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We study the masses of the low-lying charm and bottom mesons within the framework of heavy hadron
chiral perturbation theory (HHChPT). We work to third order in the chiral expansion, where meson loops
contribute. In contrast to previous approaches, we use physical meson masses in evaluating these loops.
This ensures that their imaginary parts are consistent with the observed widths of theDmesons. The lowest
odd- and even-parity, strange and nonstrange charm mesons provide enough constraints to determine only
certain linear combinations of the low-energy constants in the effective Lagrangian. We comment on how
lattice QCD could provide further information to disentangle these constants. Then, we use the results from
the charm sector to predict the spectrum of odd and even parity of the bottom mesons. The predicted masses
from our theory are in good agreement with experimentally measured masses for the case of the odd-parity
sector. For the even-parity sector, the B-meson states have not yet been observed; thus, our results provide
useful information for experimentalists investigating such states. The near degeneracy of nonstrange and
strange scalar Bmesons is confirmed in our predictions using HHChPT.We show why previous approaches
of using HHChPT in studying the mass degeneracy in the scalar states of charm and bottom meson sectors
gave unsatisfactory results.
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I. INTRODUCTION

The masses and widths of the low-lying charm mesons
are now rather well determined experimentally, in the odd-
and even-parity, strange and nonstrange sectors (for sum-
maries, see Refs. [1,2]). The patterns of the masses and
interactions of these mesons are governed by two approxi-
mate symmetries: the spin symmetry of the heavy quark
and the SUð3ÞL × SUð3ÞR chiral symmetry of the light
quarks. Both symmetries can be incorporated in a single
framework using heavy-hadron chiral perturbation theory
(HHChPT), an effective field theory for the interactions of a
meson containing a single heavy quark [3–8].
Within this theory, the masses of the low-lying odd- and

even-parity D mesons have been studied, including one-
loop chiral corrections [9,10]. The chiral Lagrangian at this,
third, order contains a number of unknown low-energy
constants (LECs). These cannot be determined uniquely
from experimental data on the meson spectrum because
their number exceeds the number of low-lying mesons.
Mehen and Springer [9] and Ananthanarayan et al. [10]
fitted expressions that depend nonlinearly on these con-
stants and found multiple solutions, often with quite
different numerical values for them. As a result, no clear
pattern emerged from these fits.
In this paper, we use a different approach to fit these

parameters to remove these ambiguities and provide a
clearer picture. The key difference from previous work
[9,10] is that we use the physical values of the charmmeson
masses in evaluating the chiral loops. One important
consequence of this is to put thresholds at the correct

energies relative to the masses of unstable particles and
hence to ensure that the imaginary parts of the loops are
correctly related to the observed decay widths of the heavy
mesons. A second consequence is that the parameters—the
LECs—appear only in the tree-level contributions to the
masses. This allows us to determine uniquely eight linear
combinations of the LECs from the experimental masses.
These eight parameters cannot be further disentangled into
the individual LECs using the experimental spectrum
alone. By using the experimental masses in the loops,
we generate terms that are of order higher than third order
in the chiral expansion. These include divergences that we
cannot cancel using counterterms in our Lagrangian. We
use the β functions associated with these uncontrolled
higher-order contributions to provide an estimate of the
theoretical errors introduced by our approach. Another,
more technical, difference from previous work on HHChPT
is that we have used corrected expressions for the chiral
loop functions, in contrast to the expressions presented in
Refs. [7,9] which use an inconsistent renormalization
scheme.
The results from the charm meson sector are used to

predict the masses of the full set of the low-lying B-meson
states. The predicted masses from our theory of the ground
states are in good agreement with the well-determined
masses. The first set of excited B meson states has not yet
been observed; thus, our results can be used to provide
useful information for experimentalists investigating such
states. The near degeneracy of scalar B-meson states—the
mass of the nonstrange scalar Bmeson is similar to that of a
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strange one—is confirmed in our predictions using
HHChPT. Our results are at variance with those in
Ref. [11]. We will show why the previous studies of the
near mass degeneracy in the scalar D- and B-meson sectors
using the approach of HHChPT led to unsatisfactory results.
This paper is organized as follows. In Sec. II, the heavy-

hadron chiral Lagrangian we use is briefly reviewed. In
Sec. III, we present the resulting expression for the meson
masses. Since the number of the LECs exceeds the number
of obervables, the LECs are grouped into eight linear
combinations that are equivalent to the number of observ-
ables. In Sec. IV, we use the D-meson spectrum to fit these
parameters. The results from the charm meson spectrum are
then used in Sec. V to predict the masses of the low-lying
bottom meson states. The summary is given in Sec. VI.

II. HEAVY-HADRON CHIRAL LAGRANGIAN

Our starting point is the same effective Lagrangian that was
used in Refs. [9,10]. We give a brief outline of it here; more
details can be found in those papers and the review
by Casalbuoni et al. [7]. In the heavy quark limit, systems
with a single heavy quark respect heavy-quark spin symmetry,
forming degenerate multiplets independent of the spin ori-
entation of the quark. The lowest multiplet of charm mesons
consists of the pseudoscalar ground states, D0, Dþ, and Dþ

s ,
and their vector first excited states,D�0,D�þ, andD�þ

s . These
can be conveniently described by the effective field,

Ha ¼
1þ v
2

ðHμ
aγμ −Haγ5Þ; ð1Þ

where the fields Ha annihilate the pseudoscalar particles and
Hμ

a annihilate the vector ones. Here, the flavor index a ¼ 1, 2,
3 denotes states with up, down, and strange quarks, respec-
tively. The first excited multiplet has the opposite parity and
consists of scalar,D0

0,D
þ
0 , andD

þ
0s, and axial-vector mesons,

D00
1 , D

10
1 , and D00

1s. These can be described by the effective
field,

Sa ¼
1þ v
2

ðSμaγμγ5 − SaÞ; ð2Þ

where the fields Sa and Sμa annihilate the scalar and axial-
vector particles, respectively.
The other ingredient of the theory is the approximate

SUð3ÞL × SUð3ÞR chiral symmetry of QCD. This is
embodied by fields describing the lightest strongly inter-
acting particles, π, K, and η, which are approximately the
Goldstone bosons of this hidden symmetry. These can be
represented by the matrix field UðxÞ ¼ expði ffiffiffi

