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We study the sensitivity of the process y~u™ — HH to the ¢> dependence of the HHH form factor,
which can reflect the Higgs boson structure, especially in the case of compositeness. We compute the Born
and one-loop SM contribution to this process. We then show how the y~u* — HH polarized and
unpolarized cross sections are modified by the presence of various types of anomalous contributions to the

HHH form factor, in particular Higgs constituents in the case of compositeness.
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I. INTRODUCTION

In spite of the discovery [1] of the Higgs boson [2], as
expected in the standard model (SM) [3], the SM cannot be
the last word, and physics beyond the SM (BSM) should
exist [4]. A review on Higgs physics is, for example, made
in Ref. [5]. With respect to BSM, various types of proposals
have been made, leading, for example, to anomalous Higgs
boson couplings [6,7] or to couplings of the Higgs boson to
new visible or invisible particles [8], particularly in the case
of Higgs boson compositeness [9—-13].

There are many processes (involving Higgs boson
production or decay) in which such Higgs boson couplings,
differing from SM predictions, could be observed.
However, in most of them, the Higgs boson is on shell,
and such a departure could not obviously tell whether it is
caused by Higgs compositeness. This is particularly the
case if the Higgs boson is coupled to an invisible sector.

The observation of a suitable Higgs boson form factor,
though, could give an answer to such questions. Indeed, a
composite particle (like the proton or the pion) should have
a form factor. But contrarily to the case of the proton and
the pion, we do not have a yHH or a ZHH vertex for
studying the H form factor.

In this paper, we concentrate on the HHH form factor,
that is, at a g> = s dependence of the HHH vertex when
one H, with momentum g, is off shell. The scale of this
dependence could be in the TeV range; see, e.g., Ref. [9].

There are various processes which involve the HHH
coupling, but not necessarily the form factor with one H far
off shell, in which we are interested. Such processes at the
LHC are g9 - H - HH (with g denoting a gluon) or
Z7Z—H—HH, W"W~ - H — HH [14], but these require
complex theoretical and experimental analyses, before
reaching the structure of the HHH coupling. Similarly,
the yy — H — HH process also involves a complex initial
one-loop H coupling related to the HHH form factor.

The simplest process directly sensitive to an HHH form
factor effect is then probably u~u*™ — HH, observable at a
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future p—u* collider [15]. Even if this will be realizable
only in the far future and under the condition of the
obtention of a very high luminosity, this process is
particularly interesting because in nonstandard Higgs
models the Huu coupling may still be similar to the SM
one, whereas the Higgs boson self-coupling and the Higgs
boson couplings to heavy fermions may be very different;
see, e.g., Ref. [11].

So, below, we analyze pu~u*™ — HH in this spirit. We
start by computing the SM Born and one-loop contributions
to the helicity amplitudes and cross sections. At Born level,
they are due to s-channel H exchange and (at a weaker
level) to #- and u-channel u exchange. At one-loop level,
the corrections involve various triangles, boxes, and ¢ and
H self-energy bubbles. Some of these terms (the “right
triangles” and the “bubbles with four-leg couplings and H
self-energy diagrams”) already create contributions to the
HHH form factor from the usual scalars, fermions, and
gauge boson loops, but they are relatively small, at order a.
We collect them in the Appendix, and we illustrate their
corresponding (modest) s dependence.

We then compute examples of new contributions which
could be induced either by Higgs boson compositeness or
by the couplings of the Higgs boson to a new set of
particles. Illustrations show how such contributions can
generate spectacular differences in the s dependence of the
HHH form factor, with respect to the one predicted by
the SM.

These different one-loop corrections reflect in the
various amplitudes and cross sections and could be useful
for guessing what type of contribution is necessary in order
to explain a possible departure of the measurements with
respect to the SM expectation. We separately consider the
helicity-conserving (HC) and the helicity-violating (HV)
amplitudes and the polarized cross sections, as these ones
may be measurable in this process [16].

Section II is devoted to the presentation of the SM Born
amplitudes and cross sections of the y~u*t — HH process,
and Sec. III is devoted to the SM one-loop contributions.

© 2016 American Physical Society
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Examples of anomalous HHH contributions effects are
described in Sec. IV. In the concluding Sec. V, we
summarize our results, and we mention that this type of
study of the effect of the HHH form factor could also be
done in several other (but more complex) HH production
processes.

