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The unquenching of the Polyakov-loop potential has been shown to be an important improvement for the
description of the phase structure and thermodynamics of strongly interacting matter at zero quark chemical
potentials with Polyakov-loop-extended chiral models. This work constitutes the first application of the
quark backreaction on the Polyakov-loop potential at nonzero density. The observation is that it links the
chiral and deconfinement phase transitions also at small temperatures and large quark chemical potentials.
The build-up of the surface tension in the Polyakov-loop-extended quark-meson model is explored by
investigating the two- and 2þ 1-flavor quark-meson model and analyzing the impact of the Polyakov-loop
extension. In general, the order of magnitude of the surface tension is given by the chiral phase transition.
The coupling of the chiral and deconfinement transitions with the unquenched Polyakov-loop potential
leads to the fact that the Polyakov loop contributes at all temperatures.
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I. INTRODUCTION

The extended mean-field version of the Polyakov-loop-
extended quark-meson (PQM) model and the no-sea
approximation of the Polyakov–Nambu–Jona-Lasinio
(PNJL) model has been shown to be capable to reproduce
the crossover at vanishing densities of the strong interaction
as seen in lattice calculations. The important ingredients to
achieve this agreement proved to be the enhancement of the
Polyakov-loop potential from a pure gauge potential to the
unquenched glue potential that includes backreaction effects
from quarks and including thermal fluctuations of mesons
[1–3]. The lattice data were used to adjusted the free
parameters, which are the critical scale of the Polyakov-
loop potential and the mass of the σ meson. In Ref. [4] we
have applied this framework to investigate the phase structure
at nonvanishing isospin before the onset of pion condensa-
tion. The present work presents the first application of the
unquenched Polyakov-loop potential at nonzero net quark
density and explores its applicability. The observation is that
it links the chiral and deconfinement phase transitions also at
small temperatures and large quark chemical potentials. This
is a feature that is also seen in the functional renormalization
group (FRG) improvement of the PQM model when using
the Yang-Mills Polyakov-loop potential [5,6]. Therefore,
further investigation may be interesting although mesonic

fluctuations still have to be implemented in the equations of
motion in a next step. For now results within the extended
mean-field version including thermal fluctuations of mesons
to thermodynamics will be presented. The effect of
unquenching the Polyakov-loop potential is a shift of a
hypothetical critical end point towards smaller temperatures
at similar chemical potential. Furthermore, there is a minor
decrease in size of the spinodal region.Moreover, we discuss
the build-up of the surface tension in the PQM model by
investigating the two- and 2þ 1-flavor QM model and
analyzing the impact of the Polyakov-loop extension. In
general, the order ofmagnitude of the surface tension is given
by the chiral phase transition. The coupling of the chiral and
deconfinement transitions with the unquenched Polyakov-
loop potential leads to the fact that the Polyakov loop
contributes at all temperatures.
In the next section the theoretical framework that is used is

explained. Section III summarizes the results at vanishing
quark chemical potentials before exploring the impact of
unquenching the Polyakov-loop potential on the phase
structure at nonzero quark chemical potentials in Sec. IV.
The build-up of the surface tension in theQMframework and
the impact of the Polyakov-loop extension are discussed in
Sec. V. Finally, the findings are summarized in Sec. VI.

II. THEORETICAL FRAMEWORK

We perform our investigation within the 2þ 1-flavor
extended mean-field Polyakov-loop-extended quark-meson
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model enhanced by the meson contributions to thermody-
namics and with an unquenched Polyakov-loop potential.1

This framework describes two important properties of QCD
which are chiral symmetry and center symmetry. While
spontaneous breaking of the former gives rise to constituent
quark masses, spontaneous breaking of center symmetry
indicates deconfinement. These properties are described by
the effective Lagrangian

L ¼ q̄ðiD − gϕ5 þ γ0μfÞqþ Trð∂μϕ
†∂μϕÞ

−m2Trðϕ†ϕÞ − λ1½Trðϕ†ϕÞ�2 − λ2Trðϕ†ϕÞ2
þ cðdetϕþ detϕ†Þ þ Tr½Hðϕþ ϕ†Þ�
− UðΦr;ΦiÞ; ð1Þ

where ϕ and ϕ5 are 3 × 3 matrices that combine scalar and
pseudoscalar meson fields [8] and U is the potential of the
Polyakov loop Φ [9–15], which is the trace of a Wilson
loop in the temporal direction over the temporal component
of the gauge field Aμ and as such in general is a complex
scalar field Φ ¼ Φr þ iΦi [16].
The corresponding partition function is a path integral

over all occurring fields of the in-medium effective action.
In a mean-field analysis, the field is replaced by its spatially
and temporally constant background such that the path
integral turns into an ordinary integral over that field.
Furthermore, the integral is trivially restricted to the mean
field that contributes the most to the partition function and
thus minimizes the effective action or potential. This is how
the meson fields and gauge field are treated. If we replace
these fields with their expectation values their derivative
terms in the Lagrangian (1) vanish. The remaining inte-
gration over the fermions can be performed following the
standard derivation [17] as a Gaussian integral over
Grassmann fields followed by applying the Matsubara
formalism. The expression of the grand canonical potential
then takes the form

Ωðσl; σs;Φr;Φi;T; μfÞ ¼ Uðσl; σsÞ þ UðΦr;Φi;TÞ
þ Ωqq̄ðσl; σs;Φr;Φi;T; μfÞ: ð2Þ

It is a function of the order parameters for center symmetry
and for chiral symmetry in the light and strange quark
sectors and depends on the temperature and the quark
chemical potentials.
The self-interaction potential of the meson fields

Uðσl; σsÞ is that of the isospin-symmetric linear sigma

model [8,18]. It describes spontaneous and explicit break-
ing of chiral symmetry in the light and strange quark sector.
For an extension that distinguishes between up and down
quark condensates at nonzero isospin, see e.g. Ref. [4]. We
use the same form and phenomenological input as in our
previous work in Refs. [1,4,19–21] which is specified in
Table I. For the mass of the scalar σ meson we use mσ ¼
400 MeV to obtain the best agreement with lattice results
at vanishing density as will be shown in Sec. III. Note that
even in the vacuum, not only the mesonic contribution
Uðσl; σsÞ but also the contribution of the quark quantum
fluctuations Ωvac

qq̄ ðσl; σsÞ which will be introduced in the
next paragraph contribute to the meson masses.
The fluctuation contribution of quarks and antiquarks