2
p

ϕðxÞ=fÞ
where ϕðxÞ is given by

ϕðxÞ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCA: ð3Þ

In our conventions, we use the physical value of the pion
decay constant f ¼ 92.4 MeV. It is different from the ones
used by Wise in Ref. [3] in which f ¼ 135 MeV was used.
Thus, one has to replace f in Ref. [3] by

ffiffiffi
2

p
f to account for

different conventions. The lowest-order Lagrangian for the
light mesons is

Lm ¼ f2

4
Trð∂μU∂μU†Þ þ f2B0

2
TrðmqU† þUm†

qÞ; ð4Þ

where the coefficientB0 is related to the pion decay constant
and the quark condensate of light quark flavors [12]. The
light quark mass matrix is given bymq ¼ diagðmu;md;msÞ.
We take as our low-energy scales, generically denoted by

Q, the masses and momenta of the Goldstone bosons and
the splittings between the four lowest states of the D
mesons introduced above. The relevant expression of the
heavy-hadron chiral Lagrangian up to order Q3 is [4,9]

LH ¼ −Tr½Haðiv ·Dba − δHδabÞHb� þ Tr½S̄aðiv ·Dba − δSδabÞSb� þ gTr½H̄aHbubaγ5� þ g0Tr½S̄aSbubaγ5�

þ hTr½H̄aSbubaγ5 þ H:c:� − ΔH

8
Tr½H̄aσ

μνHaσμν� þ
ΔS

8
Tr½S̄aσ

μνSaσμν� þ aHTr½H̄aHb�mξ
ba − aSTr½S̄aSb�mξ

ba

þ σHTr½H̄aHa�mξ
bb − σSTr½S̄aSa�mξ

bb −
ΔðaÞ

H

8
Tr½H̄aσ

μνHbσμν�mξ
ba þ

ΔðaÞ
S

8
Tr½S̄aσ

μνSbσμν�mξ
ba

−
ΔðσÞ

H

8
Tr½H̄aσ

μνHaσμν�mξ
bb þ

ΔðσÞ
S

8
Tr½S̄aσ

μνSaσμν�mξ
bb; ð5Þ

where the covariant derivative is defined as Dμ
ba ¼ ∂μ

ba þ
1
2
ðξ†∂μξþ ξ∂μξ†Þba, ξðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
UðxÞp

. The factors δH and δS
are the residual masses of the effective fields Ha and Sa,
respectively. The coupling constant g (g0) measures the
strength of transitions within odd- (even-)parity charm

meson states. The strength of transitions between odd-
and even-parity states is measured by the coupling constant
h. The axial vector field is uμba ¼ i

2
ðξ†∂μξ − ξ∂μξ†Þba. The

hyperfine splittings of the D-meson states are measured by
(Δ, ΔðaÞ, ΔðσÞ). These coefficients manifestly vanish in the
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heavy-quark limit. The quark mass matrix which breaks
chiral symmetry is defined as mξ

ba ¼ 1
2
ðξmqξþ ξ†mqξ

†Þba.
The coefficients (a, σ) present in the chirally breaking terms
are dimensionless.
According to our power counting, the first seven terms

on the right hand side of Eq. (5) are all of order Q1. The
sixth and seventh terms break the heavy-quark spin
symmetry. Since, at leading order, the quark masses are
proportional to the squares of the masses of the Goldstone
bosons, the eighth to eleventh terms are of order Q2. The
final four terms which break both chiral and heavy-quark
spin symmetries are of order Q3. These terms are required
to cancel the infinite parts resulting from regularization and
renormalization of the loop diagrams; note that all diagrams
are of order Q3.

III. MASS FORMULA OF THE CHARM MESONS

The full contributions to the physical mass can be
obtained by adding the tree-level contributions to the
one-loop corrections ΣDð�Þ as

mHa
¼δHþaHmaþσHm̄−

3

4
ðΔHþΔðaÞ

H maþΔðσÞ
H m̄ÞþΣHa

;

mH�
a
¼δHþaHmaþσHm̄þ1

4
ðΔHþΔðaÞ

H maþΔðσÞ
H m̄ÞþΣH�

a
;

mSa ¼δSþaSmaþσSm̄−
3

4
ðΔSþΔðaÞ

S maþΔðσÞ
S m̄ÞþΣSa ;

mS�a ¼δSþaSmaþσSm̄þ1

4
ðΔSþΔðaÞ

S maþΔðσÞ
S m̄ÞþΣS�a ;

ð6Þ
where we use the notation of Ref. [9]. Here, we work in the
isospin limit (mu ¼ md ¼ m1) where m̄ ¼ 2m1 þm3 and
ma ¼ ðm1; m1; m3Þ. The Feynman diagrams of the one-
loop corrections ΣDð�Þ to the masses ofDmesons are shown
in Fig. 1. The resulting explicit expressions for the self-
energies of the charm mesons are given in Appendix A. In
our work, the residual masses mDð�Þ are measured from the
nonstrange spin-averaged H mass, ðmH1

þ 3mH�
1
Þ=4.

The existing coefficients in Eq. (6) can be either
determined from experiments or from the lattice fit. In

Refs. [9,10], the authors fitted the above expressions which
depend nonlinearly on these coefficients and found multi-
ple solutions, often with quite different numerical values
for them. As a result, no clear pattern emerged from these
fits. This is because the number of these coefficients exceeds
the number of experimentally known charm meson masses.
Thus, getting unique numerical values of the coefficients is
impossible. Here, we attempt to remove this ambiguity by
following a different approach to fit these coefficients. We
use the physical values of the masses in evaluating the chiral
loops. As a consequence, the energy of any unstable particle
is placed correctly relative to the decay threshold, and the
imaginary part of the loop integral can be related to
the experimental decay width. The second effect is to reduce
the number of unknown coefficients in comparison with the
current experimental data on charm meson masses. Masses
at tree level depend only on certain linear combinations of
LECs. By using physical masses in chiral loops, the masses
still depend linearly on these combinations. Therefore, one
can express these combinations of LECs directly in terms of
the physical masses and loop integrals.
The procedure of combining the LECs is performed

according to the symmetry patterns of the charm mesons.
In this manner, the constructed parameters can be uniquely
determined by using available experimental values of the
meson masses and widths. The parameters that respect
flavor symmetry are