II. SM BORN AMPLITUDES
AND CROSS SECTIONS

The SM Born amplitude of the y~u+ — HH process is
due to three diagrams: the s-channel H exchange with an
initial (4~ u " H) and a final (HHH ) coupling as well as two
diagrams with 7- and u-channel T exchange with up and
down (u~pu"H) couplings. The invariant Born amplitude is

2
€ " 9uuHIHHH
s — m%, + imyly

APyt > HH) = — o(l', A )u(l,2)

2 [b(l’,ﬂ’)(q’ +my,)u(l, 1)
Hut t— mﬁ
N @(l’,l’)(i”_—i—mnziﬂ)u(l,/l)]’ )

where (4,4") are the (u~, u™) helicities, (1,7, p, p') are the
(4=, u", H, H) momenta, and we also define

q:l—i—l’, q/:l—p:p/—l', q":l—p':p—l’,
§ = qz’ t= 6]/2, U= q//2 (2)
and the couplings
_ m, my,
Juul = 2symy  ev’
3m? 3m?
Junn = <5 i - _—H (3)
Swmy ev

where the final HH are symmetrized.
The corresponding Born helicity amplitudes are

2
€ " 9uuHIHHH

FBom(g @) =—— P70 /S8,
! (S ) s_m%{+ierH\/E A
1 1
+e2 H[— }(2/1)pH\/§sin6’5,L_,y,
M t=m2 u—m?

(4)

where py = +/s/4 — m%i and 6 is the c.m. scattering angle
between [ and p. Note that we computed them from the

invariant amplitude in Eq. (1) by neglecting the m,/ NG
terms appearing in the u propagator and in the precise
expressions of the Dirac spinors. These Born amplitudes
are already factorized by one or two g, couplings
proportional to 1, /my, so that there is no need for keeping
these negligible corrections.
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Note also that s-channel part in Eq. (4) is angle
independent and purely HV, due to the 6, term, which
violates the high-energy helicity conservation rule ) 4, =
> Agin [17]. This term dominates at low energy, but it
decreases like 1/4/s as the energy increases.

The #- and wu-channel parts are purely HC, when
neglecting m,, / /s terms. They tend to a constant at high
energy and are forward-backward antisymmetric (vanish-
ing at z/2). They are about 100 times weaker than the
s-channel part, though, because of their additional small
Guur coupling factor.

So, finally the only non-negligible Born amplitudes are
the HV ones (i.e., those due to the s-channel H exchange) in
which we are interested, because of their proportionality to
the HHH coupling. This is the first remarkable feature of
the y~u™ — HH process.

The cross section for unpolarized u™ beams is

do PH
= F (s, 0)]3. 5
dcos@ 64ﬂs\/§%;| 2 (8,0)] (5)

Cross sections with left-handed or right-handed polarized
u+ beams will also be considered. Note that, due to the final
HH symmetrization, the cross sections are necessarily
forward-backward symmetric.

III. SM ONE-LOOP CONTRIBUTIONS

The one-loop corrections to the above Born terms
contain various types of diagrams; triangle diagrams for
initial and final vertices and H self-energy bubbles for
s-channel H exchange; triangle diagrams for up or down
vertices and pT self-energy bubble for ¢, u-channel p™
exchange; and several types (direct, crossed, and twisted) of
box diagrams. Some of the triangles and bubbles are
divergent, and a choice of renormalization scheme has to
be made, consisting in the addition of specific counterterms
canceling these divergences. There are various schemes for
this, which differ by their choice of experimental inputs; see
Ref. [18]. One may, for example, use the on-shell (OS)
scheme; a special application to SM and minimal super-
symmetric SM Higgs couplings is done in Ref. [19].

However, in the present study, we are essentially
interested in the s dependence of the HHH vertex (to be
then compared with possible new physics effects) and not
in its precise renormalized on-shell value, which will be
difficult to measure accurately anyway. For this purpose,
we will compute the various one-loop terms in the super-
simple renormalization scheme (SRS) scheme [20] which
give simple high-energy expressions, the contents of which
are immediately readable and instructive, in particular for
suggesting possible models for new contributions.

We next list the various diagrams and their relative
importance:

(1) In the s-channel sector, we find:
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(a) left triangles:

(WuW), (ZuZ), (uZp), (GvG), (G'uG"),
(HuH), (uG°u), (uHp).

followed by s-channel H exchange and a final
HHH coupling.