Ωqq̄ðσl; σs;Φr;Φi;T; μfÞ, which comes from the fermionic
determinant, includes the coupling to and between the
Polyakov-loop variable and meson fields. It consists of
two terms. One contribution, Ωvac

qq̄ ðσl; σsÞ, results from the
negative-energy states of the Dirac sea and is ultraviolet
divergent. In the standard, no-sea mean-field approxima-
tion it is neglected by saying that it can be absorbed in the
renormalization of the vacuum since it has no explicit
dependence on temperature and quark chemical potentials
[23]. However, it is implicitly medium dependent via the
quark condensates and can be normalized, e.g. in the
dimensional regularization scheme yielding a logarithmic
correction [24] that is taken into account in the extended
mean-field analysis [25–27]. This term contributes besides
the mesonic potentialUðσl; σsÞ to the vacuum properties, so
at T ¼ μf ¼ 0. Therefore, it has to be considered in the
adjustment of the parameters of the mesonic potential to the
physical meson masses and decay constants in the vacuum
given in Table I. The dependence of Ωvac

qq̄ ðσl; σsÞ on its
regularization scale cancels neatly with that of these
parameters as was shown in detail in Ref. [26]. The
remaining scalar meson masses and the constituent strange
quark mass resulting from the input in Table I are given in
Table II. Note that only the mass of the f0ð1370Þ meson
depends on the value used for the mass of the σ meson.
How these results compare to experimental values is e.g.
discussed in Ref. [8] and the medium dependence of all
meson masses is discussed in Ref. [18].
The remaining part of Ωqq̄ is the kinetic quark-antiquark

contribution Ωth
qq̄ðσl; σs;Φr;Φi;T; μfÞ that depends on the

TABLE I. Values of decay constants of pseudoscalar mesons
and meson masses in the vacuum in accordance to Ref. [22], to
which the parameters of the mesonic potential are adjusted, as
well as the chosen value of the constituent quark mass of the light
(up and down) quarks that is used to fix the quark-meson Yukawa
coupling.

Constant fπ fK mπ mK mη mη0 mσ mu;d

Value [MeV] 92 110 138 495 548 958 400 300

1The extended mean-field Polyakov-loop quark-meson model
does not consider fluctuations of mesons but only thermal and
quantum fluctuations of the quarks [7] as we discuss in the course
of this section. To achieve a better description of thermodynamics
in the phase where chiral symmetry is broken, we add the thermal
fluctuations of mesons to thermodynamics as we did in
Refs. [1,2,4] and as we discuss in Sec. III.
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thermodynamic variables. At nonvanishing quark chemical
potential it contributes an imaginary part to the effective
potential, Ωth

qq̄ ¼ ΩR
qq̄ þ iΩI

qq̄. This is the manifestation of
the fermion sign problem in the Polyakov-loop extensions
of the quark-meson model and NJL model [19,28,29]. The
common approach to circumvent this sign problem is to
redefine the Polyakov loop Φ and its complex conjugate Φ̄
as two independent, real variables; see e.g. Ref. [15]. But
by this approach, the state of thermodynamical equilibrium
is identified only with a saddle point but not with a
minimum of the effective potential. But one can only
calculate quasi-equilibrium properties of the system, such
as the surface tension and nucleation rate in a first-order
phase transition as we want to do here with equilibrium
states described by minima of the effective potential. As we
have shown in Ref. [19] in accordance with Ref. [29]
another way to avoid the sign problem is to neglect the
imaginary part of the effective potential as a lowest-order
perturbative approximation [19,29]. Dropping the complex
part of the effective potential implies that the imaginary part
of the Polyakov loop Φi is zero but this approach has the
advantage that the state of equilibrium is a minimum of the
effective potential. Using the phase reweighting method to
obtain Φi ≠ 0 as an effect of the imaginary part of the
potential beyond lowest order as in the dense-heavy model
in Ref. [28] remains for future work.
The potential of the Polyakov loop, UðΦr;Φi;TÞ should

mimic a background of gluons and controls the dynamics
of the Polyakov loop. A common, simple way to obtain an
effective Polyakov-loop potential is to construct a potential
that respects all given symmetries and contains the sponta-
neous breaking of Zð3Þ symmetry if the system is in the
deconfined phase [30–32]. A polynomial forms in this
sense the minimal content of a Polyakov-loop potential
[10,15]. The ansatz for the Polyakov-loop potential can be
enhanced by including the term that arises if one integrates
out the SU(3) group volume in the generating functional for
the Euclidean action. This integration can be performed via
the so-called Haar measure and takes the form of a Jacobian
determinant. Its logarithm adds as an effective potential
to the action in the generating functional [13,33].
Reference [34] went beyond a minimal content for the
Polyakov-loop potential and kept the higher-order terms of
the polynomial parametrization of the Polyakov-loop
potential and added the logarithmic term to consider the
group volume additionally. On the parameters of the
parametrizations some general constraints can be imposed,

especially by applying and restricting the Polyakov-loop
potential to pure gauge (Yang-Mills) theory. The remaining
open parameters were determined in Refs. [11,15,33,34] by
fitting both the lattice data for pressure, entropy density and
energy density and the evolution of the Polyakov loop hΦi
on the lattice in pure gauge theory. Reference [34] adjusted
their parameters in addition to lattice data of the longi-
tudinal and transverse Polyakov-loop susceptibilities. The
different parametrizations that we apply are summarized
together with their parameter sets in the Appendix within a
more detailed discussion of the Polyakov-loop potential.
This construction of the Polyakov-loop potential and

the fitting of its parameters entails that it models the pure
gauge potential UYMðtYMÞ=T4. The transition scale of the
Polyakov-loop potential is accordingly the critical temper-
ature of pure gauge theory, TYM

0 ¼ 270 MeV. However, in
full dynamical QCD, one important effect of fermionicmatter
fields is to change the scale ΛQCD to which the transition
temperature of the Polyakov-loop potential is linked. To
consider this aspect of the backreaction of quarks to the gauge
sector, Ref. [7] estimated the running coupling of QCD by
consistency with hard thermal loop perturbation theory
calculations [35,36] and they mapped the effect to an Nf-
dependent modification of the expansion coefficients of the
Polyakov-loop potential. Their result is a Nf-dependent
decrease of T0. This accounts partially for the unquenching
of the pure gauge Polyakov-loop potential to an effective glue
potential in QCD. Besides the flavor dependency of the
transition scale of the glue sector, one can consider its
dependence on the quark density. Such a dependency has
tobe expected inviewof aμq-dependent color screening effect
due to quarks. In Ref. [7] a μq-dependent small correction to
the running coupling was motivated by using hard-thermal/
dense-loop (HTL/HDL) theory and by comparison to the one
found in FRG calculations [37]. The description presented in
Refs. [6,7] can be generalized to allow for different chemical
potentials for each quark flavor [4].
Still, the Polyakov-loop potential is an approximation to

the Yang-Mills glue potential. However, in Polyakov-loop-
extended models for (full) QCD, this Polyakov-loop
potential has to be replaced by the QCD glue potential
that takes into account the backreaction of quarks into the
Polyakov-loop effective potential. Using the FRG
approach, Refs. [38–40] calculated the nonperturbative
Polyakov-loop potential of pure gauge theory and
Refs. [37,41] calculated the QCD analogue taking into
account the backreaction of the quark degrees of freedom
on the gluon propagators. The latter includes the quark part
of the gluonic vacuum polarization but does not include the
fermionic part of the full QCD potential. As we discussed
in detail in Ref. [1] one observes for a given nonzero
reduced temperature that the shapes of the potentials are
very similar but that there is a shift between both potentials.
This observation can be exploited to estimate how to
convert the Yang-Mills potential for the Polyakov loop

