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In this paper we set a framework in which experiments whose goal is to test QED predictions can be
used in a more general way to test nonlinear electrodynamics (NLED) which contains low-energy QED
as a special case. We review some of these experiments and we establish limits on the different free
parameters by generalizing QED predictions in the framework of NLED. We finally discuss the
implications of these limits on bound systems and isolated charged particles for which QED has been
widely and successfully tested.
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I. INTRODUCTION

Interactions between electromagnetic fields in vacuum,
absent from Maxwell’s classical field equations, were first
predicted in 1934 by Born and Infeld [1] in the framework
of a new field theory. The main goal of this intrinsically
nonlinear theory was to solve the difficulty related to the
fact that the self-energy of a point charge is infinite by
assuming the existence of an absolute field [1] in nature.
Born and Infeld chose the absolute field amplitude as the
amplitude of the electric field created by an electron at a
distance equivalent to its classical radius, in other words, by
equating the classical self-energy of the electron with its
mass energy at rest.
In the following years (1935 and 1936), Euler and Kockel

[2] and then Heisenberg and Euler [3] established their own
nonlinear electromagnetic theory, based on Dirac’s vacuum
model [4]. The related effective Lagrangian was validated in
1951bySchwinger [5] in the framework ofQED field theory,
and it is nowadays accepted as the mathematical description
of field interactions.
Born-Infeld and Heisenberg-Euler theories are two differ-

ent forms of what is called nonlinear electrodynamics
(NLED). NLED is a general framework of theories that
describe field-field interactions and predict a large panel of
phenomena, from variations of the velocity of light in
vacuum in the presence of electromagnetic fields to photon-
photon scattering, but also changes in the long-range
electromagnetic potential induced by charged particles, as
discussed in this paper.
QED is considered as a very well tested theory. It is

indisputable that some of QED’s numerical predictions
have been experimentally verified with an astonishing

precision (see, e.g., Ref. [6]). Thus, it is legitimate to
wonder whether alternative NLED forms have been defini-
tively ruled out. Moreover, in the framework of QED itself,
it is worthwhile to understand the impact of QED tests for
bound or isolated particles into the photon sector, where
tests are hardly found. In other words, do complex experi-
ments looking for photon-photon interactions still have an
impact on QED, or can they be considered as a somewhat
useless technological prowess whose results are known in
advance?
In this paper we set a framework in which experiments

whose goal is to test QED predictions can be used in a more
general way to test different NLED theories, which contain
low-energy QED [7] as a special case. This can be done
by properly parametrizing effective Lagrangians. Actually,
assuming that Lorentz invariance holds in vacuum, the
mathematical description of all forms of Lorentz-invariant
NLED—also known as NLED theories of the Plebański
class [8–10]—are given by a Lagrangian depending only
on the two Lorentz invariants F and G:

F ¼ ϵ0E2 −
B2

μ0
; ð1Þ

G ¼
ffiffiffiffiffi
ϵ0
μ0

r
E · B; ð2Þ

whereE andB are the electric and magnetic fields, ϵ0 is the
vacuum permittivity, and μ0 is the vacuum permeability.
For weak electromagnetic fields, the Lagrangian can be
written as a power expansion of F and G [11]:

L ¼
X∞
i¼0

X∞
j¼0

ci;jF iGj: ð3Þ
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The number of free parameters ci;j is infinite, but it is
generally accepted that the lowest orders in the fields are
sufficient to describe the phenomena induced in most
experiments. The Lagrangian becomes

L ¼ L0 þ LNL; ð4Þ

with L0 ¼
1

2
F ; ð5Þ

and LNL ≃ c0;1Gþ c2;0F 2 þ c0;2G2 þ c1;1FG: ð6Þ

The lowest-order term L0 gives the classical Maxwell
Lagrangian, with c1;0 ¼ 1=2. The nonlinear correction
LNL depends on four parameters: c0;1, c2;0, c0;2, and c1;1.
To describe the nonlinear response of vacuum, we treat

it as a polarizable medium. One can use the Maxwell
equations together with the constitutive equations related
to the Lagrangian as follows [12]:

P ¼ ∂L
∂E − ϵ0E; ð7Þ

M ¼ ∂L
∂B −

B
μ0

: ð8Þ

P is the polarization and M is the magnetization. Using
Eqs. (4), (5), and (6), one obtains

P ¼ c0;1

ffiffiffiffiffi
ϵ0
μ0

r
Bþ 4c2;0ϵ0FEþ 2c0;2

ffiffiffiffiffi
ϵ0
μ0

r
GB

þ c1;1

�
2ϵ0GEþ

ffiffiffiffiffi
ϵ0
μ0

r
FB

�
; ð9Þ

M ¼ c0;1

ffiffiffiffiffi
ϵ0
μ0

r
E − 4c2;0F

B
μ0

þ 2c0;2

ffiffiffiffiffi
ϵ0
μ0

r
GE

− c1;1

�
2G

B
μ0

−
ffiffiffiffiffi
ϵ0
μ0

r
FE

�
: ð10Þ

Starting from these constitutive equations, one can study the
phenomenology associated with the four parameters c0;1,
c2;0, c0;2, and c1;1. Corresponding experiments are then able
to discriminate different forms of nonlinear electrodynamics.
The scope of our work is not to provide a review of

theoretical activities and experimental proposals regarding
NLED. Our main goal is to use some existing experimental
results to set limits on NLED in a unified framework. In
particular, we aim to give a unified approach to compare the
results on light propagation in vacuum and experiments on
bound systems and isolated particles.
In the following we first give some examples of NLED

Lagrangians, in particular the Heisenberg and Euler
Lagrangian predicted in the framework of QED. Then,
experimental constraints on the ci;j parameters are reviewed.