(b) left triangles connected to the final HH by a
four-leg coupling:

(@)
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In the ¢, u sectors, we find:

(a) up or down triangles with yT exchange:
(WWW), (uZZ), (uHH), (vGG), (uG°G"),
(Zup), (Hpp), (GOup).

Among them, non-negligible contributions only
come from the (WWW) and (uZZ) triangles,

which produce HV contributions (still 100 times
weaker than the Born ones) and tending to an

(WuW)+ (WWHH), (ZuZ)+ (ZZHH), angular symmetric constant at high energy. The
other terms lead essentially to small HC ampli-

(GvG) +(GGHH), tudes, like the corresponding Born ones in Eq. (4).

G'uG®) + (G°G°HH HuH)+ (HHHH). (b) uT self-energy bubbles:

(G'uG”) +( ). (HuH)+( )

Denoting by Tleft the sum of the a and b

These f-and u-channel y exchanges, which
were already small at the Born level, lead to very

diagrams, the implied helicity amplitude is small HC contributions when p self-energy
written as bubbles are added.
ST ( ) (3) Boxes are of two types: the direct boxes
€ (S g
Py = LRI 5 ()

s —m% + imyly

which is HV, like the s-channel Born terms, but
is numerically small (100 to 1000 times smaller
than Born, as expected from the a factor occur-
ring for a one-loop correction without special
enhancement effect).

(c) H self-energy and right triangles:

The implied amplitude consists of two parts.
The first part 7s.(SM) involves an initial (uuH)
coupling followed by H self-energy bubbles and
a final gyyy coupling. The second part,
Tw(SM), involves an initial (upH) coupling
followed by H s-channel exchange and either
a SM HHH form factor or a bubble and a four-
leg coupling to HH. The sum of these two parts,

T?il\l/l{H( ) = Tse(SM) + Ttri(SM)’ (7)

leads to the helicity amplitude

eg/mHT%l\I/fIH( ) \/_5 , ( )
s—mH+1mHFH A

HHHSM _
FA vy

which, as Eq. (6), is also HV and angle inde-
pendent. The long list of contributions to 75N .,
is collected in the Appendix. It is found that,

above the 7t threshold, it is largely dominated by

(WWWW), (uZZZ), (vGGG), (uG°GGY),

(uHHH), (Zupp), (Hupp), (Gpppe)

and the corresponding crossed ones and the twisted
boxes

(ZupZ), (HupH), (G'pupuG°)

and the corresponding crossed ones. Among them,
the important contributions come from (vWWW),
(WZZZ), and their crossed boxes because of the
presence of W, Z couplings and the total absence of
suppressed Huu couplings. The induced invariant
amplitudes are then given by

Aywww = _ZGZQZWWHQ%VML
x {=m,Dy 1y, +1,,, (D, — Dy3)},
Aﬂzzz = a29%ZH{4mﬂgzﬂngﬂR1 1Dg
= 2[=m,D\(9%,. 1. + G7ux11R)
+ (9 lipr + 92,11 pr) (D12 — D13)]}
9)

written in terms of Passarino-Veltman D functions
[21], and the helicity forms decomposed as

the t7¢ contribution. Numerically, the amplitude =o(l, V)P u(l,)) = —/56, 1.

in Eq. (8) contains important real and imaginary P

parts, comparable to the HV Born terms Ly = ol X)Pru(l, 2) = =V/56,0; .

in' Eq. (4). Lig = 0(, X)Pu(l, 2) = =/56,48; (10)

for the HV contributions which are suppressed by
m, factors, and

'Note that the SRS scheme [20] is globally satisfactory above
~1 TeV.
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Iy, = o(l'" ) pu(l, A)

— —puV/ssin08; (8- —8,),
Lipp = o(I A)pPru(l, 2)
— —pu/5sings, 5, .

Liyg = 0(I', X) pPgu(l, 2)

— puy/ssin08, 5, .. (11)

for the HC contributions. In Eq. (9), the couplings
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are used. Notice that the HC amplitudes of these
boxes do not involve any mass suppressed coupling
constant, such that they are only reduced by the one-
loop a/m factor. For comparison, the Born HC
amplitudes (due to - and u-channel uT exchange)
are reduced by the factor (m,/my ). Because of
these features, the box HC amplitudes are
(¢)(™)2 ~ 1000 times larger then the HC Born ones

T m#

and have a size almost comparable to the Born HV
amplitudes. Both real and imaginary parts are
important.

remaining box HV contributions coming from

terms do not have this enhancement and get the

a/n reduction factor as compared to the Born
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The complete SM one-loop HC amplitudes (upper panels) and the corresponding HV amplitudes (lower panels). Left panels
present the energy dependencies at @ = 60°, while right panels present the angular dependencies at /s = 0.5 TeV.