TABLE II. Values for the remaining scalar meson masses in the
vacuum and the constituent mass of strange quarks in units of
MeV resulting from the input in Table I. For a comparison to
experimental results see e.g. Ref. [8].

ma0 mκ mf0ð1370Þ ms

1122 1183 1204 417
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to a glue potential in full QCD that contains backreaction
effects from quarks,

Uglue

T4
ðΦr;Φi; tglueÞ ¼

UYM

T4
YM

ðΦr;Φi; tYMðtglueÞÞ; ð3Þ

by relating the reduced temperature scales of both
potentials

tglue ¼
T − Tglue

cr

Tglue
cr

and tYM ¼ TYM − TYM
cr

TYM
cr

: ð4Þ

The comparison of the potentials yields that the relation
between the two temperature scales

tYMðtglueÞ ≈ 0.57tglue ð5Þ

minimizes the difference between both potentials, the pure
gauge Polyakov-loop potential and unquenched glue poten-
tial. Limitations of this approximation and details of its
derivation are given in Ref. [1]. In this work, we will apply

for the first time this unquenching of the Polyakov-loop
potential at nonvanishing quark density and discuss its
implications.

III. ORDER PARAMETERS AND
THERMODYNAMICS AT ZERO CHEMICAL

POTENTIALS

Figures 1 and 2 show those results for thermodynamics
and order parameters that are the closest to the results of
lattice calculations. The results for the chiral order param-
eter and thermodynamics either agree quantitatively with
the lattice results or are at least within the trend of the data.
A big difference is seen in the Polyakov-loop expectation
value. The lattice data shows a smoother transition with
significant smaller values. However, at least a part of this
discrepancy originates in the inherent approximations
which are still present: the derivation of the Polyakov–
quark-meson model entails that the Polyakov-loop variable
in the thermal fermionic determinant is Φ½hA0i� and not
hΦ½A0�i as used in the Polyakov-loop potentials U and
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FIG. 1. Results for the scaled pressure p=T4 (left) and trace anomaly ðϵ − 3pÞ=T4 (right) as a function of temperature at μf ¼ 0 for the
different parametrizations of the Polyakov-loop potential. The results are compared to the lattice calculation of Refs. [43,44].
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FIG. 2. Results for the subtracted chiral condensate Δl;s (left) and the Polyakov loop (right) as a function of temperature at μf ¼ 0 for
the different parametrizations of the Polyakov-loop potential. The results are compared to the lattice calculations of Refs. [45,46].
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computed on the lattice. However, the continuum definition
serves as an upper bound for the lattice one, Φ½hA0i� ≥ hΦi.
This issue was discussed in detail and this difference was
analyzed quantitatively in Ref. [42].
The abscissae of the figures are in units of the reduced

temperature of full QCD t ¼ ðT − TcÞ=Tc. This choice
allows one to compare the overall shape of the observables
and thereby the proper inclusion of the relevant dynamics
independent of a possible mismatch of the pseudocritical
temperature Tc that is scaled out. Table III summarizes the
pseudocritical temperatures.
To achieve a better description of the thermodynamics in

the phase where chiral symmetry is broken, the thermo-
dynamics is augmented by the contribution of a gas of
thermal pions as we did in Refs. [1,2,4]. The contribution to
the pressure of each pion species is

pπi ¼
1

ð2πÞ3
Z

∞

0

d3k
k2

3Eπi

1

eðEπi−μπi Þ=T − 1

with Eπi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

πi

q
ð6Þ

and πi ¼ π0, πþ, π−. The total contribution of the pions
to the pressure is accordingly pπ ¼ pπ0 þ pπþ þ pπ− and
overall

p ¼ −Ωþ pπ: ð7Þ
For the pion masses the in-medium masses are taken. These
are determined by the second derivatives of the thermo-
dynamical potential with respect to the pseudoscalar fields,

m2
p;ij ¼

∂2Ωðφs;a;φp;b;Φ; Φ̄;T; μfÞ
∂φp;i∂φp;j

����
min

: ð8Þ

The association of the pseudoscalar fields and physical
pseudoscalar mesons is such that the pion masses are given
by mp;11 ¼ mp;22 ¼ mp;33. Using the in-medium pion
masses (8) the pressure of the pions is strictly speaking
a field-dependent correction to the thermodynamical poten-
tial that contributes as well to the equations of motion,
∂Ω=∂φi − ∂pπ=∂φi and the (pseudo)scalar masses them-
selves. In a lowest-order approximation this correction is
neglected, and we say that the dynamics of the system is

governed by the grand canonical potential Ω alone which
determines the meson masses as well. An uncoupled pion
gas with these pion masses is then added to thermody-
namics as in Eq. (7). We will show how the thermal
fluctuations of mesons alter the results for the order
parameters, for the meson masses themselves and for
thermodynamics in Ref. [47].
The pion contribution is the dominant one compared to

the heavier mesons in the phase where chiral symmetry is
broken as it was also shown in Refs. [2,3]. Furthermore, the
more massive mesons would have a sizable contribution in
the high temperature phase [3] where, physically, the
mesonic degrees of freedom dissolve. But this aspect of
deconfinement is not covered by center symmetry restora-
tion. This justifies only considering the contribution of a
gas of thermal pions but no other mesons.
The inclusion of quantum fluctuations of mesons in a

renormalization group framework would not further
improve the agreement for the order parameters and
thermodynamics within the uncertainty of the parameters
as was shown in Ref. [2].