We start with photon-photon interaction experiments.
Discussing vacuum magnetic birefringence and photon-
photon scattering, we show that a limit on vacuum magnetic
birefringence cannot directly give a limit on the photon-
photon scattering cross section as claimed in several papers
[13–15]. We finally discuss the implications of this type of
Lagrangian on bound systems and isolated charged particles
for which QED has been widely and successfully tested.

II. SOME EFFECTIVE NONLINEAR
LAGRANGIANS

To illustrate the general form of the nonlinear Lagrangian
given in Eq. (6), we focus on some of the most well-
known ones.

A. Heisenberg and Euler effective Lagrangian

The generally accepted effective Lagrangian is the one
established in 1936 by Heisenberg and Euler [3] in the
framework of QED. It generalized at all orders the previous
work of Euler and Kockel in 1935 [2]. The vacuum is
assumed to be C, P, and T invariant. This implies that the
coefficients ci;j with an odd index j are null, in particular,
c0;1 ¼ 0 and c1;1 ¼ 0. The nonlinear correction of the
Lagrangian is then

LNL ¼ c2;0F 2 þ c0;2G2: ð11Þ

Following the Euler and Kockel result [2], the values of
c2;0 and c0;2 can be written as

c2;0 ¼
2α2ℏ3

45m4
ec5

ð12Þ

¼ α

90π

1

ϵ0E2
cr
¼ α

90π

μ0
B2
cr

ð13Þ

≃ 1.66 × 10−30
�
m3

J

�
; ð14Þ

c0;2 ¼ 7c2;0; ð15Þ

and therefore

LNL ¼ α

90π

1

ϵ0E2
cr
½F 2 þ 7G2�; ð16Þ

where α ¼ e2=4πϵ0ℏc is the fine-structure constant, e is the
elementary charge, and ℏ is Planck’s constant h divided by
2π. Ecr ¼ m2

ec3=eℏ is a quantity obtained by combining the
fundamental constant me, the electron mass, c, e, and ℏ.
It has the dimensions of an electric field, and it is called
the critical electric field. Its value is Ecr ¼ 1.3 × 1018 V=m.
A critical magnetic field can also be defined in the same
manner: Bcr ¼ Ecr=c ¼ m2

ec2=eℏ ¼ 4.4 × 109 T.

M. FOUCHÉ, R. BATTESTI, and C. RIZZO PHYSICAL REVIEW D 93, 093020 (2016)

093020-2



The existence of several phenomena can be predicted
using this Lagrangian, as detailed in Ref. [11]. As long as
QED is assumed to be correct in the presently accepted
form, the values of the ci;j coefficients are fixed. Therefore,
there are no predictions that contain free parameters. The
values of the physical quantities to be measured simply
correspond to linear combinations of powers of the funda-
mental constants α, ℏ, me, and c.

B. Born-Infeld effective Lagrangian

The Born-Infeld effective Lagrangian [1] is a well known
example of a NLED theory that was developed in 1934,
even before the Heisenberg-Euler one. It was introduced to
remove the problem of the classical self-energy of elemen-
tary particles, which is infinite. The Lagrangian is estab-
lished from the postulate that there exists an “absolute
field” Eabs corresponding to the upper limit of a purely
electric field. The Lagrangian is

L ¼ ϵ0E2
abs

 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

F
ϵ0E2

abs

−
G2

ðϵ0E2
absÞ2

s
þ 1

!
: ð17Þ

Eabs is a free parameter corresponding to a new funda-
mental constant to be determined. If we assume that
ð F
ϵ0E2

abs
− G2

ϵ0E4
abs
Þ ≪ 1, the Lagrangian can be developed

and, at the lowest orders in the fields, it can be written as

L≃ 1

2
F þ 1

8ϵ0E2
abs

F 2 þ 1

2ϵ0E2
abs

G2: ð18Þ

The corresponding ci;j parameters are

c1;0 ¼
1

2
; ð19Þ

c0;1 ¼ c1;1 ¼ 0; ð20Þ

c2;0 ¼
1

8ϵ0E2
abs

; ð21Þ

c0;2 ¼
1

2ϵ0E2
abs

¼ 4c2;0: ð22Þ

Comparing these terms with the ones obtained in Eqs. (12)
and (15) with the Heisenberg-Euler Lagrangian, one can
see that no value of Eabs allows the parameters to coincide.
Both Lagrangians are essentially different and will lead to
different nonlinear properties. Experimental tests are thus
crucial to establish which one is valid. Some examples of
possible experiments will be presented in the following
section, but other configurations can be found, for instance,
in Refs. [16,17].
The absolute field constant was estimated in Ref. [1]. It

was related to the “radius” of the electron r0 as follows:

Eabs ¼ e=4πϵ0r20. Using the classical electron radius
r0 ¼ e2=4πϵ0mec2, one finds Eabs ≃ 2 × 1020 V=m, which
corresponds to a c2;0 about 4 times smaller than the one of
Heisenberg and Euler.
Let us recall that the Born and Infeld choice of the

absolute field is arbitrarily related to the pointlike particle
known in their time, the electron. The absolute field is
therefore a free parameter of the Born-Infeld theory that can
be experimentally constrained or measured. The ratio
between c2;0 and c0;2 is however fixed. In the ðc2;0; c0;2Þ
parameter space, the Born-Infeld prediction is thus repre-
sented by a straight line, while the Heisenberg-Euler one is
represented by a point, as shown in Fig. 1.