093018-4



TESTS OF THE TRIPLE HIGGS BOSON FORM FACTOR ...

A. Resulting total SM amplitudes and cross sections

These are constructed by summing the various one-loop
contributions and adding them to the Born ones. The
important terms are the HV Born term of Eq. (4), the H
self-energy and HHH right triangles of Eq. (8) coming
essentially from top-quark diagrams (see the Appendix),
and the aforementioned contribution from the two boxes
leading to Eq. (9).

These final complete one-loop results (Born + one-loop
diagrams) for the HC and HV SM helicity amplitudes are
illustrated in Fig. 1, where we show their energy and angle
dependencies. Note that these complete SM, HC, and HV
amplitudes have comparable sizes, although their s and 6
dependencies are rather different. In particular, the two HC
amplitudes almost coincide at 0.5 TeV (upper right panel),
which also happens for the HV amplitudes at § = 60°, in a
wide range of energies (lower left panel).
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The corresponding (complete one-loop) cross sections,
shown in Fig. 2, reflect the properties of the unpolarized
cross sections defined in Eq. (5) and the uT polarized cross
sections denoted as do,y /d cos . For the latter, the alter-
native notation indicating whether the contributing ampli-
tudes are HV or HC may also be inspiring:

dGLLEdGL(HV), dGRREdGR(HV),

do(HV) =do; (HV) + dog(HV), (13)
do r =do; (HC), dog; = dogr(HC),
do(HC) = do, (HC) + dog(HC). (14)

As seen in Fig. 2, the HV differential cross sections are
angularly constant at /s = 0.5 TeV and reflect mainly the
s-channel H exchange parts containing the effect of the
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FIG. 2. SM one-loop differential cross sections as defined in Egs. (13), (14). Left panels present the energy dependencies at § = 60°,

while right panels present the angular ones at /s = 0.5 TeV.
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FIG. 3. The s dependence of SM form factor T?}‘fl  defined in Eq. (7), together with the new physics contributions to it from A(s) gz
of Eq. (21) (upper panels), A(s) yxx of Eq. (20) (middle panels), and A(s)g., of Eq. (22) (lower panels). Left and right panels present real
and imaginary parts, respectively. T refers to the SM contribution, and A refers to the new physics contributions, with the following
parameters my = 0.5 TeV and gyyx =—10TeV, mp=0.5TeV and gyrr=-4, Mr=1TeV, ', =03TeV, and
gur9ran = 0.5 TeV. The SRS predictions given in Egs. (A1) and (A2) are denoted T(sim).
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HHH form factor. On the contrary, the HC cross section
has a specific angular shape; it starts with smaller values at
low energy but becomes of comparable size to the HV one
at high energies, due to the large box contributions.

The unpolarized cross section contains all these features
but obviously does not allow their easy disentangling.

IV. ANOMALOUS HHH CONTRIBUTIONS

We are now looking for possible effects of a modification
of the SM HHH form factor due to new physics contri-
butions. They will only affect the HV helicity amplitudes
according to the H exchange diagram, giving

eg;mH(STHHH(S )
s —m¥ + imyly

5F/1./1/ ==

\/*;5/1.}/ s ( 15)

where 6T ypy(s) is the departure to the SM prediction
T3M 4 (s) in Eq. (7), which is induced by the H self-energy

and HHH form factor discussed in Sec. III, item 1i.c.

A. Examples of new physics contributions

Our aim is not to study particular new models but only to
look at the sensitivity of the py~u* — HH process to
modifications of the SM gyyy coupling and especially
to the s-dependent form factor that they generate.

Modifications are often described by effective operators;
see Refs. [6,7]. There are various types of dimension-6
operators leading to anomalous couplings. Among them,
we can mention the ones generating direct effective uyHH
couplings like

0.0032 TTT \*\ LSS L L O I
B \ ]
0.0024 X B
r osoea ReFyy fermion -
r \* etk ek scalar B
r i N AdA AR resonance B
0.0016 [~ « ImFyy resonance g
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- o / :*g& b
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c

0 A2

(H' D, H) (fiy" Py gp), (16)

which would add global contributions to the y~u* — HH
amplitude of the type

ez 0 2) (" = p)Py pull.2) (17)

as long as s < A%, where A is an effective new phys-
ics scale.