IV. PHASE STRUCTURE AT NONZERO QUARK
CHEMICAL POTENTIALS

In the previous section the unquenching of the Polyakov-
loop potential has been shown to be an important improve-
ment for the description of the phase structure and
thermodynamics at zero quark chemical potentials with
Polyakov-loop-extended chiral models. Now, the impact of
unquenching the Polyakov-loop potential on the phase
structure at nonvanishing net quark density will be
discussed.
The results presented in the following are obtained using

the polynomial-logarithmic Polyakov-loop potential.
The impact of a quark backreaction on the Polyakov-

loop potential at finite quark densities is shown in Fig. 3.
The upper panels are results obtained with the unquenched
Polyakov-loop potential while for the results in the lower
part a pure Yang-Mills Polyakov-loop potential has been
used. Obviously, using the quark-enhanced Polyakov-loop
potential the chiral and (de)confinement transitions remain
linked at small temperatures and large quark chemical
potentials.
The question is whether the use of the same functional

relation between pure Yang-Mills and the glue effective
potential found in the transition region for zero chemical
potentials is justified at small temperatures and large quark
chemical potentials. At small temperatures and zero density
one should actually expect that Yang-Mills and the effective
glue potential become asymptotically the same. So the
question reduces to whether the impact of quarks on
the Polyakov-loop potential at small temperatures and
chemical potentials of the order of the critical one can
be approximated by their impact at zero density and
temperatures around the pseudocritical temperature.

TABLE III. Pseudocritical temperatures for the results for the
crossover transition at μf ¼ 0 with the different parametrizations
of the Polyakov-loop potential presented in Figs. 1 and 2. They
are determined by the peak position of the chiral susceptibility
∂Δl;s=∂T and of the temperature derivative of the Polyakov loop

∂Φ=∂T. Tglue
cr ¼ 240 MeV is used as the transition temperature of

the Polyakov-loop potential and mσ ¼ 400 MeV is used as the
vacuum mass of the σ meson.

Log Poly-Log

Tc [MeV] 175 179
Td [MeV] 152 165
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The pure Yang-Mills Polyakov-loop potential as such
does not contain any explicit dependence on quark den-
sities and therefore, the Polyakov-loop remains at its
vacuum value ∼0 at small temperatures when the quark
chemical potential is increased as is shown in the lower
right part of Fig. 3. Only the coupling to quarks and mesons
leads to an extremely small variation.
One way to include a density-dependent matter back-

reaction in the Polyakov-loop potential is to consider the
chemical potential dependence of its transition temperature
[6,7]. This implies that the transition scale of the Polyakov-
loop potential decreases with increasing chemical potential.
This in turn lowers the pseudocritical temperature of the
crossover transition of the Polyakov loop at a large
chemical potential towards the critical temperature of the
chiral first-order transition. This is shown in the lower left
panel of Fig. 3 and Refs. [5–7,27]. References [5,6]
included meson fluctuations in a renormalization group
framework and they observed that this backreaction is then
enough to see the chiral and (de)confinement transitions
remaining linked at large chemical potentials.
Therefore, the coincidence of the chiral and (de)confine-

ment transitions at large chemical potentials with the

unquenched Polyakov-loop potential is qualitatively a
welcome feature. Taking additionally into account the
chemical potential dependence of the glue critical temper-
ature shows then a minor impact as can be seen when
comparing the upper right and upper left figures of Fig. 3.
The consequence of adjusting Tglue

cr with μq is as for the
Yang-Mills Polyakov-loop potential: itmoves the Polyakov-
loop to larger values at a given chemical potential.
Interestingly enough, the evolution of the chiral order

parameters is perfectly independent of the realization of the
Polyakov-loop potential as is shown in Fig. 3, except for a
1% decrease of the chiral condensates just before the
transition when the unquenched Polyakov-loop potential
is used.
Even though the qualitative impact of unquenching the

Polyakov-loop potential [that it links the chiral and (de)
confinement transitions] is reasonable its quantitative
magnitude remains in question. While pure gauge theory
allows one to adjust parametrizations of the Polyakov-loop
potential to the minimum of the potential and the PQM/
PNJL model at zero densities but nonzero temperature
probes regions of the Polyakov-loop potential away from
the minimum, the PQM/PNJL model at large quark

200 300 400

Quark chemical potential [MeV]

0

0.2

0.4

0.6

0.8

1

σl / fπ

σs / fπ

Φr

+

200 300 400

Quark chemical potential [MeV]

0

0.2

0.4

0.6

0.8

1

σl / fπ

σs / fπ

Φr

+

200 300 400

Quark chemical potential [MeV]

0

0.2

0.4

0.6

0.8

1

σl / fπ

σs / fπ

Φr

+

200 300 400

Quark chemical potential [MeV]

0

0.2

0.4

0.6

0.8

1

σl / fπ

σs / fπ

105 Φr

+
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chemical potentials probes the form of the Polyakov-loop
potential far away from the minimum. The impact of
unquenching the Polyakov-loop potential is such that the
Polyakov loop becomes unbound at small temperatures and
large chemical potentials for polynomial parametrizations.
Only the limitation that the Polyakov loop must be smaller
than one when the Haar measure is considered avoids this
behavior.
Having found a crossover at small chemical potentials

and a first-order transition at small temperatures, the next
step is to investigate the complete T − μq phase diagram
considering the above-mentioned observations.
The phase diagram of the PQMmodel is shown in Fig. 4.

The effect of unquenching the Polyakov-loop potential on
the phase diagram is displayed by the comparison of the
results using the Yang-Mills Polyakov-loop potential and
its quark-enhanced counterpart. The (lighter) crossover
lines are the pseudocritical values of the subtracted chiral
condensate.
For all values of the quark chemical potential μq ¼

μu ¼ μd ¼ μs, unquenching the Polyakov-loop potential
has the consequence of lowering the transition temperature
which has its origin in the effect of lowering the transition
scale of the Polyakov loop. In the zero-temperature limit
T → 0 the Polyakov-loop potential becomes independent
of its variables UðΦr;Φi;T ¼ 0Þ ¼ 0 ∀ ðΦr;ΦiÞ since
gluon excitations are entirely independent of the quark
chemical potential and therefore, the phase structure is that
of the quark-meson model that is shown as well in Fig. 4.
With all uncertainties adjusted to lattice data at zero

quark chemical potential, there remains a region at large
chemical potentials where the phase transition is discon-
tinuous and the order parameters show a jump. The thinner,
outer lines around the first-order transition line retrace the
extension of the metastable region, i.e., to which extent the
one phase remains as a local minimum while the system is
in the other phase which is the global minimum. The

coordinates of the critical end points (CEP) are ðT; μÞCEP ¼
ð65; 276Þ MeV with the unquenched Polyakov-loop poten-
tial and (94, 283) MeV with the Yang-Mills potential. So
the main effect of including the quark backreaction on the
gluons is to lower the temperature of the CEP at a similar
chemical potential. Interestingly enough, Ref. [48] did a
detailed analysis of the quantitative sensitivity of the CEP
coordinate to the meson phenomenology in the vacuum that
is used to adjust the parameters in the chiral sector. They
also found a much larger sensitivity of TCEP than μCEP, this
time for variations of the chiral properties.
At these large values of the quark or baryon chemical