ηH ¼ δHþ
�
aH
3
þσH

�
m̄; ξH ¼ΔHþ

�
ΔðaÞ

H

3
þΔðσÞ

H

�
m̄;

ηS ¼ δSþ
�
aS
3
þσS

�
m̄; ξS ¼ΔSþ

�
ΔðaÞ

S

3
þΔðσÞ

S

�
m̄;

ð7Þ

where δH;S and ΔH;S respect chiral symmetry, but the other
terms contain the average of the quark masses m̄ which
breaks it. The parameters left after constructing ηH, ηS, ξH,
and ξS are

LH ¼ ðm3 −m1ÞaH; TH ¼ ðm3 −m1ÞΔðaÞ
H ;

LS ¼ ðm3 −m1ÞaS; TS ¼ ðm3 −m1ÞΔðaÞ
S : ð8Þ

The combinationsLH;S andTH;S break flavor symmetry, and
the latter also breaks spin symmetry. In terms of these linear
combinations, the masses can be written as

mHa
¼ ηH −

3

4
ξH þ αa

3
LH þ βa

2
TH þ ΣHa

;

mH�
a
¼ ηH þ 1

4
ξH þ αa

3
LH þ β�a

2
TH þ ΣH�

a
;

mSa ¼ ηS −
3

4
ξS þ

αa
3
LS þ

βa
2
TS þ ΣSa ;

mS�a ¼ ηS þ
1

4
ξS þ

αa
3
LS þ

β�a
2
TS þ ΣS�a ; ð9ÞFIG. 1. The self-energy diagrams for the ground-state fields H

and the excited-state fields S.
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where αa and β
ð�Þ
a are α1 ¼ −1, α3 ¼ 2, β1 ¼ 1=2, β3 ¼ −1,

β�1 ¼ −1=6, and β�3 ¼ 1=3. Now, the number of parameters,
ξH;S, ηH;S, LH;S, and TH;S is 8, which is equal to the number
of observed low-lying D-meson states.

IV. DETERMINATION OF LOW-ENERGY
CONSTANTS

The numerical values of the parameters (ξH;S, ηH;S, LH;S,
TH;S) will be given in this part. In our fitting, the physical
masses and the coupling constants extracted from the well-
measured widths are used. The used meson masses are two
masses of the ground-state nonstrange mesons in the
isospin limit and four masses of strange mesons from both
sectors, see Table I. The excited nonstrange mesons are
reported with the large uncertainties. In this case, we did
not take the isospin average, and instead the masses of
the neutral heavy mesons (mD0

0
¼ 2318� 29 MeV [1],

mD00
1

¼ 2427�36MeV [13]) are chosen due to their

relatively small errors in comparison with the excited
charged mesons [1,14–19]. The masses of the Goldstone
particles used here are (mπ ¼ 140 MeV, mK ¼ 495 MeV,
and mη ¼ 547 MeV). The calculations are performed at
the physical values of pion decay constant f ¼ 92.4 MeV
and of the coupling constants g and h that are extracted

from the strong decay widths g ¼ 0.64� 0.075 and
h ¼ 0.56� 0.04; for details, see Ref. [2]. The renormal-
ization scale μ is chosen to be the average of the pion and
kaon masses μ ¼ 317 MeV.
The chiral-loop functions are fed with the difference of

the physical masses of the charm mesons. Thus, the
uniquely determined values of the parameters include
contributions from terms beyond the loop order. Since
these higher-order terms have not been considered in the
chiral Lagrangian, their μ dependence cannot be canceled
by existing coefficients. So, beta functions of the param-
eters are defined in order to estimate how much higher-
order terms donate to the central values of those parameters.
The resulting numerical values of the parameters which
inhabit the odd-parity sector are

ηH ¼ 171.57� 44� 5 MeV;

ξH ¼ 150.95� 5� 5 MeV;

LH ¼ 242.71� 40� 18 MeV;

TH ¼ −52.21� 18� 15 MeV; ð10Þ
where the first uncertainty is the experimental error
associated with physical masses of charm mesons and
the second uncertainty is the theoretical error that we have
estimated from the β functions.
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FIG. 2. Variation of (a) ηS, (b) ξS, (c) LS, and (d) TS with g0. The experimental uncertainties are shown by dashed lines surrounding the
central values, and an estimate theoretical uncertainty is shown by dotted-dashed line. The theoretical uncertainty of the parameter ηS is a
constant �5 MeV.

MOHAMMAD H. ALHAKAMI PHYSICAL REVIEW D 93, 094007 (2016)

094007-4



The situation for the even-parity parameters is different
because the coupling constant g0 is not determined exper-
imentally. Since the value of the odd-parity coupling
constant g is 0.64, it is plausible to consider values for
g0 in the range 0 to 1. The correlations between g0 and ηS,
ξS, LS, TS are shown in Fig. 2. The plots also show the
associated experimental and theoretical errors.
Experimental information is not sufficient to separate the

combinations of the LECs into pieces that respect and break
chiral symmetry, which limits their usefulness for applica-
tions to other observables. Lattice QCD calculations would
be required to perform further separations of terms. For
example, lattice results on the charm meson spectroscopy
undertaken in Refs. [20,21] can be used to disentangle
chirally symmetric parameters δH;S and ΔH;S from chiral
breaking terms.

V. PREDICTION FOR THE SPECTRUM OF
ODD- AND EVEN-PARITY BOTTOM MESONS

Using the results from charmmesons, one can predict the
spectra of the B mesons. To this end, the hyperfine
operators in the theory, i.e., the parameters ξH;S, TH;S that
break heavy quark symmetry, will be rescaled to define the
mass formula for the odd- and even-parity bottom mesons.
The rescaling can be achieved by multiplying these
operators by the ratio of the finite charm and bottom quark
masses, mc

mb
.