More closely related to our study of the HHH form
factor, there is also a dimension-6 operator,

cr

= gz B

0 (18)

which would give an additional contribution 67 5y (s) to
the standard HHH coupling of the type c;(s/A?).

However, these descriptions only parametrize a depar-
ture from the SM prediction as long as s < A but not a
complete s dependence (the shape) of the form factor,
which is our purpose.

We therefore come back to the precise structure of the
HHH vertex. With the idea of compositeness, we can take
as an example the hadronic structure of the coo vertex
where the o is a gg bound state. This vertex can be pictured
through a triangular quark loop, but it is obviously affected
by nonperturbative binding interactions. With such a
picture, the whole HHH coupling should then come from
(XXX) triangles made by the constituents X and an
effective HXX coupling related to the binding. This would
generate an effective HHH vertex replacing the usual SM
HHH Born term. On another hand, if the Higgs boson is
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FIG. 4. The new physics contributions to the HV amplitudes induced by the HHH form factors of Fig. 3. The HC amplitudes and the
imaginary parts in the “new fermion” and “new scalar” HV amplitudes are vanishing, and they are not shown. The left panel presents the
energy dependencies, while the right panel presents the angular ones, as in Fig. 1.
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connected to a new sector, one may have triangles
involving the corresponding new particles. In the case of
a strong sector (similarly to the hadronic case), there may
be resonances R leading to HHH contributions of the
type H — R(XX) — HH.

In Fig. 3, we give illustrations of the contributions
to the (HHH) form factor corresponding to such

examples, and we compare them to the total SM one

(essentially controlled by the t#7 triangle) and to its super-

simplicity approximation (called sim) given in Sec. III,
item i.c.:

(1) For a scalar Higgs-constituent X with a gyyx

coupling, we get the departure 67y (s) due to

the XXX triangle contribution to the HH H coupling,
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ST un(s) = Axxx(s)

ea
_ 2 .2 2 2 )
== g%,XXCO(s,mH,mH,mX,mX,mX),

4r (19)

where C is the Passarino-Veltman [21] function.
Using its high-energy expansion [31], one gets [see
Eq. (A1)]

ey In'sy

—. 20

dn JHxx 2 (20)
In the illustration, we take my = 0.5 TeV and
Jdaxx — —10 TeV

(i) For a fermionic constituent F, we get similarly the
departure due to the FFF triangle

5THHH(S) = Apprp(s)
ea
= _Eg?-]FF{zm%CO + 2mp[3my; (Cyy + Cay)
+6p.p'Cy3 +3nCoy +2q.pCyy +2q.p'Cyp

+2m3;Cyy +2p.p'Ciy + q.pCol}
ea —In?sp
- _EQ%FF{ZmF[ 4 —lnSFF:|}, (21)

with the notations defined in Egs. (A1) and (A2) of
the Appendix. In the illustration, we take mp =
0.5 TeV and gypr = —4.

(iii) For a typical resonance effect, we get the (trivial)
shape

9HRYRHH
s =M%+ iMgly

ST un(s) = Ages(s) = (22)

The illustration is made with My =1 TeV,
I'r =03 TeV, gyrgrrr = 0.5 TeV.

The numerical values of the above masses and effective
couplings have been chosen such that, in the illustrations,
the shape of the resulting HH H form factor can be quickly
compared with that of the SM case such that one can
appreciate the different spectacular s dependencies. One
indeed sees that the s dependencies appearing in these
examples are very different from each other and also very
different from the SM case.

So, we believe that there is much to learn from the
measurement of the HHH form factor.

We can now see how this is reflected in the HV y~u*™ —
HH amplitudes (see Fig. 4) and in the cross sections (see
Fig. 5) with their specific energy dependencies, threshold
effects, and resonance shapes.

In Fig. 5, we show the relative differences [ogynp —
osm|/osm between the cross sections involving these new
contributions and the pure SM cross sections, for the HV
contribution [see Eq. (13)] and for the unpolarized case.
Because of the common dominating final 57 x4 (s) term,

PHYSICAL REVIEW D 93, 093018 (2016)

the left-left and right-right HV cases defined in Eq. (13)
would give similar results to the complete HV case. So, one
sees that polarized beams allowing the separation of HV
from HC contributions would help to differentiate HHH
form factor effects from possible other anomalous effects.