potential (μb ¼ 3μq), baryons are the relevant degrees of
freedom that are not contained in the PQM model. To
implement baryons as bound states of quarks and diquarks
using the Fadeev and Bethe-Salpeter equations (see e.g.
Refs. [49–52]) to the PQM model remains for future work.
For work on including diquarks in two-color QCD, see e.g.
Refs. [53,54]. Reference [55] included baryonic degrees of
freedom for their localization of the CEP but found only a
small influence of these within a few MeV. Even though
this region of the phase diagram at large chemical potentials
and small temperatures is speculative within the present
framework, general methods to analyze the properties of
this region can be discussed, as in Sec. V.
An important aspect of the phase diagram at small

chemical potentials is the curvature of the transition line.
This can also be extracted from lattice calculations that are
hampered at nonzero quark chemical potentials due to the
sign problem. In the right part of Fig. 4 the transition lines are
normalized by the respective pseudocritical temperatures at
zero density, T0

c and the critical chemical potential at zero
temperature, μ0c to allow for a comparison of the curvatures.
One sees that applying the unquenched Polyakov-loop
potential lowers the pseudocritical temperature relatively
more strongly with increasing chemical potential such that
the curvature of the phase transition line increases.
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The influence of lowering the critical temperature of the
Polyakov-loop potential with increasing density has a
smaller effect on the phase diagram than unquenching
the Polyakov-loop potential, as can be seen in the com-
parison of Figs. 4 and 5. To illustrate the impact on the
curvature of the transition line, in the right part of Fig. 5 the
square of the chemical potential is chosen as the abscissa.
In this unit the pseudocritical temperature follows a straight
line for small values of the chemical potential. Lowering
the glue critical temperature with increasing chemical
potential has the impact of decreasing the pseudocritical
temperature such that the curvature of the transition line
gets larger. The location of the critical end point is lowered
further in temperature to ðT; μÞCEP ¼ ð47; 280Þ MeV when
the glue critical temperature is decreased with growing
chemical potential.
The curvature of the transition line is also a quantity that

can be extracted from lattice calculations up to baryon
chemical potentials for which terms of higher order than
ðμB=TcÞ2 can be neglected. Therefore, it can serve as a test
of the predictive power of the presented framework that is
complementary to the one that we performed in Ref. [4] for
the isospin dependence of the pseudocritical temperature.
Figure 6 compares the result using the unquenched
Polyakov-loop potential with the density-independent glue
critical temperature with those of the recent lattice calcu-
lations of Refs. [56,57]. We show these since they span the
range of results of the latest generation of lattice calcu-
lations. The one of Ref. [58] is as well within this range.
The result of the presented framework with its uncertainties
adjusted at zero density is well within the ballpark of these
lattice results within their uncertainties. The band shown
for the PQM model results from the difference between
using the logarithmic or polynomial-logarithmic Polyakov-
loop potential. This difference is further analyzed in
Sec. IVA. Also shown in Fig. 6 are the curves on which
chemical freeze-out of hadrons is expected according to the
beam-energy dependence of observed particle yields in
relativistic heavy-ion collisions [59,60]. Compared to the

result in Ref. [59] the outcome of our calculation fulfills the
expectation that the transition line lies slightly above the
freeze-out curve. A comparison to the lower limit given in
Ref. [60] would violate this expectation, an observation
which also holds true for most of the lattice results within
their errors.
One ingredient in the presented model that diminishes

the curvature of the crossover line is the inclusion of meson
fluctuations in a renormalization group framework [5,6].
The authors of Ref. [61] quantified how including repulsive
vector interactions reduces the slope of the phase transition
line. However, one should be aware that when including the
vector-meson exchange, the model still fails to describe
lattice results of quark number susceptibilities [62,63]; see
the discussion in Ref. [64].
In general, the two minima of the potential that are

degenerate on the coexistence line persist as a global and a
metastable local minimum in some region of the phase
diagram around the phase transition line. Going away from
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the coexistence line, the intervening maximum approaches
the local minimum until these two extrema meet and form
an inflection point that defines the spinodal line.
Figure 7 compares the extension of the metastable region

that is limited by the spinodal lines using the unquenched
Polyakov-loop potential and the Yang-Mills potential. The
absolute location of the critical end point and therefore of
the metastable region differs except for the lowest temper-
atures when the Polyakov-loop-independent quark-meson
limit is reached. But the relative extent is similar as is
shown on the right side of Fig. 7. Here, the form changes
from a convex shape with the Yang-Mills Polyakov-loop
potential to a concave form when the matter backreaction to
the Polyakov-loop potential is considered.

A. Dependence on the parametrization
of the Polyakov-loop potential

The analysis of how well the different parametrizations
of the Polyakov-loop potential are adjusted to lattice data of
Yang-Mills theory shown in Table V and the investigation
of the impact of the parametrizations on the evolution of
order parameters and thermodynamics at zero chemical

potentials when the potential is coupled to quarks and
mesons as discussed in Sec. III, showed that the results
show similar qualitative behavior. Figure 8 compares the
phase diagrams for the different parametrizations using the
parameters as they were determined in Sec. III to get as
close as possible to the lattice results for the order
parameters, thermodynamics and pseudocritical temper-
atures. The overall shape of the phase boundaries is similar
and the polynomial-logarithmic Polyakov-loop potential
leads to relatively larger transition temperatures from
medium chemical potentials on. The location of the critical
end point is ðT; μÞCEP ¼ ð47; 280Þ MeV with the logarith-
mic Polyakov-loop potential.
The zoom into metastable regions achieved with differ-

ent parametrizations of the Polyakov-loop potential dis-
played in Fig. 9 shows in more detail that the critical end
point with the polynomial-logarithmic glue potential devi-
ates from the location of the critical end point calculated
with the logarithmic Polyakov-loop potential. But once the
metastable regions are corrected for the different coordi-
nates of the critical end points, both parametrizations lead
to an extension of the metastable region that is largely
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independent of the form of the Polyakov-loop potential.
This is shown on the right side of Fig. 9. Furthermore, one
finds that the degree of metastability that can be reached is
relatively modest. The extent of the metastable region
shows an asymmetry for the lowest temperatures in which
the spinodal line in the chirally restored and deconfined
phase has a larger distance to the coexistence line than the
spinodal in the chirally restored and confined phase. This
observation on the asymmetric extent of the metastable
region holds as well for the description of Yang-Mills
theory with the different Polyakov-loop potentials and in
the pure chiral quark-meson model.