The masses of the charm and bottom quarks are not
directly measured. Many theoretical and computational
methods have been developed to extract their values; for
a review, see Refs. [1,22]. In Table II, we list the charm and
bottom quark masses evaluated from different mass
schemes. Clearly, the extracted masses of the charm and
bottom quarks are not uniquely defined. The values depend
on the definition of the mass scheme used. It is not clear
which is the best definition for our purposes. However, as
the MS definition has a small associated uncertainty, it is
convenient to choose the ratio obtained from it and add an
extra uncertainty, of the orderOðΛQCDÞ, to cover the spread
of mc

mb
resulting from different mass schemes. Thus, the

hyperfine operators in our theory can be rescaled by the
factor mc

mb
¼ 0.305� 0.05. In terms of the rescaled param-

eters, the mass formulas for the bottom mesons up to one-
loop corrections are

mBa
¼ ηH −

3

4

mc

mb
ξH þ αa

3
LH þ βa

2

mc

mb
TH þ ΣBa

;

mB�
a
¼ ηH þ 1

4

mc

mb
ξH þ αa

3
LH þ β�a

2

mc

mb
TH þ ΣB�

a
;

mBa0
¼ ηS −

3

4

mc

mb
ξS þ

αa
3
LS þ

βa
2

mc

mb
TS þ ΣBa0

;

mB�
a0
¼ ηS þ

1

4

mc

mb
ξS þ

αa
3
LS þ

β�a
2

mc

mb
TS þ ΣB�

a0
; ð11Þ

where the self-energy ΣB is a function of the mass differ-
ence of the B mesons and the masses of the light
pseudoscalar mesons π, η, and K.
To predict the masses of the bottom mesons, it is suitable

to choose the ground state of the nonstrange Bmeson as the
reference mass to get the independent splittings mB� −mB,
mBs

−mB, mB�
s
−mB, mB0

−mB, mBs0
−mB, mB�

0
−mB,

and mB�
s0
−mB, where the symbols B, Bs, B�, B�

s , B0, Bs0,
B�
0, and B�

s0 represent the nonstrange pseudoscalar, strange
pseudoscalar, nonstrange vector, strange vector, nonstrange
scalar, strange scalar, nonstrange axial vector, and strange
axial vector, respectively. The loop functions depend on the
mass differences, and so these independent splittings form
nonlinear equations. We have used an iterative method

TABLE I. The listed charm meson states have been used in our fitting. Jp is the angular momentum and parity of the meson. In our
fitting, the masses ofH1 (H�

1) are obtained by taking the isospin average ofD
0 andD� (D�0 andD��); for details please refer to the text.

All masses are taken from the Particle Data Group [1] except the mass of the excited neutral nonstrange mesonD00
1 , which is reported by

the BELLE Collaboration [13].

Name Jp Mass (MeV) Name Jp Mass (MeV) Name Jp Mass (MeV)

D0 0− 1864.84� 0.05 D� 0− 1869.61� 0.09 D�
s 0− 1968.30� 0.10

D�0 1− 2006.97� 0.08 D�� 1− 2010.27� 0.05 D��
s 1− 2112.1� 0.4

D0
0

0þ 2318� 29 D�
0

0þ � � � D��
s0 0þ 2317.7� 0.6

D00
1

1þ 2427� 36 D�0
1

1þ � � � D�0
s1 1þ 2459.5� 0.6

TABLE II. The charm and bottom MS masses are evaluated at
their own scale, i.e., m̄cðm̄cÞ and m̄bðm̄bÞ. In Ref. [1], the MS
values are converted to the pole scheme. The ratio of charm and
bottom masses obtained from the pole mass is close to the ratio of
the pseudoscalar charm and bottom mesons mD

mB
¼ 0.35. In the

kinetic mass scheme, the charm and bottom masses are evaluated
at μ ¼ 1 GeV [23].

Mass
scheme

Charm quark mass
(GeV)

Bottom quark mass
(GeV)

mc

mb

MS [1] 1.275� 0.025 4.18� 0.03 0.305
Pole [1] 1.67� 0.07 4.78� 0.06 0.349
1 S [1] � � � 4.66� 0.03 � � �
Kinetic [23] 1.077� 0.074 4.549� 0.049 0.237
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to solve them starting from the tree-level masses. The
numerical values of these mass splittings are shown in
Figs. 3 and 4.
Our theoretical prediction for masses (splittings) of the

odd-parity B mesons are in good agreement with the
available experimental data. In the PDG [1], the splittings
within odd-parity B mesons are

mB� −mB ¼ 45.38� 0.30 MeV; ð12Þ
mB�þ −mBþ ¼ 45.0� 0.4 MeV; ð13Þ
mBs

−mB ¼ 87.33� 0.23 MeV; ð14Þ
mB�

s
−mBs

¼ 48.6� 2.41 MeV: ð15Þ
The mass difference mB�

s
−mB can be obtained from the

above splittings as follows:

mB�
s
−mB ¼ ðmB�

s
−mBs

Þ þ ðmBs
−mBÞ

¼ 135.93� 2.42 MeV: ð16Þ

By comparing the results in Eq. (12) and Eq. (13) with
the predicted splitting shown in Fig. 3(a), we find that the

experimental measurement of hyperfine splitting of the
nonstrange Bmesons agrees with our theoretical prediction
within 1σ standard deviation. Similarly, the measured mass
difference mBs

−mB [see Eq. (14)] agrees with our theo-
retical prediction [see Fig. 3(b)] within about 1σ standard
deviation. Furthermore, the measured mass difference
mB�

s
−mB [see Eq. (16)] agrees with our theoretical

prediction [see Fig. 3(c)] within 1σ standard deviation.
For the even-parity sector, the B-meson states have not

yet been observed; thus, our results, which are shown in
Fig. 4, provide useful information for experimentalists
investigating such states.
For the predicted masses (splittings) of the even-parity

sector, the strong dependence on the coupling g0 is due to
the large negative contribution from terms with

g02

4f2
nfK1ðω;mÞ≃ g02

4f2
nf

�
−

4

16π2
ðω2−m2ÞFðω;mÞþ �� �

�

∝−
g02

f2
nfm2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−ω2

p
cos−1

�
ω

m

�
þ�� � ;

for m2 > ω2 where m ¼ mη; mK . The light-quark factor nf
is simply obtained from the Gell-Mann matrices, and its
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FIG. 3. The mass splittings plotted against g0: (a) mB� −mB, (b) mBs
−mB, and (c) mB�

s
−mB. The solid line represents the central

value of the splittings. The associated uncertainties, which include the experimental errors of the charm meson masses and the coupling
constants and the error from the input parameter mc

mb
, are given by the dashed lines. The dotted-dashed line represents an estimate

theoretical uncertainty.
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value reflects the number of independent self-energy loop
diagrams which contribute to the process.
Before proceeding to comment on the SUð3Þ splittings