As one can see in the illustrations, the s and 6
dependencies of the cross sections (even the unpolarized
one) should allow one to identify the nature of the new
contribution.

At this point, we should add a few words about the
observability of such effects. The energy of a u~u™ collider
has been considered up to 6 TeV [22]. For our study, the
required energy would correspond to the yet unknown new
physics scale, although the curious anomalies observed at
the LHC around 0.75 and 2 TeV [23] could be in mind, but
it is too early to know how they would affect the HHH
coupling.

With an expected luminosity of the order of
10*> cm=2s~! [22], the SM cross section (see Fig. 2) would
lead to only a few events per year. But we have seen that
large enhancements could appear due to anomalous HHH
couplings, threshold, and resonance effects in the HHH
form factor, which should then be observable. In case these
luminosities could not be reached, we can mention that
there may be other processes (for example, WW fusion; see
the next section) where HH production could be observed
with a higher statistics; see, for example, Ref. [24].

V. CONCLUSIONS

In this work, we have computed the full one-loop SM
contributions to the y~u*t — HH process, and we have
studied the role of the final HHH coupling and of its SM
form factor. Our aim is to show how possible new
contributions to the HHH form factor could be identified
through observables. We have emphasized the specific
properties of the HC and HV amplitudes and their energy
and angular dependencies and how this reflects in the
observable polarized and unpolarized cross sections.

We have compared the real and imaginary parts of the
SM one-loop contributions to the HHH form factor, to
examples of possible new physics effects corresponding
either to Higgs boson compositeness, or to the coupling of
the Higgs boson to a new sector. In each case, we have also
given the corresponding simple analytic expressions, in the
adequate “sim” approximation discussed in the Appendix,
allowing a quick estimate of the effect at high s.

We have emphasized the fact that the ¢*> = s depend-
encies of the HHH form factor can be very different,
depending on their origin. We have taken some arbitrary
cases with new scalar or new fermion contributions to the
HHH form factor, or strong resonances, and made the
corresponding illustrations. As it can be seen in these
illustrations, the differences can be spectacular and reflect
the specific nature of the new physics.
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We have shown that polarized cross sections (uT beam
polarization could be available according to some studies
[15,16]) are essential for differentiating HV contributions
(which are the only ones containing HHH form factor
effects) from HC contributions.

But even the shape of the s and 8 dependencies of the
unpolarized cross sections should help for identifying the
nature of the new contribution.

The present study is an example of what could be done
for the search of HHH form factor effects in the process
u—ut — HH. Spectacular resonance or threshold effects
could easily be seen, but high luminosity would be required
in order to make precise analyses. This would correspond
to the simplest situation.

More complex processes like ZZ - HH, W-W+ -
HH, g9 — HH, or yy - HH could be considered and
would benefit from larger cross sections at e~e™, p~u™
colliders or at the LHC. Note that the fusion subprocesses
Z7Z — HH and W-W™' — HH involve, like in the above
u~ " case, the simple s-channel H exchange diagram, with
in addition a four-leg ZZHH or W-W' HH vertex, as well
as t- and u-channel Z or W exchanges. These subprocesses
can be measured by making detailed specific analyses.

The processes gg — HH and yy — HH contain an
s-channel H exchange, but the initial vertex needs a
one-loop contribution, and there are also several other
one-loop diagrams producing the final HH state. Specific
works should be devoted to each of these processes; see,
e.g., Refs. [25-29].

The aim of this paper was only to put forward the idea of
looking especially at the s dependence of the HHH form
factor and to show that observable consequences may
exist.

We hope that these first results will encourage further
phenomenological and experimental studies of the pos-
sibilities to measure this form factor.

APPENDIX: SM CONTRIBUTIONS
TO THE HHH FORM FACTOR

The SM prediction for the HH H form factor consists of a
zero-order contribution given by the pointlike coupling
gurm i1 Eq. (3) and of higher-order corrections. In the OS
scheme [18,19], these corrections consist of parameter
renormalization and additional one-loop diagrams. We
are interested in the ¢> = s dependence when one H is
off shell, while the two other H (with 4-momenta p, p’) are
on shell, in order to make the comparison of this SM
prediction with possible compositeness structures.