C. Lagrangian in the string theory framework

Both the Heisenberg-Euler and Born-Infeld Lagrangians
at the lowest orders in the fields can be considered as
special cases of a more general one obtained in the
framework of string theory [18], which gives a more
general interest to the field of NLED. This is discussed
in detail in Ref. [19]. This Lagrangian can be written as

L ¼ 1

2
F þ γ

4
½ð1 − bÞF 2 þ 6G2�; ð23Þ

where γ and b are two free parameters. The corresponding
ci;j parameters are

c1;0 ¼
1

2
; ð24Þ

c0;1 ¼ c1;1 ¼ 0; ð25Þ

c2;0 ¼
γ

4
ð1 − bÞ; ð26Þ

c0;2 ¼
3

2
γ: ð27Þ
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FIG. 1. Born-Infeld prediction and Heisenberg-Euler prediction
in the ðc2;0; c0;2Þ parameter space. The Born-Infeld prediction
is represented by a straight line, while the Heisenberg-Euler one
is a point.
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The Born-Infeld Lagrangian is recovered with b ¼ −1=2
and γ ¼ 1=3ϵ0E2

abs. For the Heisenberg-Euler prediction,
one has b ¼ 1=7 and γ ¼ 7α=135πϵ0E2

cr.

III. LIGHT PROPAGATION IN VACUUM

The expected nonlinear optical phenomena in vacuum
are reviewed in Ref. [11]. It goes from birefringence effects
induced by electric or magnetic fields, to vacuum dichro-
ism, photon splitting, photon-photon scattering, and second
harmonic generation. In the following, we will focus on the
two nonlinear effects whose experimental observation has
been sought quite recently: the magnetic birefringence and
photon-photon scattering.

A. Magnetic birefringence

Birefringence can be induced by an electric field, a
magnetic field, or a combination of both. However, experi-
ments are mostly devoted to magnetically induced effects.
This is due to the fact that the same level of effect is
obtained in the presence of a B field or an electric field E
equal to cB. From a technological point of view, magnetic
fields of several tesla are easier to produce than electric
fields of about 1 GVm−1.

1. Expected birefringence

The calculation of the birefringence induced by a trans-
verse static magnetic field, using the general Lagrangian
given by Eqs. (4)–(6), can be found in Ref. [20]. In the
following, we only briefly give the main steps.
The total magnetic field corresponds to the sum of the

static magnetic field B0 and that of the propagating wave

Bω: B ¼ Bω þB0. The electric field associated to the
propagating wave is Eω. Introducing these quantities in
Eqs. (9) and (10) and keeping only the ω component, we
obtain

Pω ¼ −
4ϵ0c2;0
μ0

B2
0Eω þ 2ϵ0c0;2

μ0
ðEω ·B0ÞB0

þ
ffiffiffiffiffi
ϵ0
μ0

r �
c0;1 −

c1;1
μ0

B2
0

�
Bω

−
ffiffiffiffiffi
ϵ0
μ0

r
2c1;1
μ0

ðBω · B0ÞB0; ð28Þ

Mω ¼ 4c2;0
μ20

B2
0Bω þ 8c2;0

μ20
ðBω ·B0ÞB0

−
ffiffiffiffiffi
ϵ0
μ0

r �
−c0;1 þ

c1;1
μ0

B2
0

�
Eω

−
ffiffiffiffiffi
ϵ0
μ0

r
2c1;1
μ0

ðEω ·B0ÞB0: ð29Þ

We define the static magnetic field direction as the x
direction. This magnetic field is transverse to the light
propagation, which is assumed to be along the z direction.
We assume the existence of plane-wave eigenmodes with
refractive index n:

Eωðr; tÞ ¼ E0eiωð
n
cez·r−tÞ: ð30Þ

Injected into the Maxwell equations, one gets in the
polarization plane ðx; yÞ

0
B@ n2

�
4c2;0
μ0

B2
0 − 1

�
þ 2þ 2ðc0;2−2c2;0Þ

μ0
B2
0

2nc1;1
μ0

B2
0

2nc1;1
μ0

B2
0n

2
�
12c2;0
μ0

B2
0 − 1

�
þ 2 − 4c2;0

μ0
B2
0

1
CAEω ¼ Eω:

We can first note that the c0;1 term has canceled out
and thus does not contribute to the propagation of light.
The diagonal terms correspond to the Cotton-Mouton
effect. In this case, the eigenmodes are parallel and
perpendicular to the magnetic field. The corresponding
indices of refraction are

n∥ ¼ 1þ c0;2
μ0

B2
0; ð31Þ

n⊥ ¼ 1þ 4c2;0
μ0

B2
0; ð32Þ

where n∥ is the index of refraction for light polarized
parallel to the external magnetic field and n⊥ is the index of

refraction for light polarized perpendicular to the external
magnetic field. While the refractive index n∥ depends only
on c0;2, n⊥ depends only on c2;0. Since dispersive effects
can be neglected, n∥ and n⊥ always have to be greater than
1 and c0;2 and c2;0 have to be greater than 0.
The anisotropy Δn is equal to

ΔnCM ¼ n∥ − n⊥ ¼ c0;2 − 4c2;0
μ0

B2
0 ð33Þ

and depends on both parameters. Let us note that in the case
of the Heisenberg-Euler Lagrangian, one gets

ΔnCM;HE ¼ 3c2;0
μ0

B2
0 ¼

2α2ℏ3

15μ0m4
ec5

B2
0: ð34Þ
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On the other hand, with the Born-Infeld Lagrangian, no
Cotton-Mouton effect is expected [9,10,21] since we get