within the predicted B-meson states, let us first briefly
examine the charm meson masses given in Table I.
Evidently, the strange and nonstrange splittings of the
well-determined states, i.e., Jp ¼ 0− and Jp ¼ 1−, are
consistent with the size of the SUð3Þ breaking,
Oð100 MeVÞ. However, this is not the case for the
even-parity sector where the central values of the splittings

mD��
s0
−mD�0

0
¼ −0.3� 29 MeV;

mD�0
s1
−mD00

0

¼ 32.5� 36 MeV ð17Þ

are inconsistent with the size of the SUð3Þ breaking. The
closeness of mD��

s0
and mD�0

0
masses was the first observa-

tion of mass degeneracy in heavy-light mesons.
From the heavy quark symmetry, the observed mass

degeneracy in the charm sector implies the similarity ofmB0

and mBs0
in the bottom sector. Our approach of using

HHChPT shows that there is an accidental cancellation
between SUð3Þ-breaking loop contributions and counter-
terms in the even-parity B-meson sector. Hence, it is
obvious from Figs. 4(a) and 4(b) that the nonstrange
and strange scalar bottom mesons are nearly degenerate,
and the difference between their central values is ∼8 MeV.

Moreover, the splitting between nonstrange and strange
axial-vector bottom mesons is ∼19 MeV; see Figs. 4(c)
and 4(d). This result, which is inconsistent with the
theoretical expectation on SUð3Þ breaking, was observed
in the charm sector.
It is worth mentioning that the work undertaken in

Refs. [11,24] was intended to investigate the closeness
of nonstrange and strange scalars in the charm and bottom
sectors, using, in addition to HHChPT, different potential
models. They considered the hadronic loops effect to shift
down the bare masses of scalar mesons. In their work, the
hadronic loop contributions include only the coupling of
D�

s0 to the lowest possible intermediate states, and these
states form members of the 1

2
− doublet in the notation of

HHChPT. The self-energy contributions from the coupling
of D�

s0 to the members of the 1
2
þ doublet have been

neglected in Refs. [11,24] which in turn indicates their
analysis within HHChPT is incomplete. In Ref. [11], the
authors concluded that the results of studying the mass
degeneracy using HHChPT are not satisfactory, which is in
fact not true as shown in Figs. 4(a) and 4(b).
Furthermore, the approach employed in Refs. [11,24]

of using bare masses in evaluating loop functions is
inappropriate for the case of HHChPT. For example, the
predicted masses of B�

s0 and B�
0, as given in Table II in

Ref. [11], provide different splittings when using different
bare masses in evaluating loop functions. More precisely,
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FIG. 4. The mass splittings plotted against g0: (a)mB0
−mB, (b)mBs0

−mB, (c)mB�
0
−mB, and (d)mB�

s0
−mB. The notation is the same

as in Fig. 3.
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the mass difference mB�
s0
−mB�

0
is ∼þ 100 MeV when

evaluating loop functions with bare masses given in
Ref. [25] and is ∼ − 60 MeV when evaluating loop
functions with bare masses taken from Ref. [26]. This
shows that the loop integrals are sensitive to the input mass
differences of the heavy mesons, so using bare masses is
not appropriate. To avoid these problems, we use the self-
consistently determined masses. As a result, there is an
unavoidable theoretical uncertainty, which we estimate
from higher-order contributions from the β function.

VI. SUMMARY

The aspects of mesons containing a single heavy quark
are governed by the spin symmetry SUð2Þs of the heavy
quark and the chiral symmetry SUð3ÞL × SUð3ÞR of the
light quarks. Incorporating both approximate symmetries in
a single framework was achieved by defining the heavy
hadron chiral perturbation theory. This effective theory was
used to study the spectra and interactions of these heavy
mesons. We studied the masses of the low-lying charm and
bottom mesons using HHChPT. We expressed the masses
of these heavy mesons up to third order, Q3, in the chiral
expansion, where meson loops contribute. The heavy-
hadron chiral Lagrangian has 12 unknown low-energy

constants (δH;S, aH;S, σH;S, ΔH;S, Δ
ðaÞ
H;S, Δ

ðσÞ
H;S) to describe

eight measured masses of charm mesons. Hence, obtaining
unique numerical values of the LECs is impossible. We
used flavor and heavy quark symmetries to construct eight
linear combinations (ηH;S, ξH;S, LH;S, TH;S) out of the
LECs. By using this method, we reduced the number of
unknown LECs to be comparable with the current exper-
imental data on meson masses. Thus, one can express these
parameters directly in terms of the physical masses and
loop integrals. In contrast to previous approaches, we used
physical meson masses in evaluating the heavy meson
loops. As a result, the energy of any unstable particle is
placed correctly relative to the decay threshold, and the
imaginary part of the loop integral can be related to the
experimental decay width. However, the resulting values

for these parameters contain contributions beyond the order
Q3 of heavy-hadron chiral Lagrangian. This is due to using
empirical masses which generate higher order μ-dependent
terms that cannot be renormalized using μ-dependent
counterterms of our Lagrangian. To this end, we chose
to define the β functions for these parameters to estimate
the contributions from higher-order terms. Having fitted the
linear combinations of the LECs to the D-meson spectrum,
we rescale the hyperfine combinations to predict the masses
of odd- and even-parity bottom mesons. In our calculations,
we used a self-consistent approach to extract the B-meson
masses; i.e., the values we started with to evaluate the mass
splittings within B-meson states are the same as the
resultant mass splittings. The predicted masses from our
theory are in good agreement with experimentally mea-
sured masses for the case of the odd-parity sector. For the
even-parity sector, the B-meson states have not yet been
observed; thus, our results provide useful information for
experimentalists investigating such states.
The approach developed in this paper can be extended to

predict the spectra of the other doublet of the P-wave states,
i.e., Sp ¼ 3

2
þ, where S is the total angular momentum of the

light degrees of freedom and p is the parity. The spin-parity
quantum numbers of these states are 1þ and 2þ. This
requires introducing a new (tensor) field to describe
the dynamics of these states in the chiral Lagrangian.
The general structure of the relevant chiral Lagrangian with
tensor fields is represented in Refs. [2,6,7] for instance.
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APPENDIX A: SELF-ENERGIES OF CHARM
MESONS