So, we will use a procedure allowing us to quickly get
simple forms which reflect sufficiently well the size and the
s dependence of each contribution. This is the SRS
procedure [20,30], which leads to the simplest expressions
in terms of augmented Sudakov logarithms. Among them,
we will only need the augmented Sudakov forms (see
Refs. [20,30] for details),

PHYSICAL REVIEW D 93, 093018 (2016)

In?sy = In?sy + 4L yyx. Sx = <—s _2 l€>, (A1)
mx

. —s—i€

Ins;;=Ins;;+ by (m}) -2, Ins;;=In —_—

(A2)

where (X, i, j) refer to internal exchanges in the contrib-

uting diagrams. The explicit expressions for by (m%,) and
Lyxy are given, e.g., in Egs. (A.6) and (A.5) of Ref. [30].
We note that the counterterms needed in the SRS scheme
respect the structure (Al), (A2) [20,30].

Globally, this procedure consists in replacing the diver-
gent terms related to the (i,j) internal lines of any
contributing diagram, as

—s — i€

2

In

where y here denotes the renormalization scale and
A =1/e¢ —yg + In(4x), with the number of dimensions
used for regularization written as n = 4 — 2e¢.

In the present case, with only triangle and bubble
diagrams contributing, there is no ambiguity related to
the internal lines (i, j). They can only be H, Z, W, and ¢ so
that we can only have (ij) = (HH), (ZZ), (WW), (tt). The
SRS results thus obtained are always denoted as “sim” in
the illustrations [20,30].

We next describe the exact expressions for the various
triangle and bubble diagrams with four-leg couplings as
well as their high-energy SRS (sim) forms. At first « order,
the T3 4, (s) form factor of Eq. (7) may be written as

Toin(s) = egunn + ASM(s). (A4)
In the following two subsections, we first give the ASM(s)
results implied by the one-loop triangles and bubbles with
four-leg couplings and then from the H self-energy.

1. Triangles and bubbles with four-leg couplings

Depending on the natures of the exchanged particles, the
contributions to ASM(s) from the various two-point and
three-point Passarino-Veltman functions, denoted as B and
C, are given by [21,31]

(i) Scalar (SSS) triangles and (SS) bubbles with a 4-leg

SSHH coupling:

ea
ARA(s) = = 5 {ghss Colss iy, iy, i i )

+ 9ussgunss(Bo(s, m§, m3)
+ 2B (my;, m3, mg]}
SRR FPLLECSPN.
g )| JHss Hss9uHssIN Sss ¢

(AS)
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This applies to the triangles

SSS = HHH,G°G°G°, C*C%C?, G*G*G*,
ctcrc*

and the bubbles
SS = HH, GG, G*G*,

while ggypy is given in Eq. (3) and’

3m% m%,
YHHHH = T A2 m2 9HGG = —
Sy My 2sywmy
1
9HHGG = 53 2
28w Cw
my my
9HC C? = EEYISI JHctct = — 5 - (A6)
SwCiy 28w

Note that there is no four-leg diagram for the ghost
loop and that a global fermionic minus sign has been
inserted. In all cases, the internal S mass for
H,G° C?,G*, C* is respectively equal to the one
of H, Z, Z, W, W.

(ii) Fermion triangles (fff): Because of the strong mass
dependence of the Hff coupling, it is adequate to
restrict to the (¢¢r) + (777) case. The result is

ea 3m3
AR (s) = :

_EZS%VWV;V {2m} Cy+2m,[3mF; (Cyy + Car)

+6p.p/C23 —|—3nC24+2q.pC” +2q.p/C12
+2m3Cyy42p.p'Cio+q.pCol}

3m;} —In?
—)g%{Zm,{ ? st—lns,,:|}.
4 2sy,myy, 4

(A7)

(iii) Vector triangles (VVV) and bubbles (VV) with a
four-leg HHV'V coupling:
A?/l\‘//lv(s)
a3 2 2 2
= in {gmvvnCo + guvvgunvv[2Bo(my, my,, my)
+ Bo(s. my, m)]}

2
ea 5 In“sy

- = E {Zghvv

+ guvvgunyvv[—Insyy] } ,

(A8)

*(G*,G") denote the SM Goldstone fields, and (C*, C?%)
denote the Faddeev-Popov (FP) ghosts.