ΔnCM;BI ¼ 0: ð35Þ

The nondiagonal terms can be interpreted as a magnetic
Jones birefringence, with a linear birefringence along the
axes which are at �45° relative to the direction of the static
magnetic field. The corresponding difference between the
refractive indices is [22]

ΔnJ ¼ nþ45° − n−45° ¼
2c1;1
μ0

B2
0: ð36Þ

2. Experimental limits

Two types of experiments have been realized to measure
this variation of the light velocity in the presence of a
transverse magnetic field [11]. The first one is based on
interferometers with separated arms, such as the
Michelson-Morley interferometer. The basic idea is to look
at the interference displacement when a magnetic field is
applied on one of the arms. This type of configuration has
the advantage of directly measuring one of the parameters
c0;2 or c2;0 if the magnetic field is oriented parallel or
perpendicular to the light polarization.
In 1940, Farr and Banwell reported results obtained

using an interferometer where one of the two arms is
immersed in a 2 T magnetic field. The measured relative
variation of the light velocity was less than 2 × 10−9 [23].
The light polarization with respect to the magnetic field was
not clearly stated. For the sake of argument, assuming that
one can infer limits on the ci;j parameters from their
measurements, we obtain

c2;0 < 1.6 × 10−16 m3 J−1; ð37Þ

c0;2 < 6.3 × 10−16 m3 J−1; ð38Þ

c1;1 < 6.3 × 10−16 m3 J−1: ð39Þ

Anyway, these limits are 14 orders of magntiude higher
than the QED predictions [see Eqs. (15) and (14)].
The second type of experiments is based on polarimetry.

The principle is to measure the magnetic birefringence via
the ellipticity induced on a linearly polarized laser beam
propagating in a transverse magnetic field [24]. In this case,
one measures the difference between the refractive indices
and not the refractive index directly. Therefore, concerning
the Cotton-Mouton configuration, the measurement cannot
by itself constrain both c0;2 and c2;0 but only a particular
linear combination of the two free parameters: c0;2 − 4c2;0.
Let us note finally that, even if one measures the value
predicted by the Heisenberg and Euler Lagrangian for
ΔnCM, i.e., 3cHE2;0B

2
0=μ0, this cannot be considered in

principle the definitive demonstration that this Lagrangian
is correct. Any Lagrangianwith c0;2 − 4c2;0 ¼ 3cHE2;0 predicts
the same value.
The most advanced experiments in this domain are those

operated by the PVLAS Collaboration [15] and the BMV
group [25]. The direction of the static magnetic field is at
45° compared to the light polarization, corresponding to the
Cotton-Mouton configuration. Experiments measure ΔnCM
with an error δΔnCM. This corresponds in the ðc0;2; c2;0Þ
parameter plane to two regions of exclusion:

c0;2 < 4c2;0 þ μ0ðΔnCM þ δΔnCMÞ; ð40Þ

c0;2 > 4c2;0 þ μ0ðΔnCM − δΔnCMÞ: ð41Þ

The best limit is given in Ref. [15] with Δn ¼ ð0.4�
2.0Þ × 10−22B2

0 at 1σ, corresponding to

c0;2 < 4c2;0 þ 3 × 10−28 m3 J−1; ð42Þ

c0;2 > 4c2;0 − 2 × 10−28 m3 J−1: ð43Þ

These limits are summarized in Fig. 2.
Finally, to give a limit on the c1;1 parameter, one should

use the Jones configuration, with the light polarization
parallel or perpendicular to the magnetic field as discussed
in Refs. [20] and [26]. In the last reference, Millo and
Faccioli have also estimated the magnitude of this effect
within the standard model using quantum chromodynamics
chiral perturbation theory, obtaining that c1;1 is expected to
be at least 20 orders of magnitude smaller than cHE2;0 .
Anyway, no one has ever done such a measurement.

B. Photon-photon scattering

Testing low-energy QED with ultra-intense lasers is
widely discussed in the literature, in particular with the
direct observation of photon-photon scattering. Recent
reviews can be found in Refs. [27–31]. In the following,
we will focus on the experiment which has reported the best
experimental limit up to now [32].
The simplest experiment to look at photon-photon

scattering in vacuum consists in two colliding laser beams,
as proposed in Ref. [33]. The calculation of the corre-
sponding total photon-photon scattering cross section for
unpolarized light with the Heisenberg-Euler or the Born-
Infeld Lagrangian can be found, for example, in Ref. [17].
The number of scattered photons can be enhanced by using
a third beam which stimulates the reaction [34]. In this
configuration, the link between the ci;j coefficients and the
measurement of the number of scattered photons can be
established following the approach proposed in Refs. [35]
and [32] where a third-order nonlinear effective suscep-
tibility χ3v was introduced, as in classical nonlinear optics.
Here, we only present the main steps of the calculations.
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In elastic scattering, the energy and momentum con-
servation holds, corresponding to

k4 ¼ k1 þ k2 − k3; ð44Þ

ω4 ¼ ω1 þ ω2 − ω3; ð45Þ

where ki is the wave vector of laser beam number i and ωi
is its frequency multiplied by 2π. The three incoming
beams are 1, 2, and 3, while beam number 4 is the scattered
one. Using Eqs. (9) and (10) and keeping only the ω4