The explicit expressions for the self-energies of the
charm mesons are

ΣH1
¼ g2

4f2

�
3K1ðmH�

1
−mH1

; mπÞ þ
1

3
K1ðmH�

1
−mH1

; mηÞ þ 2K1ðmH�
3
−mH1

; mKÞ
�

þ h2

4f2

�
3K2ðmS1 −mH1

; mπÞ þ
1

3
K2ðmS1 −mH1

; mηÞ þ 2K2ðmS3 −mH1
; mKÞ

�
; ðA1Þ

ΣH�
1
¼ g2

4f2

�
K1ðmH1

−mH�
1
; mπÞ þ

1

9
K1ðmH1

−mH�
1
; mηÞ þ

2

3
K1ðmH3

−mH�
1
; mKÞ

�

þ g2

4f2

�
2K1ð0; mπÞ þ

2

9
K1ð0; mηÞ þ

4

3
K1ðmH�

3
−mH�

1
; mKÞ

�

þ h2

4f2

�
3K2ðmS�

1
−mH�

1
; mπÞ þ

1

3
K2ðmS�

1
−mH�

1
; mηÞ þ 2K2ðmS�

3
−mH�

1
; mKÞ

�
; ðA2Þ
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ΣH3
¼ g2

4f2

�
4

3
K1ðmH�

3
−mH3

; mηÞ þ 4K1ðmH�
1
−mH3

; mKÞ
�
þ h2

4f2

�
4

3
K2ðmS3 −mH3

; mηÞ þ 4K2ðmS1 −mH3
; mKÞ

�
;

ðA3Þ
ΣH�

3
¼ g2

4f2

�
4

9
K1ðmH3

−mH�
3
; mηÞ þ

4

3
K1ðmH1

−mH�
3
; mKÞ

�

þ g2

4f2

�
8

9
K1ð0; mηÞ þ

8

3
K1ðmH�

1
−mH�

3
; mKÞ

�
þ h2

4f2

�
4

3
K2ðmS�

3
−mH�

3
; mηÞ þ 4K2ðmS�

1
−mH�

3
; mKÞ

�
; ðA4Þ

ΣS1 ¼
g02

4f2

�
3K1ðmS�

1
−mS1 ; mπÞ þ

1

3
K1ðmS�

1
−mS1 ; mηÞ þ 2K1ðmS�

3
−mS1 ; mKÞ

�

þ h2

4f2

�
3K2ðmH1

−mS1 ; mπÞ þ
1

3
K2ðmH1

−mS1 ; mηÞ þ 2K2ðmH3
−mS1 ; mKÞ

�
; ðA5Þ

ΣS�
1
¼ g02

4f2

�
K1ðmS1 −mS�

1
; mπÞ þ

1

9
K1ðmS1 −mS�

1
; mηÞ þ

2

3
K1ðmS3 −mS�

1
; mKÞ

�

þ g02

4f2

�
2K1ð0; mπÞ þ

2

9
K1ð0; mηÞ þ

4

3
K1ðmS�

3
−mS�

1
; mKÞ

�

þ h2

4f2

�
3K2ðmH�

1
−mS�

1
; mπÞ þ

1

3
K2ðmH�

1
−mS�

1
; mηÞ þ 2K2ðmH�

3
−mS�

1
; mKÞ

�
; ðA6Þ

ΣS3 ¼
g02

4f2

�
4

3
K1ðmS�

3
−mS3 ; mηÞ þ 4K1ðmS�

1
−mS3 ; mKÞ

�
þ h2

4f2

�
4

3
K2ðmH3

−mS3 ; mηÞ þ 4K2ðmH1
−mS3 ; mKÞ

�
; ðA7Þ

ΣS�
3
¼ g02

4f2

�
4

9
K1ðmS3 −mS�

3
; mηÞ þ

4

3
K1ðmS1 −mS�

3
; mKÞ

�
þ g02

4f2

�
8

9
K1ð0; mηÞ þ

8

3
K1ðmS�

1
−mS�

3
; mKÞ

�

þ h2

4f2

�
4

3
K2ðmH�

3
−mS�

3
; mηÞ þ 4K2ðmH�

1
−mS�

3
; mKÞ

�
: ðA8Þ

The chiral loop integrals are

K1ðω; mÞ ¼ 1

16π2

�
ð−2ω3 þ 3m2ωÞ ln

�
m2

μ2

�
− 4ðω2 −m2ÞFðω; mÞ þ 16

3
ω3 − 7ωm2

�
;

K2ðω; mÞ ¼ 1

16π2

�
ð−2ω3 þm2ωÞ ln

�
m2

μ2

�
− 4ω2Fðω; mÞ þ 4ω3 − ωm2

�
; ðA9Þ

renormalized in the MS scheme. The function Fðω; mÞ is given by

Fðω; mÞ ¼

8>>>>>>>><
>>>>>>>>:

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
cos−1

�
ω

m

�
; m2 > ω2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p �
iπ − cosh−1

�
−
ω

m

��
; ω < −m;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
cosh−1

�
ω

m

�
; ω > m:

ðA10Þ

It is worth mentioning that the expression for K1ðω; mÞ in Ref. [9] does not agree with our expression. Some finite pieces
are missed due to the inconsistent use of dimensional regularization; i.e., the authors set d ¼ 4 before expanding in powers
of 4 − d. However, our calculation when using the chiral function K1ðω; mÞ from Ref. [9], i.e.,

K1ðω; mÞ ¼ 1

16π2

�
ð−2ω3 þ 3m2ωÞ ln

�
m2

μ2

�
− 4ðω2 −m2ÞFðω; mÞ þ 4ω3 − 5ωm2

�
; ðA11Þ

MASS SPECTRA OF HEAVY-LIGHT MESONS IN HEAVY … PHYSICAL REVIEW D 93, 094007 (2016)

094007-9



does not affect much the results on the B-meson spectra.
The difference between the obtained results using our
expression and the ones in Ref. [9] is less than 1 MeV.
However, the values of parameters that break flavor and/or
spin symmetries, i.e., ξH;S, LH;S, TH;S, are much affected.
For instance, the central values of odd-parity parameters
given in Eq. (10) become

ηH ¼ 171.57 MeV; ξH ¼ 173.04 MeV;

LH ¼ 263.13 MeV; TH ¼ −29.54 MeV: ðA12Þ

Our expression for K2ðω; mÞ agrees with the expression
presented in Ref. [9]; for details, see Appendix B.