V. NUCLEATION IN A POLYAKOV-LOOP-
EXTENDED CHIRAL EFFECTIVE MODEL

Here, the properties of the phase transition in the high-
density and low-temperature region of the phase diagram
are analyzed.
The derivation of an overestimate of the surface tension

for bubble nucleation within the thin-wall approximation in
Ref. [65] shows that it is determined by two contributions,
namely, the distance between the two degenerate minima
in the space of the order parameters and the shape of the
effective potential along the straight line that connects both
minima.
To discuss how the different contributions to the

Polyakov–quark-meson model build up the result of the
surface tension, in Sec. VA we present the results within
the quark-meson model and in Sec. V B we discuss the
effects of the Polyakov-loop extension.

A. Nucleation within the quark-meson model

The PQM model reduces to the quark-meson model that
governs only chiral symmetry breaking and restoration by
fixing ðΦr;ΦiÞ≡ ð1; 0Þ at all temperatures and densities.
This implies that the coarse-grained free energy and the
estimate of the surface tension become independent of the
kinetic parameter κ of the Polyakov-loop order parameters,

ΣSUð3Þ
QM ðT; μl; μsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔσlÞ2 þ ðΔσsÞ2

q

×
Z

1

0

dξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Ωðξ;T; μl; μsÞ

q
: ð9Þ

The contribution of the light quark sector is already present
in the SU(2) quark-meson model, where the overestimate of
the surface tension simply reduces to

ΣSUð2Þ
QM ðT; μlÞ ¼

Z
σð2Þl

σð1Þl

dσl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ωðσl;T; μlÞ

p
: ð10Þ

Hence, differences in the surface tension of the two-flavor
and 2þ 1-flavor quark-meson models arise due to a
possible modification of the degenerate values of the light
chiral condensate, the additional dimension of the strange
chiral condensate and a possible modification of the
effective potential along the straight line connecting the
minima. To investigate the impact of the values of the chiral
condensates, the left part of Fig. 10 shows the degenerate
values that the chiral order parameters take at the first-order
phase transition. Notice that the minima merge smoothly at
the critical end point.
One observes that adding strange quarks to the system

weakens the transition in the light quark sector. This
partially counteracts the increase of the prefactor in the
surface tension (9) when strange quarks are taken into
account. But the upper limit on the surface tension
presented on the right-hand side of Fig. 10 is even smaller
for the 2þ 1 quark flavor quark-meson model than in the
two-flavor calculation. This is because the fermionic
vacuum contribution at one-loop order

Ωvac
qq̄ ∼ −

X
f¼u;d;s

m4
f lnðmfÞ; ð11Þ

decreases the thermodynamical potential and the height of
the barrier at the first-order phase transition and each quark
flavor leads to a further decrease that is even larger for
heavier quark species.
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In general, Fig. 10 shows the overestimate of the surface
tension in the thin-wall approximation of the QM model
along the first-order transition line. The temperature
dependence of the surface tension and its value at zero
temperature is similar to the results found in Refs. [66,67],
which considered the two-flavor quark-meson and Nambu–
Jona-Lasinio models, respectively. The upper bound of
10 MeV=fm2 for the surface tension allows a quick hadron-
quark phase conversion. The implications of this result for
several physical scenarios, be it heavy-ion collisions,
protoneutron stars or the early Universe are similar to
those discussed in Ref. [19].

B. Nucleation within the Polyakov–quark-meson model

With the Polyakov-loop extension of the quark-meson
model, the system contains another order parameter, the
Polyakov loop and the effective potential gets an additional
contribution, the Polyakov-loop potential U,

ΣðRÞ ¼ h
Z

1

0

dξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Ωðξ;RÞ

q
; ð12Þ

with

h2 ¼ ðΔσlÞ2 þ ðΔσsÞ2 þ ðκΔΦrÞ2 þ ðκΔΦiÞ2; ð13Þ
and the straight-line approximation

ϕi ¼ ξϕð1Þ
i þ ð1 − ξÞϕð2Þ

i ð14Þ
with 0 ≤ ξ ≤ 1; see Ref. [65]. Therefore, the Polyakov loop
adds an additional contribution to the distance between the
degenerate minima at the phase transition: to the factor h in
Eq. (13). Another effect of the Polyakov-loop extension on
this quantity can be the modification of the values of the
chiral condensates at the minima compared to the quark-
meson model.
The left part of Fig. 11 shows how the values of the

chiral condensates of the degenerate minima at the phase

transition are altered by the coupling to the Polyakov loop.
This result shows a slight dependence on whether and what
kind of backcoupling of the quarks on the quenched
Polyakov-loop potential is considered. With the Yang-
Mills Polyakov-loop potential with a constant transition
scale the values of the chiral condensates are hardly altered
compared to the quark-meson model result. Lowering the
critical temperature of this potential with increasing density
increases the gap between the values of the chiral con-
densates in the degenerate minima. This is not the case
when the unquenched Polyakov-loop potential with a
constant critical scale is considered but it shifts the values
of the condensates somewhat to larger values. The latter
observation can be attributed to the close link between the
(de)confinement and chiral transitions.
The values that the Polyakov loop takes in the degenerate

minima at the transition are much more sensitive to the kind
of Polyakov-loop potential as is shown on the right of
Fig. 11. As discussed in the discussion of Fig. 3, the (de)
confinement and chiral transitions of the light quarks
remain linked in the low-temperature and high-density
region of the phase diagram with the unquenched
Polyakov-loop potential. The opposite behavior occurs
with the pure Yang-Mills Polyakov-loop potential with
which the Polyakov loop takes only very small values at
temperatures far below the critical scale of the Polyakov-
loop potential. An intermediate behavior for the Polyakov
loop is observed with the chemical potential dependence of
the transition temperature of the Polyakov-loop potential as
in Ref. [7]. Close to the critical end point the Polyakov
loop at the phase transition takes values of the same order
as with the unquenched Polyakov-loop potential but
nevertheless the (de)confinement transition decouples from
the chiral phase transition of the light quarks at even smaller
temperatures.
These results are obtained with the polynomial-

logarithmic parametrization of the Polyakov-loop potential
with the best-fit parameters of Sec. III. Figure 12 presents
the corresponding results of the surface tension. The kinetic
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parameter κ of the Polyakov loop is adjusted via the pure
gauge surface tension to κ ≃ 0.818T0. The Polyakov-loop
extension of the pure chiral quark-meson model leads to an
increase of the surface tension. Nevertheless, the zero-
temperature limit is the same since gluon excitations are
independent of the quark chemical potential in this limit,
UðΦr;Φi;T ¼ 0Þ ¼ 0 ∀ ðΦr;ΦiÞ. Except for very close to
the critical end point, Δσl is much lager than ΔΦr, ΔΦi and
Δσs so that the order of magnitude of the surface tension is
set by the two-flavor quark-meson model. The maximum in
the surface tension with the unquenched Polyakov-loop
potential is the result of the increasing strength of the (de)
confinement transition that comes along with the stronger
transition in the chiral sector at larger chemical potentials
and the tendency that a (de)confinement crossover tran-
sition sets in at chemical potentials slightly below the chiral
first-order transition.