component, we obtain

Pω4
¼ ϵ20E1E2Ē3

�
2c2;0KP20

þ c02
2

KP02

þ c11
2

ðKP11;1
þKP11;2

Þ
�

ð46Þ

¼ ϵ20E1E2Ē3KP; ð47Þ

Mω4
¼ cϵ20E1E2Ē3

�
−2c2;0KP11;2

þ c02
2

KP11;1

−
c11
2

ð−KP02
þKP20

Þ
�

ð48Þ

¼ cϵ20E1E2Ē3KM; ð49Þ

where Ei is the electric field of beam number i.
The geometrical factors are

KP20
¼ u1ðu2:u3 − v2:v3Þ
þ u2ðu1:u3 − v1:v3Þ
þ u3ðu1:u2 − v1:v2Þ; ð50Þ

KP02
¼ v1ðu2:v3 þ v2:u3Þ
þ v2ðu1:v3 þ v1:u3Þ
þ v3ðu1:v2 þ v1:u2Þ; ð51Þ

KP11;1
¼ u1ðu2:v3 þ v2:u3Þ
þ u2ðu1:v3 þ v1:u3Þ
þ u3ðu1:v2 þ v1:u2Þ; ð52Þ

KP11;2
¼ v1ðu2:u3 − v2:v3Þ
þ v2ðu1:u3 − v1:v3Þ
þ v3ðu1:u2 − v1:v2Þ: ð53Þ

The unit vectors ui and vi indicate the direction of the
electric field (i.e., the polarization) of the photon beam i
and the direction of the corresponding magnetic field.

The geometrical factors depend on the directions of the
incident beam and on their polarizations.
The propagation equation for the electric field E4 is

obtained thanks to Maxwell’s equations in the slow-varying
wave approximation [32,35],

∇2E4 −
1

c2
∂2E4

∂t2
¼ μ0

� ∂
∂t∇ ⊗ Mω4

þ ∂2Pω4

∂t2 − c2∇ð∇ · Pω4
Þ
�
; ð54Þ

which gives, in the paraxial formulation with beam 4
propagating in the z direction, the following growth of
the amplitude E4:�∂E4

∂z þ 1

c
∂E4

∂t
�
u4

¼ −
iμ0ω4

2
½ðcPω4;x þMω4;yÞux þ ðcPω4;y −Mω4;xÞuy�:

ð55Þ

The x and y subscripts stand for the x and y components.
The same type of growth is obtained in four-wave mixing in
a standard medium where an effective susceptibility χ3v is
defined and where we get

�∂E4

∂z þ 1

c
∂E4

∂t
�
u4 ¼ −

iω4

2c
χ3vE1E2Ē3u4: ð56Þ

The vacuum effective susceptibility thus corresponds to

χ3v ¼
cμ0

E1E2Ē3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcPω4;x þMω4;yÞ2 þ ðcPω4;y −Mω4;xÞ2

q
;

¼ ϵ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKP;x þ KM;yÞ2 þ ðKP;y − KM;xÞ2

q
: ð57Þ

It depends on the ci;j parameters through the P and M
vectors given in Eqs. (46) and (48), or the KP and KM
vectors given in Eqs. (47) and (49). The scattered photon
polarization is given by

u4 ¼
ðcPω4;x þMω4;yÞux þ ðcPω4;y −Mω4;xÞuyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcPω4;x þMω4;yÞ2 þ ðcPω4;y −Mω4;xÞ2
q : ð58Þ

It also depends on the ci;j parameters.
Finally, the expected number of scattered photons is

obtained by integrating Eq. (56). The result depends on the
beams’ profile (plane wave, Gaussian beam, etc.), but it is
always proportional to the square of χ3v and proportional to
the total cross section of the process.
Experimentally, the choice of the laser setup and

geometry is important to maximize the number of scattered
photons and to maximize the signal-to-noise ratio. But, to
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see more clearly the link between the ci;j coefficients and
the number of scattered photons, let us take some simple
configurations with beams 2 and 3 counterpropagating with
respect to beam 1.
If u1 ¼ u2 ¼ u3 and v1 ¼ −v2 ¼ −v3, one gets KP ¼

8c2;0u1 − 2c1;1v1 and KM ¼ 8c2;0v1 − 2c1;1u1. The effec-
tive susceptibility is then

χ3v;first ¼ 16ϵ0c2;0: ð59Þ

The c1;1 parameter cancels out and χ3v only depends on c2;0.
A measurement in this configuration thus allows us to
constrain this parameter independently from the others.
If u1 ¼ −v2 ¼ −v3 and v1 ¼ −u2 ¼ −u3, we get KP ¼

2c0;2u1 þ 2c1;1v1 and KM ¼ 2c0;2v1 þ 2c1;1u1. The effec-
tive susceptibility is then

χ3v;second ¼ 4ϵ0c0;2: ð60Þ
It only depends on c0;2.
Finally, if u1 ¼ v2 ¼ u3 and v1 ¼ u2 ¼ −v3, we get

KP ¼ ð4c2;0 − c0;2Þv1 þ 2c1;1u1 and KM ¼ −ð4c2;0−
c0;2Þu1 − 2c1;1v1. The effective susceptibility is then

χ3v;third ¼
ffiffiffi
2

p
ϵ0ð4c2;0 − c0;2Þ: ð61Þ

It now depends on a linear combination of c2;0 and c0;2.
For more complicated laser beam configurations, the

number of scattered photons Nγγ is of the form

Nγγ ∝ ðχ3vÞ2 ð62Þ

∝ ac22;0 þ bc20;2 þ cc21;1

þ 2dc2;0c0;2 þ 2ec0;2c1;1 þ 2fc2;0c1;1: ð63Þ

The c0;1 parameter is absent. No limit or measurement on
this coefficient can thus be given by photon-photon
scattering experiments. In principle, studying the scattered
photon polarization, given by Eq. (58), would allow us to
extract further information on the different parameters c2;0,
c0;2, and c1;1.
The best experimental limit was reported in 2000 [32].