PHYSICAL REVIEW D 93, 093018 (2016)

applied only to V = Z, W, since there are no HZy or
HHZy couplings. Because of this, the V masses in

the SRS forms In%sy, and Insy, can either be m,
or myy.
(iv) (VVS) triangles:

ea
AN(s) = Eg%/syg%/m{mﬁ(czl + Cyp)
+2p.p'Co3 + nCoy + (p.p’ +34.p)Cyy
+ (m3 4+ 3q.0")Cia + 2(¢* + q.p')Co}
ea 1] —
- EQ%SHQ%/VH{E (In?sy + Insyy) }
(A9)

applied to ZZG°, W*W*G*; compare Eq. (A8).
(v) (VSV) triangles:

ea
AN (5) = Eg%/SHg%/VH{m%I(Cﬂ +Cy) +2p.p'Cys
+nCyy+ (3my—p.p')(Ci1 —Cra)

+2(m3; —p.p')Co}

ea 1l
- Eg%/SHg%/VH {Zlnzsv +2Insyy }

(A10)

applied to ZG°Z, WG+ W+,
(vi) (SVV) triangles:

ea
AWy (s) = Eg%/SHg%/VH{m%-I(Cﬂ +C)+2p.p'Cxs
+nCyy —(my+4q.p)Cy,

—(p.p'+4q.p")Ci2) +q.pCo}

ea ] ——
- Eg%/SHg%/VH{_E(IHZSV +ln5vv>}’

(All)
applied to G°ZZ, GTW+W+,
(vii) (VSS) triangles:

ea
Eg%/SHg%SH{_m%-I(Cﬂ +Cp)—=2p.p'Cys

—nCyy—2(m3;+4q.p)Cyy
—=2(p.p' +q.p")C12) —4q.pCo}

A?/BS/IS 5)=

ea 11— —
—)Eg%/SHggsH{—EIIFSV +1nSVv},

(A12)

applied to ZG°G°, W*G*G*.
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(viii) (SVS) triangles:

ASVs(s) = %9%/SH9§SH{—”1%1(C21 +Cp)—2p.p'Cx3
—nCy—(=mp+q.p+p.p')Cyy
—(my=p.p'+4.p")C1)
+(p-r'+4q.p)Co}

- %9%/5H9§SH{m—m}v (A13)

applied to G°ZG°, GTW*G*.
(ix) (SSV) triangles:

ea
AV (5) = in — Gy su95sui—mi(Ca1 +Ca) —2p.p'Cos

—nCyy— (mH —q.p—p-p')Cy
—(=m};+p.p'=q.p')Cy,)
+(=q.p"+4q.p)Co}

1 -
Elnzsv—l—lnsvv},

(A14)

e b
—’4 gVSHgSSH -

applied to G°G°Z, G*TG*W*.
In the above contributions, the following couplings are
needed:

mgz

1
97zH =
swew 2s%,c3
My 1
IwwH = >
Sw

= = . A15
9z6H = 9wGH 2swew ( )
2. H self-energy
This additional contribution is given by
A(s) = =L 3, (), (A16)

where Xy (s) is computed from the following diagrams:
(i) Bubbles VV leading to

X3 X3

Zy(s) = 3 5 Bol = b [-Tsi). (A17)

for which we respectively get

PHYSICAL REVIEW D 93, 093018 (2016)

2 M2
VV =77 - X} = 2M4 ,
2siycy
2M2
VV = WEWTF - x2 = —F (A18)
Sw
(i) Bubbles SV leading to
2
Zu(s) = ~Tor —L5[s(Bo + By1 — 2By) + nBy)
2
- 67172 [—2sln sy ). (A19)
for which we respectively get
2
e
SV=G"2Z - X} =—5—,
— A 45t ¢l
2
SV = GFW* - X2 == (A20)
2sW

(iii) Bubble 7¢ leading to

1
Zy(s) = T iR [(s(By 4 Bay) + nBy, + m7By)X3]
X2 [s——
- —4—7;2 [Elnsn}, (A21)
with
3e?
2= ——[m?]. (A22)
YA My
(iv) Bubbles SS§ leading to
X3 X3
Zi(s) = <o [Bo] = T by [l (A23)
with
X2 — 9eZmy, e*my, e*my,
! SS%VM%V’ SS%VM2 ’ 4S%VM%V’
2,2 2,2
e 2mVZ ’ e mW (A24)
4chW 252,
for

SS = HH,G°G°,G*,G~,C?C?,CTC~, (A25)

respectively. Note that in these SS bubbles the
internal S mass is correspondingly equal to the
mass of H, Z, W, Z, W.
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