VI. CONCLUSIONS

In this work, thermodynamical properties and the phase
structure of strongly interacting matter have been analyzed
in an improved framework of the Polyakov-loop-extended
quark-meson model with 2þ 1 constituent quark flavors.
We applied the results of Ref. [1] that an appropriate
rescaling of the temperature can mimic the effect of the
quark backreaction on the gauge sector. This offers a simple
and systematic approach to improve the Polyakov-loop
potential from a pure gauge potential to the unquenched
glue potential in full QCD. Moreover, as another step
beyond usual mean-field analyses not only have quark
quantum fluctuations at one loop been considered but the
contribution of thermal meson fluctuations to thermody-
namics was also taken into account.
With the parameters adjusted in order to reproduce lattice

results at zero quark densities this setting constitutes an
adequate framework to investigate the phase structure
of strongly interacting matter at nonzero quark density.
The present work presented the first application of the
unquenched Polyakov-loop potential at nonzero net
quark density and explored its impact. Including the quark
backreaction on the gauge sector has a big impact on the
interrelation of the chiral and (de)confinement transitions
at nonvanishing chemical potential and these transitions
remained linked even in the high-quark-density and small-
temperature region of the phase diagram. This result is
obtained ignoring any density dependence of the quark
backreaction. So, in order to confirm or reject this trend it
remains for future work to investigate a medium depend-
ence of the unquenching of the gauge sector.
The comparison of the curvature of the phase transition

line at nonzero baryon chemical potential with recent
lattice data and observations of the latest hadron chemical
equilibrium in relativistic heavy-ion collisions showed an
appreciable agreement. Testing the effective model with its
parameters adjusted to provide a good description of lattice
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data at zero density in this fashion is crucial to understand
whether it can provide a reliable description of the phase
structure of the strong interaction in general.
The careful circumvention of the fermion sign problem

in a way that preserved the solutions of the equation of
motion as minima of the effective potential in Ref. [19]
allowed us to derive a formalism to study the homogeneous
nucleation of bubbles in a first-order phase transition. An
upper limit of the surface tension for bubble nucleation in
the thin-wall approximation has been calculated. Here, we
found that the Polyakov–quark-meson model with 2þ 1
quark flavors yields results similar to those of the two-
flavor quark-meson model, so that the influence of both, the
strange quark and the Polyakov loop at low temperatures is
small. The conservative upper bound of 10 MeV=fm2

found for the surface tension allows a quick hadron-quark
phase conversion.
Concerning possible applications, an ingredient of inves-

tigations of quarkonium suppression in a quark-gluon
plasma formed in heavy-ion collisions is the expansion
of the plasma itself [68–71]. Here, the temperature and
density dependence of the quark and meson masses found
in the presented framework can serve as an input.
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APPENDIX: POLYAKOV-LOOP POTENTIALS
THAT RESPECT THE SU(3) GROUP VOLUME

The potential of the Polyakov loop, UðΦr;Φi;TÞ should
mimic a background of gluons and controls the dynamics
of the Polyakov loop. First computations of the effective
potential in gauge theories were performed in the 1980s
at asymptotically high temperatures using perturbation
theory [72–74] and in the strong-coupling limit on a lattice
[31]. In recent years, the nonperturbative Polyakov-loop
potential has been studied using various different
approaches [37–42,75–83]. First principle calculations
of the potential are performed using different functional
methods, mainly the FRG approach but as well Dyson-
Schwinger equations and the two particle irreducible (2PI)
approach [38–40,42,75,83]. In Refs. [37,41] the
Polyakov-loop potential in two-flavor QCD in the chiral
limit was analyzed. This computation includes the full
backcoupling of the matter sector on the propagators of
the gauge degrees of freedom via dynamical quark-gluon
interactions [36,84–86].

A much simpler way to obtain an effective Polyakov-
loop potential UðΦ; Φ̄;TÞ is to construct a potential that
respects all given symmetries and contains the spontaneous
breaking of Zð3Þ symmetry if the system is in the
deconfined phase [30–32]. The simplest terms that
lead to a real potential, respect center symmetry and are
able to describe spontaneous symmetry breaking are a
combination of terms of second and forth order
U ∼ p2ΦΦ̄þ p4ðΦΦ̄Þ2. The combination ΦΦ̄ is also invari-
ant under Uð1Þ transformations. But the potential gov-
erning center symmetry should not introduce any additional
symmetries. Therefore, the potential also has to contain
terms that break the global symmetry down from Oð2Þ to
Zð3Þ. The simplest real term that is invariant under Zð3Þ but
breaks Uð1Þ and is symmetric under charge conjugation is
(Φ3 þ Φ̄3). The polynomial of the above-mentioned terms
form the minimal content of a Polyakov-loop potential
[10,15], U ∼ p2ðtÞΦΦ̄þ p3ðΦ3 þ Φ̄3Þ þ p4ðΦΦ̄Þ2. The
coefficient p2 has to be temperature dependent to
realize the transition to a phase where Zð3Þ symmetry is
spontaneously broken. For later use, this temperature
dependence is written in terms of a reduced temperature
t ¼ ðT − TcÞ=Tc where Tc ¼ T0 is in this case the
transition temperature of the Polyakov-loop potential.
A negative cubic term forces the nature of the transition
to be of first order while it would be of second order
otherwise. The coefficient of the forth-order term has be
positive so that the potential is bounded from below for
large Φ and Φ̄. The ansatz for the Polyakov-loop potential
can be enhanced by including the term that arises if one
integrates out the SU(3) group volume in the generating
functional for the Euclidean action. This integration can be
performed via the so-called Haar measure and takes the
form of a Jacobian determinant. Its logarithm adds as an
effective potential to the action in the generating functional.
This function already breaks theUð1Þ symmetry and with a
positive coefficient the logarithm bounds the potential from
below for large Φ and Φ̄, so that one can drop the cubic
and forth-order terms of the polynomial while the kinetic
part ∼ΦΦ̄ remains [13,33],