APPENDIX B: CALCULATION OF LOOP
CORRECTIONS

For the sake of simplicity, we restrict our discussion to
SUð2Þ HHChPT with nonstrange D mesons. Our calcu-
lations of loop diagrams differ from those in Refs. [7,9,27]
in two aspects:

(i) Dimensional regularization is used consistently.
(ii) To maintain the heavy quark symmetry at the

quantum loop level, the nonrelativistic heavy meson
fields are defined in four dimensions.

In Figs. 5 and 6, we show the Feynman diagrams of the
one-loop correction to the masses of D mesons. In

evaluating loop integrals for these diagrams, one has to
be careful with the tensor structure to get the correct
expressions. For this purpose, we will calculate loop
integrals for diagrams a–e in Fig. 5. The results hold for
diagrams with a similar tensor structure of the even-parity
sector as shown in Fig. 6.
Let us start with the loop diagram a in Fig. 5, which

contributes to the self-energy of the H1 field, i.e., the Dþ,

iΣðaÞ
H1

¼ 3

�
g
2f

�
2

μ4−d
Z

ddq
ð2πÞd

qμqνðgμν−vμvνÞ
ðq ·v−ωaþ iϵÞðq2−m2

πþ iϵÞ

¼ 3

�
g
2f

�
2

ðgμν−vμvνÞμ4−d

×
Z

ddq
ð2πÞd

qμqν

ðq ·v−ωaþ iϵÞðq2−m2
πþ iϵÞ ; ðB1Þ

where ω is the mass difference between internal and
external heavy meson states. The factor 3 results from
Pauli matrices ðτ2i Þαβ ¼ 3δαβ, where for one-loop diagrams
in which a single pion is exchanged α ¼ β, so δαα ¼ 1.
The chiral loop integral is divergent. However, there are

many ways to regulate the above loop integral, and each
one introduces a new momentum scale of which physical
observables must be independent. In field theory, the so-
called dimensional regularization scheme (DR) is widely

FIG. 5. Feynman diagrams shown in (a) and (b) represent the self-energy of the H1 field and those shown in (c)–(e) represent the self-
energy of the H�

1 field.

FIG. 6. Feynman diagrams shown in (a) and (b) represent the self-energy of the S1 field and those shown in (c)–(e) represent the self-
energy of the S�1 field.
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used since it preserves gauge and chiral symmetries as well
as Lorentz (Galilean) invariance for relativistic (nonrela-
tivistic) systems.
For loop integrals containing two or more powers of q

(momentum of the internal pion) in the numerator, the
standard procedure of evaluating them is to break them up
into simple integrals that can then be easily calculated
[12,28]. Thus, one can write

iμ4−d
Z

ddq
ð2πÞd

qμqν

ðq · v − ωþ iϵÞðq2 −m2
π þ iϵÞ

¼ gμνJ2 þ vμvνJ3; ðB2Þ

where

J2 ¼
1

d − 1
½ðm2

π − ω2ÞJ0 − ωJπ�; ðB3Þ

and

J3 ¼
1

d − 1
½ðdω2 −m2

πÞJ0 þ ωdJπ�: ðB4Þ

The explicit expression for J0 is

J0 ¼ iμ4−d
Z

ddq
ð2πÞd

1

ðq · v − ωþ iϵÞðq2 −m2
π þ iϵÞ

¼ ω

8π2

�
1þ R − ln

�
m2

π

μ2

�
−
2

ω
Fðω; mπÞ

�
;

and the expression for Jπ is

Jπ ¼ iμ4−d
Z

ddq
ð2πÞd

1

ðq2−m2
πþ iϵÞ¼

m2
π

16π2

�
ln

�
m2

π

μ2

�
−R

�
;

where R ¼ 2
4−d − γE þ lnð4πÞ þ 1 contains a pole at d ¼ 4.

In these expressions, μ is the renormalization scale. The
function Fðω; mπÞ is given in Eq. (A10).
To use dimensional regularization consistently, one has

to set d ¼ 4 after expanding J2 and J3 to first order in
4 − d. If one sets d ¼ 4 before expanding in powers of
4 − d as in Refs. [7,27], the expressions for J2 and J3 will
be missing some finite pieces where 1

d−1R ¼ 1
3
Rþ 2

9
≠ 1

3
R.

If there is only one integral, then the different constants can
be absorbed by different renormalization schemes; i.e., this
corresponds to some modified subtraction schemes. For the
case of two integrals with different finite terms, there is no
single consistent renormalization scheme; i.e., the
differences cannot be hidden in renormalization schemes.
By expanding Eqs. (B3) and (B4) to first order in 4 − d

and then taking d ¼ 4, we get

J2¼
1

16π2

��
2

3
ω3−m2

πω

�
ln

�
m2

π

μ2

�
þ4

3
ðω2−m2

πÞFðω;mπÞ

−
2

3
ω3

�
Rþ5

3

�
þ1

3
ωm2

πð3Rþ4Þ
�
; ðB5Þ

and

J3 ¼
1

16π2

��
2m2

πω −
8

3
ω3

�
ln

�
m2

π

μ2

�

−
4

3
ð4ω2 −m2

πÞFðω; mπÞ þ
8

3
ω3

�
Rþ 7

6

�

−
2

3
ωm2

πð3Rþ 2Þ
�
: ðB6Þ

Now, by substituting Eq. (B2) into Eq. (B1), one gets

iΣðaÞ
H1

¼ 3

�
g
2f

�
2

ðgμν − vμvνÞð−iðgμνJ2 þ vμvνJ3ÞÞ

¼ 3i

�
g
2f

�
2

ð1 − gμνgμνÞJ2: ðB7Þ

As we have chosen to define the heavy meson fields in four
dimensions, the contraction of the metric tensors is
gμνgμν ¼ 4. This is quite different from regularizing gauge
theories in which the components of the gauge boson fields
are continued in d dimensions to maintain the gauge
invariance. In contrast, here it is important that regulari-
zation keeps the integrals of Figs. 5(a), 5(c), and 5(d) equal.
Our purpose is to preserve the heavy quark symmetry. As
will be shown below, our choice of defining the meson field
as four dimensional maintains this.
Thus, Eq. (B7) becomes

iΣðaÞ
H1

¼ 3i

�
g
2f

�
2

ð−3J2Þ ¼ 3i

�
g
2f

�
2

K1ðωa; mπÞ; ðB8Þ

where in the last step we introduced the chiral function
K1ðω; mπÞ. This can be related to J2 as

