIG. 4. The two-particle correlation function from a statistical
cluster for low (left) and high (right) transverse momenta
compared with the CMS data [19] on the short-range azimuthal
correlation function measured in pþ Pb collisions at

ffiffiffi
s

p ¼
5.02 TeV. T ¼ 140 MeV, κ ¼ 5. All functions are scaled to
1 at Δϕ ¼ 0. FIG. 5. The transverse momentum correlation function (18)

from a statistical cluster for pairs of pions and kaons vs
ðp1⊥ − p2⊥Þ=p1⊥, for various values of p1⊥. Here, T ¼
140 MeV and κ ¼ 5. c is scaled to 1 at p1⊥ − p2⊥ ¼ 0.

FIG. 6. The transverse momentum correlation function (18)
from a statistical cluster for pairs of pions and kaons vs
p⊥ ¼ p1⊥ ¼ p2⊥. T ¼ 140 MeV and κ ¼ 5.

7The published CMS data [19] are modified by other physical
effects, e.g., flow in pþ Pb, the back-to-back peak in Δϕ (which
is not considered in the present paper), and by the procedure of
the background removal.

8It is convenient to use this definition of cðp1⊥; p2⊥Þ since it is
proportional to the number of pairs divided by the number of
pairs in mixed events.

9We checked that above p1⊥ ¼ 5 GeV, the curves practically
do not change anymore.
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IV. SUMMARY AND COMMENTS

In summary, we constructed the two-particle correlation
functions induced by the decay of a statistical cluster. The
explicit formulas were given for correlations in rapidity,
azimuthal angle, and in transverse momentum. Using the
parameters of the model determined from the fit to
the single-particle distributions (κ ¼ 5, T ¼ 140 MeV),
the correlation functions were evaluated. Qualitative com-
parison with the CMS data on azimuthal correlations in
pþ Pb collisions at

ffiffiffi
s

p ¼ 5.02 TeV shows that the model
works well at transverse momenta around 1–2 GeV. For
larger transverse momenta, the evaluated correlation func-
tion looks somewhat too narrow, possibly indicating the
presence of additional intercluster correlations.
Several comments are in order.
(i) It should be emphasized that the present calculation

follows directly from the statistical cluster model
and, thus, contains no free parameters: the value of
the freeze-out temperature (T ∼ 140 MeV) and the
parameter κ ¼ 5 were determined from the single-
particle transverse momentum distribution of pions
and kaons. It seems remarkable that spectra of both
pions and kaons can be described simultaneously
with exactly the same cluster distribution.

(ii) As already explained in the Introduction, we hypoth-
esize that at the final stage of the production process,
the statistical clusters are formed and decay into
observed particles. At high transverse momenta, jet
physics is expected to induce correlations between
clusters and, thus, additional correlations between
produced particles. Detailed experimental investiga-
tion of this region could, therefore, verify univer-
sality of the cluster hypothesis and may also give
useful information on the structure of jets.

(iii) It would be also most interesting to measure and
compare the short-range correlation functions in
pþ p and eþe− collisions in order to test universality
of the statistical cluster picture of particle produc-
tion. Also, measurement of correlations for various
pairs of particles can be very useful in this respect.

(iv) In our calculations, we have ignored the correlations
which may appear in the cluster decay. The stat-
istical clusters are rather special objects and their
physical interpretation and, consequently, the nature
of their internal correlations, is (in our opinion) not
clear. For example, it is not obvious if clusters
representing multiparticles states have a well-
determined mass. The detailed comparison of the
model with data in pþ p or eþe− collisions should
shed more light on these questions.

(v) In the present paper, we have not discussed the
baryon production, as it is not clear if at LHC
energies the statistical model can describe correctly
the baryon multiplicities. Within the statistical clus-
ter model, one may overcome this difficulty, e.g., by
postulating that the clusters emitting baryons are of
different nature than those producing mesons only.
This problem is under investigation.
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