The value is compatible with zero. The error is about 18
orders of magnitude higher than the QED prediction, which
corresponds to c2;0 and c0;2 given in Eqs. (14) and (15),
and c1;1 ¼ 0.

C. Magnetic birefringence versus
photon-photon scattering

Among experiments on light propagation in vacuum, the
most sensitive one concerns the measurement of magnetic
birefringence using polarimetry. While the others are more
than 14 orders of magnitude higher than the QED
(Heisenberg-Euler) prediction (14 orders of magnitude

for the magnetic birefringence using a separated arms
interferometer; 18 orders of magnitude for the photon-
photon scattering cross section), the measurement of the
Cotton-Mouton effect is less than 2 orders of magnitude
higher than the QED prediction.
One could then envisage using the most sensitive meas-

urement to put a constraint on the others, and more
particularly on the photon-photon scattering cross section.
As said before, the measurement of the vacuum magnetic
birefringence cannot by itself constrain c0;2 and c2;0 sepa-
rately. On the other hand, we have shown through simple
examples that the χ3v dependance on the ci;j coefficients
depends on the laser beam configuration. Limits on vacuum
magnetic birefringence cannot therefore be translated into
limits on photon-photon scattering since the dependence of
the effects from the NLED free parameters are generally
different. However, photon-photon scattering limits can be
represented as exclusion regions, as done in Fig. 2 for
vacuum magnetic birefringence measurements, closing fur-
ther the allowed range in the parameter space. Experiments
whose goal is tomeasure the vacuummagnetic birefringence
or the photon-photon scattering cross section, far from being
redundant, are complementary to tests of NLED theories.
This point, although apparently simple, is not always

fully understood. As a matter of fact, the authors of
Refs. [13,15] declared that a measurement of vacuum
magnetic birefringence can constrain the Heisenberg-
Euler Lagrangian parameters and consequently the
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photon-photon scattering cross section, which is not
correct, as we just explained.

IV. POINTLIKE PARTICLES

For the moment, the experiments devoted to the study of
light propagation in vacuum have not been able to test the
Heisenberg-Euler Lagrangian. However, experiments on
vacuum magnetic birefringence are only at 2 orders of
magnitude from the QED prediction, and one can hope that
they will be gained in the near future. Does this mean that
the Heisenberg-Euler Lagrangian has not yet been tested?
It is admitted that QED is widely and successfully tested on
bound systems (for example, in the hydrogen atom) and on
isolated charged particles (for example, the measurement of
the anomalous magnetic dipole moment of the electron).
Does it correspond to a test of the Heisenberg-Euler
Lagrangian? Is there any space still open for alternative
NLED theories?

A. General expressions

In the presence of external electric and magnetic fields,
the vacuum reacts. It becomes polarized and magnetized
and thus modifies the electric and magnetic fields. Let us
first calculate the P and M vectors induced by a pointlike
particle of charge Q and magnetic moment μ ¼ μez. The
corresponding external electric and magnetic fields are

E ¼ Q
4πϵ0r2

er; ð64Þ

B ¼ μ0μ

4πr3
½3ðez:erÞer − ez� ð65Þ

¼ μ0μ

4πr3
ð3 cos θer − ezÞ: ð66Þ

To keep the validity of our nonlinear Lagrangian
development, we only consider an electric field and a
magnetic field well below the critical ones defined in the
Heisenberg-Euler Lagrangian. We therefore assume that
r ≫ rEcr and r ≫ rBcr, with rEcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q=4πϵ0Ecr

p
and rBcr ¼

ðμ0μ=4πBcrÞ1=3. For a proton, Q ¼ 1.6 × 10−19 C and
μ¼ 1.41×10−26 JT−1, and one obtains rEcr ∼ 3 × 10−14 m
and rBcr ∼ 7 × 10−15 m.
Injecting the previous electric and magnetic fields into

the Lorentz invariants given by Eqs. (1) and (2), we get

F ¼ Q2

ð4πÞ2ϵ0r4
�
1 −

�
μ

cQr

�
2

ð1þ 3cos2θÞ
�
; ð67Þ

G ¼
ffiffiffiffiffi
μ0
ϵ0

r
Q2μ cos θ
ð4πÞ2r5 : ð68Þ

The corresponding P and M vectors are

P ¼ c0;1
ffiffiffiffiffiffiffiffiffi
ϵ0μ0

p μ

4πr3
ð3 cos θer − ezÞ þ c2;0ϵ0E

Q2

4π2ϵ0r4

�
1 −

�
μ

cQr

�
2

ð1þ 3cos2θÞ
�

þ c0;2ϵ0E
μ0μ

2 cos θ
4π2r6

ð3 cos θer − ezÞ þ c1;1ϵ0E
ffiffiffiffiffi
μ0
ϵ0

r
Qμ cos θ
4π2r5

þ c1;1ϵ0E
ffiffiffiffiffi
ϵ0
μ0

r
Qμ0μ

ð4πÞ2ϵ0r5
�
1 −

�
μ

cQr

�
2

ð1þ 3cos2θÞ
�
ð3 cos θer − ezÞ; ð69Þ

M ¼ c0;1

ffiffiffiffiffi
ϵ0
μ0

r
Q

4πϵ0r2
er − c2;0

B
μ0

Q2

4π2ϵ0r4

�
1 −

�
μ

cQr

�
2

ð1þ 3cos2θÞ
�
þ c0;2

Bðθ ¼ 0Þ
μ0

Q2 cos θ
8π2ϵ0r4

er

− c1;1
B
μ0

ffiffiffiffiffi
μ0
ϵ0

r
Qμ cos θ
4π2r5

þ c1;1
Bðθ ¼ 0Þ

μ0

ffiffiffiffiffi
ϵ0
μ0

r
Q3

32π2ϵ20μr
3

�
1 −

�
μ

cQr

�
2

ð1þ 3cos2θÞ
�
er; ð70Þ

with Bðθ ¼ 0Þ ¼ μ0μ=2πr3.
The electric and magnetic fields are slightly modified by

the polarization and magnetization of the vacuum and
become

EV ¼ E −
P
ϵ0
; ð71Þ

BV ¼ Bþ μ0M: ð72Þ

Some of the corrections to the fields given in the previous
equations have a form that is very unusual, like, for
example, the radial correction to M. These unusual
corrections are related to ðE ·BÞ and c0;2.