K1ðω; mπÞ ¼ −3J2 ¼ −
3

d − 1
½ðm2

π − ω2ÞJ0 − ωJπ�

¼ 1

16π2

�
ð−2ω3 þ 3m2

πωÞ ln
�
m2

π

μ2

�

− 4ðω2 −m2
πÞFðω; mπÞ

þ 2ω3

�
Rþ 5

3

�
− ωm2

πð3Rþ 4Þ
�
; ðB9Þ

where this represents the contribution to self-energy of
charm mesons from one-loop diagrams with interacting
particles belonging to the same doublets.
Now, we want to calculate the integral of the loop

diagram in Fig. 5(c), which contributes to the self-energy of
the vector charm meson
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iΣðcÞ
H�

1
¼ 3

�
g
2f

�
2
�
−μ4−d

Z
ddq
ð2πÞd

ϵ · qϵ · q
ðq · v − ωc þ iϵÞðq2 −m2

π þ iϵÞ
�

¼ 3

�
g
2f

�
2
�
−ϵ�μϵνμ4−d

Z
ddq
ð2πÞd

qμqν

ðq · v − ωc þ iϵÞðq2 −m2
π þ iϵÞ

�

¼ 3i

�
g
2f

�
2

ϵ�μϵνðgμνJ2 þ vμvνJ3Þ; ðB10Þ

where the last line is obtained by using Eq. (B2). Since vμϵμ ¼ 0 and ϵ�μϵμ ¼ −1, ΣðcÞ
H�

1
is

iΣðcÞ
H�

1
¼ −3i

�
g
2f

�
2

J2 ¼ i

�
g
2f

�
2

K1ðωc; mπÞ: ðB11Þ

The integral of the one-loop diagram in Fig. 5(d), which contributes to the self-energy of the vector charm meson, is

iΣðdÞ
H�

1
¼ 3

�
g
2f

�
2
�
−μ4−d

Z
ddq
ð2πÞd

ϵμ
0ν0ρ0σ0ϵ�μ0vν0qρ0 ðgσσ0 − vσ0vσÞϵμνρσϵμvνqρ
ðq · v − ωd þ iϵÞðq2 −m2

π þ iϵÞ
�

¼ −3i
�

g
2f

�
2

ϵμ
0ν0ρ0σ0ϵμ0ν0ρ0σ0ϵ

�
μ0ϵ

μ0vν0vν
0
J2: ðB12Þ

As v · v ¼ 1, ϵ · v ¼ 0, and ϵ · ϵ ¼ −1, the contraction between indices of the totally antisymmetric tensors yields −2!.
Thus, ΣðdÞ

H�
1
becomes

iΣðdÞ
H�

1
¼ 3i

�
g
2f

�
2

ð−2J2Þ ¼ 2i

�
g
2f

�
2

K1ðωd; mπÞ: ðB13Þ

Clearly, our choice of defining meson fields in four dimensions, which gives gμνgμν ¼ 4 for the loop integral of Fig. 5(a),
yields results equal to the loop integrals of Figs. 5(c) and 5(d). The results of the diagrams in Figs. 6(a), 6(c), and 6(d) are
similar to the ones of Figs. 5(a), 5(c), and 5(d), respectively.
Now, we evaluate the loop integrals for graphs describing the interaction of heavy mesons with opposite parity. To this

end, let us begin with the second one-loop contribution to the self-energy of H1 which is shown in Fig. 5(b):

iΣðbÞ
H1

¼ 3

�
h
2f

�
2
�
−μ4−d

Z
ddq
ð2πÞd

v · qv · q
ðq · v − ωb þ iϵÞðq2 −m2

π þ iϵÞ
�

¼ 3

�
h
2f

�
2
�
−vμvνμ4−d

Z
ddq
ð2πÞd

qμqν

ðq · v − ωb þ iϵÞðq2 −m2
π þ iϵÞ

�
: ðB14Þ

Similarly, substituting Eq. (B2) into Eq. (B14) gives

iΣðbÞ
H1

¼ 3i

�
h
2f

�
2

vμvνðgμνJ2 þ vμvνJ3Þ ¼ 3i

�
h
2f

�
2

ðJ2 þ J3Þ ¼ 3i

�
h
2f

�
2

K2ðωb;mπÞ; ðB15Þ

where

K2ðω;mπÞ ¼ J2 þ J3 ¼ ω2J0 þωJπ ¼
1

16π2

�
ð−2ω3 þm2

πωÞ ln
�
m2

π

μ2

�
− 4ω2Fðω;mπÞ þ 2ω3ð1þRÞ−ωm2

πR

�
: ðB16Þ

For the one-loop diagram with (heavy) interacting particles belonging to different doublets, the contribution to the self-
energy is given by the chiral function K2ðω; mπÞ.
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The integral of the one-loop diagram shown in Fig. 5(e), which contributes to the self-energy of the vector meson, is

iΣðeÞ
H�

1
¼ 3

�
h
2f

�
2

μ4−d
Z

ddq
ð2πÞd

ϵ�μv · qðgμν − vμvνÞv · qϵν
ðq · v − ωe þ iϵÞðq2 −m2

π þ iϵÞ

¼ 3

�
h
2f

�
2

ϵ�μϵνðgμν − vμvνÞvαvβμ4−d
Z

ddq
ð2πÞd

qαqβ

ðq · v − ωe þ iϵÞðq2 −m2
π þ iϵÞ

¼ −3
�
h
2f

�
2

vαvβμ4−d
Z

ddq
ð2πÞd

qαqβ

ðq · v − ωe þ iϵÞðq2 −m2
π þ iϵÞ : ðB17Þ

Similarly, substituting Eq. (B2) into Eq. (B17) gives

iΣðeÞ
H�

1
¼ 3i

�
h
2f

�
2

vαvβðgαβJ2 þ vαvβJ3Þ ¼ 3i

�
h
2f

�
2

ðJ2 þ J3Þ ¼ 3i

�
h
2f

�
2

K2ðωe; mπÞ: ðB18Þ

The loop integrals of the diagrams in Figs. 6(b) and 6(e) are similar to the result of Figs. 5(b) and 5(e), respectively.
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