U logðΦ; Φ̄; tÞ
T4

¼ p2ðtÞΦΦ̄þ lðtÞ ln½1 − 6ΦΦ̄

þ 4ðΦ3 þ Φ̄3Þ − 3ðΦΦ̄Þ2�: ðA1Þ

This potential is also qualitatively consistent with the
leading-order result of the strong-coupling expansion
[87,88]. An additional feature of the logarithmic term is
that the potential diverges for Φ, Φ̄ → 1 thus limiting the
Polyakov loop to be always smaller than one, reaching this
value only asymptotically as T → ∞. This is consistent
with the relation of the Polyakov loop to the free energy of
a static quark-antiquark pair. Reference [34] went beyond a
minimal content for the Polyakov-loop potential and kept
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the higher-order terms of the polynomial parametrization of
the Polyakov-loop potential and added the logarithmic term
to consider the group volume additionally,

UpolylogðΦ;Φ̄;tÞ
T4

¼p2ðtÞΦΦ̄þp3ðtÞðΦ3þ Φ̄3Þþp4ðtÞðΦΦ̄Þ2

þ lðtÞln ½1−6ΦΦ̄þ4ðΦ3þ Φ̄3Þ−3ðΦΦ̄Þ2�:
ðA2Þ

In U log the temperature dependence of the coefficients is
parametrized as a polynomial

cðtÞ ¼
X
n

Cn

ð1þ tÞn ; ðA3Þ

where t ¼ ðT − TcÞ=Tc defines a reduced temperature and
Tc ¼ T0 is in this case the transition temperature of the
Polyakov-loop potential. The coefficients of the polyno-
mial-logarithmic parametrization were defined in Ref. [34]
in a more complex way,

piðtÞ ¼
�
PðiÞ
0 þ PðiÞ

1

1þ t
þ PðiÞ

2

ð1þ tÞ2
���

1þ PðiÞ
3

1þ t
þ PðiÞ

4

ð1þ tÞ2
�

ðA4Þ

and

lðtÞ ¼ L0

ð1þ tÞL1
½1 − eL2=ð1þtÞL3 �: ðA5Þ

The number of independent parameters of the parametri-
zations can be reduced by imposing some general con-
straints. One condition is that the Polyakov-loop variables
approach unity for large temperatures. A necessary con-
dition for the expectation values of the Polyakov loops is
∂U=∂Φ ¼ ∂U=∂Φ̄ ¼ 0. To fix further parameters one
applies and restricts the Polyakov-loop potential to pure
gauge (Yang-Mills) theory. The absence of dynamical
quarks restricts the Polyakov-loop variable to be real,
Φ ¼ Φ̄. At the transition scale of the Polyakov-loop
potential T0, a first-order phase transition is required. If
a reliable prediction of the value of the Polyakov-loop at the
phase transition were available it would further constrain
the parameters. Furthermore, a gas of Nc − 1 noninteract-
ing, massless gluons should approach its Stefan-Boltzmann
limit as T → ∞. The remaining open parameters are
determined in Refs. [11,15,33,34] by fitting both the lattice
data for pressure, entropy density and energy density and
the evolution of the Polyakov loop hΦi on the lattice in pure
gauge theory. Reference [34] adjusted their parameters in
addition to lattice data of the longitudinal and transverse
Polyakov-loop susceptibilities. The different parameter sets
are summarized in Table IV. Results for quantities that

characterize the Polyakov-loop potential are given in
Table V. An apparent difference is that the polynomial-
logarithmic parametrization reaches only ∼93% of the
high-temperature expectation. Figure 13 compares the form
of the potentials at their critical scale, i.e. at t ¼ 0. It shows
another important difference between the different para-
metrizations. The barrier between the two minima at the
transition temperature differs in its width and height
between the different parametrizations. This affects nucle-
ation in Yang-Mills theory and we discussed in Ref. [19]
how one can partially account for the impact of these
different barriers on nucleation within the Polyakov–quark-
meson model and how they influence the result of the
surface tension.

TABLE IV. Parameters of the different parametrizations of
the Polyakov-loop potential for fits to the lattice Yang-Mills
simulations [89,90] and [91,92].

P0 P1 P2 L3

Log [33] −1.755 1.235 −7.6 −1.75
Poly-Log [34] Pð2Þ

0 Pð2Þ
1 Pð2Þ

2 Pð2Þ
3 Pð2Þ

4

22.07 −75.7 45.03385 2.77173 3.56403

Pð3Þ
0 Pð3Þ

1 Pð3Þ
2 Pð3Þ

3 Pð3Þ
4−25.39805 57.019 −44.7298 3.08718 6.72812

Pð4Þ
0 Pð4Þ

1 Pð4Þ
2 Pð4Þ

3 Pð4Þ
4

27.0885 −56.0859 71.2225 2.9715 6.61433
L0 L1 L2 L3−0.32665 5.85559 −82.9823 3.0

TABLE V. Numbers characterizing the Polyakov-loop potential.
It should be ΦT→∞ ¼ 1, ðU=pSBÞT→∞ ¼ 1 and UðΦt¼0Þ ¼ 0.

Φt¼0 U=T4ðΦt¼0Þ ΦT→∞ ðU=pSBÞT→∞

Log 0.449 −8.84 × 10−4 1.0 1.0
Poly-Log 0.348 −1.18 × 10−4 1.0 0.933

-0.2 0 0.2 0.4 0.6

Φ

0

0.02

0.04

β4
V

[Φ
]

Log

Poly-Log

FIG. 13. Polyakov-loop potentials at their transition scale
t ¼ 0.
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Rewritten as functions of the real variables Φr ¼ ðΦþ Φ̄Þ=2 and Φi ¼ ðΦ − Φ̄Þ=2, the parametrizations of the Polyakov-
loop potential are

U logðΦr;Φi; tÞ
T4

¼ p2ðtÞðΦ2
r þ Φ2

i Þ þ lðtÞ ln ½1 − 6ðΦ2
r þ Φ2

i Þ þ 8ðΦ3
r − 3ΦrΦ2

i Þ − 3ðΦ2
r þ Φ2

i Þ2�; ðA6Þ

UpolylogðΦr;Φi; tÞ
T4

¼ p2ðtÞðΦ2
r þ Φ2

i Þ þ 2p3ðtÞðΦ2
r − 3ΦrΦ2

i Þ þ p4ðtÞðΦ2
r þ Φ2

i Þ2

þ lðtÞ ln ½1 − 6ðΦ2
r þ Φ2

i Þ þ 8ðΦ3
r − 3ΦrΦ2

i Þ − 3ðΦ2
r þ Φ2

i Þ2�: ðA7Þ
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