B. Electric dipole moment and magnetic monopole

We first focus on the first term of Eqs. (69) and (70)
proportional to the c0;1 coefficient:
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P01 ¼ c0;1
ffiffiffiffiffiffiffiffiffi
ϵ0μ0

p μ

4πr3
ð3 cos θer − ezÞ ð73Þ

¼ c0;1

ffiffiffiffiffi
ϵ0
μ0

r
B; ð74Þ

M01 ¼ c0;1

ffiffiffiffiffi
ϵ0
μ0

r
Q

4πϵ0r2
er ð75Þ

¼ c0;1

ffiffiffiffiffi
ϵ0
μ0

r
E: ð76Þ

If c0;1 is not zero, as soon as an electric field E and a
magnetic field B are superimposed in a vacuum, a non-
linear term appears inducing a correction to E proportional
to B and a correction to B proportional to E. So, for the
case of an isolated particle of charge Q and magnetic
moment μ, if the c0;1 parameter is not zero, the magnetic
dipole field should also appear as an electric dipole field so
that the particle acquires an electric dipolar moment:

d ¼ c0;1
c

μ: ð77Þ

On the other hand, the radial electric field should induce a
radial magnetic field so that the particle acquires a magnetic
monopole:

m ¼ c0;1Qc; ð78Þ

where we write the monopole radial field Bm as Bm ¼
μ0m=4πr2er.
The standard model predicts a nonzero electric dipole

moment (EDM) for the electron, muon, or tau particles
due to CP violation. The predicted value is however well
below the current experimental sensitivities. For example,
for the electron one expects de ≃ 10−38 e cm [36]. As far as
we understand, a c0;1 ≃ 10−28 would therefore mimic the
standard model EDM for the electron. No experiment
has ever detected this deviation, but constraints can be
found. Some of them are listed in Table I with the
corresponding limit on c0;1 (see also the particle data
book [37]).
Concerning magnetic monopoles, they were first intro-

duced by Dirac in 1931 [42]. The goal was to explain the
quantization of electric charge by postulating the existence

of an elementary magnetic charge, QD
M ¼ 2πℏ=e, which

is now called the Dirac charge. More recently, it was
understood that in the framework of grand unification
theories the electric and magnetic charges are naturally
quantized [43].
From an experimental point of view, limits exist for the

electron and proton magnetic charge [37,44]. The electron
magnetic charge QM, inducing a Coulomb magnetic field
B ¼ QM=4πr2er, has been found to be

QM < 4 × 10−24QD
M: ð79Þ

This corresponds to

c0;1 < 3 × 10−22; ð80Þ

which is a stronger limit than the one obtained from the
EDM search.

C. Bound system and Lamb shift

For the sake of simplicity, we now consider c0;1 and c1;1
to be zero, or at least negligible. Using Eqs. (69) and (70),
the EV and BV vectors can be approximated, at the leading
order, to

EV ¼ E

�
1 − c2;0

Q2

4π2ϵ0r4

�
; ð81Þ

BV ¼ B
�
1 − c2;0

Q2

4π2ϵ0r4

�
þ c0;2

Bðθ ¼ 0Þ
μ0

Q2 cos θ
8π2ϵ0r4

er:

ð82Þ

Let us first discuss the implications of Eq. (81). The
correction in the Coulomb potential energy is proportional
to 1=r5:

δV ¼ −c2;0
Q3

80π3ϵ20r
5
: ð83Þ

In the QED framework, one obtains

δVQED ¼ −
Q

4πϵ0r
2α3

225π

�
ℏ

mecr

�
4

: ð84Þ

This correction has been studied since 1956 [45] and it is
called the Wichmann-Kroll potential.
This correction, proportional to c2;0, induces an energy

shift in bound systems and it is indeed part of thewell-known
Lamb shift. In Table II, we give some examples of the
contribution of theWichmann-Kroll correction to the leading
term for different energy transitions and different systems.
We also add the corresponding experimental precision.
In the case of the Lamb shift of the 1S and 2S level in

atomic hydrogen, the Wichmann-Kroll correction has been
calculated to be 0.3 ppm of the leading term [46,49], while
the corresponding measurements have a precision of about

TABLE I. Constraints on the electric dipole moment of charged
particles and corresponding constraints on the c0;1 coefficient.

Particle d (e cm) References c0;1

Electron <10.5 × 10−28 [38] <5.43 × 10−17

Muon ð−0.1� 0.9Þ × 10−19 [39] ð1.1� 9.6Þ × 10−7

Tau −0.22 to 0.45 × 10−16 [40] −8.1 to 4 × 10−3

Proton <7.9 × 10−25 [41] <2.69 × 10−11
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3 ppm [46,47]. All these calculations has been performed in
the accepted QED framework with c2;0 given by Eq. (14). It
is worth stressing that c0;2 cannot be constrained by bound
systems studies.
Now the c2;0 dependence of the Wichmann-Kroll correc-

tion to the Lamb shift is linear [45]. This means that the
measurement of the 1S-2SLamb shift in hydrogen, presented
in Table II, constrains the value as follows: c2;0 < 10 × cHE2;0 .
We add the corresponding excluded region in Fig. 3.
In the case of the2S-2P lambshift ofmuonic hydrogen, the

correction is evaluated at 5 ppm [50], but the measurement is
at 15 ppm [48]. Furthermore, the proton radius extracted
from this measurement is not in agreement with the one
inferred from the hydrogen measurement. This is an impor-
tant issue that is nowcalled the “proton charge radiuspuzzle.”
Thismeans that theWichmann-Kroll correction has not been
tested and therefore there is not yet further information on
c2;0 coming from QED tests in bound systems.

Let us discuss the modification to the magnetic field.
It looks like nobody has ever considered it except for Heyl
as a modification of a macroscopic magnetic dipole [51],
but without the term proportional to c0;2 coming from the
coupling between the electric and the magnetic field. This
term has a very unusual form. No calculation of the energy
shift induced by this correction exists, although this
modification of the magnetic field of a pointlike charge
should affect at least the atomic hyperfine splitting. In fact,
the leading term in this energy splitting, called the Fermi
term [52], is proportional to the field due to the bound
particle at the position of the nucleus. In the case of the
hydrogen atom, the correction of the electron magnetic
field at a distance of a Bohr radius is of the order of
2 × 10−17, when the precision of the hydrogen ground-state
hyperfine splitting measurement is of the order of 10−13
[53]. For the muonic hydrogen the correction of the muon
magnetic field at the position of the proton is of the order
of 4 × 10−8, but the ground-state hyperfine splitting of
muonic hydrogen has not yet been measured (see,
e.g., Ref. [54]).

D. Limits on the Born-Infeld Eabs free parameters

The Born-Infeld NLED is constructed on the assumption
that an absolute electric field exists in nature. Atomic
energy levels should therefore be different from the ones
predicted without such a field limitation. The natural way to
constrain such a free parameter is therefore to look for the
predicted energy variation in high atomic number atoms
where nonlinearities should be more important. This was
done in 1973 by Soff, Rafelski, and Greiner [55] who
reported that Eabs has to be greater than 1.7 × 1022 V=m.
More recently, their results have been questioned [56] even
if the authors agree that the value proposed by Born and
Infeld is not physically viable. For the sake of argument, let
us note that an Eabs ¼ 1.7 × 1022 V=m corresponds to a
c2;0 that is about 5 orders of magnitude smaller than the one
predicted by QED.

V. CONCLUSION

In this paper we developed a framework in which
experiments whose goal is to test QED predictions can
be used in a more general way to test NLED, which
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FIG. 3. Best experimental limits on c0;2 and c2;0 parameters.
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TABLE II. Examples of the contribution of the Wichmann-Kroll correction to the Lamb shift leading term for two
different energy transitions and systems, to be compared to the relative uncertainties obtained on the Lamb shift
measurements [46].

System and energy
levels

Wichmann-Kroll contribution
to the leading term

Experimental relative
uncertainty Remarks

H 0.3 ppm 3 ppm [47]
1S
H muonic 5 ppm 15 ppm [48] Proton charge
2S-2P radius puzzle
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contains low-energy QED as a special case. We reviewed
some of these experiments and we established limits on the
different free parameters c0;1, c2;0, c0;2, and c1;1, general-
izing QED predictions in the framework of NLED.
Actually, only c0;1, c2;0, and c0;2 can be constrained. As
far as we know, no experiment constraining c1;1 exists.
The parametrization of the photon-photon interaction

Lagrangian is also very useful to understand the mutual
impact of QED tests of different nature. In particular, we
showed that c2;0 can be limited by measurements of
Wichmann-Kroll potential corrections, as in the case of
the 1S-2S Lamb-shift in atomic hydrogen, at a level that
is compatible with limits coming from vacuum magnetic
birefringence.
The Heisenberg-Euler Lagrangian is a special case of

NLED. In bound systems it is related to the Wichmann-
Kroll potential which is the correction to the Coulomb
potential at large distances. The leading term to the
Coulomb potential corrections is given by the Uehling
potential representing the short-distance corrections. The
Wichmann-Kroll potential induces lower-order corrections
than the Uehling ones and that is why, while in general one
can say that QED in bound systems is well tested, this is not
true specifically for the long-distance corrections where
the direct tests of NLED come into play. Of course, the
Wichmann-Kroll potential and the Uehling one both come
from the same theoretical framework and it is difficult to
imagine that the short-range regime is well treated while
the long-range regime is not; nevertheless, one has to test

whether some new physics appears in the long range
that induces corrections not predicted by standard QED.
This looks like an important task largely justifying NLED
direct tests.
Let us finish with the anomalous magnetic moment

(g − 2) of isolated particles which is one of the best tested
quantities in QED [6]. As discussed, for example, in
Ref. [57], photon-photon scattering contributes as a subdia-
gram to the g − 2 and the Lamb shift. At first sight, it thus
seems feasible to use g − 2 measurements to constrain the
c0;2 or c2;0 parameters, as was done in the previous section
with the Lamb shift. However, the g − 2 of isolated
particles corresponds to a physical quantity that is related
to short-range physics (as far as we understand), or at least
the long-range corrections have never been stated explicitly
as in the case of the Wichmann-Kroll corrections for the
Lamb shift in bound systems. Furthermore, the g − 2
corrections change the value of the magnetic moment,
not the shape of the dipolar field. But the correction given
in Eq. (70) indicates a change in the shape of the field. It is
not clear to us how to combine them. This is certainly an
important point to clarify.
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