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We study the sensitivity of the process μ−μþ → HH to the q2 dependence of the HHH form factor,
which can reflect the Higgs boson structure, especially in the case of compositeness. We compute the Born
and one-loop SM contribution to this process. We then show how the μ−μþ → HH polarized and
unpolarized cross sections are modified by the presence of various types of anomalous contributions to the
HHH form factor, in particular Higgs constituents in the case of compositeness.
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I. INTRODUCTION

In spite of the discovery [1] of the Higgs boson [2], as
expected in the standard model (SM) [3], the SM cannot be
the last word, and physics beyond the SM (BSM) should
exist [4]. A review on Higgs physics is, for example, made
in Ref. [5]. With respect to BSM, various types of proposals
have been made, leading, for example, to anomalous Higgs
boson couplings [6,7] or to couplings of the Higgs boson to
new visible or invisible particles [8], particularly in the case
of Higgs boson compositeness [9–13].
There are many processes (involving Higgs boson

production or decay) in which such Higgs boson couplings,
differing from SM predictions, could be observed.
However, in most of them, the Higgs boson is on shell,
and such a departure could not obviously tell whether it is
caused by Higgs compositeness. This is particularly the
case if the Higgs boson is coupled to an invisible sector.
The observation of a suitable Higgs boson form factor,

though, could give an answer to such questions. Indeed, a
composite particle (like the proton or the pion) should have
a form factor. But contrarily to the case of the proton and
the pion, we do not have a γHH or a ZHH vertex for
studying the H form factor.
In this paper, we concentrate on the HHH form factor,

that is, at a q2 ≡ s dependence of the HHH vertex when
one H, with momentum q, is off shell. The scale of this
dependence could be in the TeV range; see, e.g., Ref. [9].
There are various processes which involve the HHH

coupling, but not necessarily the form factor with one H far
off shell, in which we are interested. Such processes at the
LHC are gg → H → HH (with g denoting a gluon) or
ZZ→H→HH,WþW− →H→HH [14], but these require
complex theoretical and experimental analyses, before
reaching the structure of the HHH coupling. Similarly,
the γγ → H → HH process also involves a complex initial
one-loop H coupling related to the HHH form factor.
The simplest process directly sensitive to an HHH form

factor effect is then probably μ−μþ → HH, observable at a

future μ−μþ collider [15]. Even if this will be realizable
only in the far future and under the condition of the
obtention of a very high luminosity, this process is
particularly interesting because in nonstandard Higgs
models the Hμμ coupling may still be similar to the SM
one, whereas the Higgs boson self-coupling and the Higgs
boson couplings to heavy fermions may be very different;
see, e.g., Ref. [11].
So, below, we analyze μ−μþ → HH in this spirit. We

start by computing the SMBorn and one-loop contributions
to the helicity amplitudes and cross sections. At Born level,
they are due to s-channel H exchange and (at a weaker
level) to t- and u-channel μ exchange. At one-loop level,
the corrections involve various triangles, boxes, and μ and
H self-energy bubbles. Some of these terms (the “right
triangles” and the “bubbles with four-leg couplings and H
self-energy diagrams”) already create contributions to the
HHH form factor from the usual scalars, fermions, and
gauge boson loops, but they are relatively small, at order α.
We collect them in the Appendix, and we illustrate their
corresponding (modest) s dependence.
We then compute examples of new contributions which

could be induced either by Higgs boson compositeness or
by the couplings of the Higgs boson to a new set of
particles. Illustrations show how such contributions can
generate spectacular differences in the s dependence of the
HHH form factor, with respect to the one predicted by
the SM.
These different one-loop corrections reflect in the

various amplitudes and cross sections and could be useful
for guessing what type of contribution is necessary in order
to explain a possible departure of the measurements with
respect to the SM expectation. We separately consider the
helicity-conserving (HC) and the helicity-violating (HV)
amplitudes and the polarized cross sections, as these ones
may be measurable in this process [16].
Section II is devoted to the presentation of the SM Born

amplitudes and cross sections of the μ−μþ → HH process,
and Sec. III is devoted to the SM one-loop contributions.
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Examples of anomalous HHH contributions effects are
described in Sec. IV. In the concluding Sec. V, we
summarize our results, and we mention that this type of
study of the effect of the HHH form factor could also be
done in several other (but more complex) HH production
processes.

II. SM BORN AMPLITUDES
AND CROSS SECTIONS

The SM Born amplitude of the μ−μþ → HH process is
due to three diagrams: the s-channel H exchange with an
initial ðμ−μþHÞ and a final ðHHHÞ coupling as well as two
diagrams with t- and u-channel μ∓ exchange with up and
down ðμ−μþHÞ couplings. The invariant Born amplitude is

ABornðμ−μþ → HHÞ ¼ −
e2gμμHgHHH

s −m2
H þ imHΓH

v̄ðl0; λ0Þuðl; λÞ

− e2g2μμH

�
v̄ðl0; λ0Þðq0 þmμÞuðl; λÞ

t −m2
μ

þ v̄ðl0; λ0Þðq00 þmμÞuðl; λÞ
u −m2

μ

�
; ð1Þ

where ðλ; λ0Þ are the ðμ−; μþÞ helicities, ðl; l0; p; p0Þ are the
ðμ−; μþ; H;HÞ momenta, and we also define

q¼ lþ l0; q0 ¼ l−p¼ p0 − l0; q00 ¼ l−p0 ¼ p− l0;

s¼ q2; t¼ q02; u¼ q002 ð2Þ

and the couplings

gμμH ¼ −
mμ

2sWmW
¼ −

mμ

ev
;

gHHH ¼ −
3m2

H

2sWmW
¼ −

3m2
H

ev
; ð3Þ

where the final HH are symmetrized.
The corresponding Born helicity amplitudes are

FBorn
λ;λ0 ðs;θÞ¼

e2gμμHgHHH

s−m2
Hþ imHΓH

ffiffiffi
s

p
δλ;λ0

þe2g2μμH

�
1

t−m2
μ
−

1

u−m2
μ

�
ð2λÞpH

ffiffiffi
s

p
sinθδλ;−λ0 ;

ð4Þ

where pH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

H

p
and θ is the c.m. scattering angle

between l and p. Note that we computed them from the
invariant amplitude in Eq. (1) by neglecting the mμ=

ffiffiffi
s

p
terms appearing in the μ propagator and in the precise
expressions of the Dirac spinors. These Born amplitudes
are already factorized by one or two gμμH couplings
proportional to mμ=mW so that there is no need for keeping
these negligible corrections.

Note also that s-channel part in Eq. (4) is angle
independent and purely HV, due to the δλ;λ0 term, which
violates the high-energy helicity conservation rule

P
λin ¼P

λfin [17]. This term dominates at low energy, but it
decreases like 1=

ffiffiffi
s

p
as the energy increases.

The t- and u-channel parts are purely HC, when
neglecting mμ=

ffiffiffi
s

p
terms. They tend to a constant at high

energy and are forward-backward antisymmetric (vanish-
ing at π=2). They are about 100 times weaker than the
s-channel part, though, because of their additional small
gμμH coupling factor.
So, finally the only non-negligible Born amplitudes are

the HVones (i.e., those due to the s-channelH exchange) in
which we are interested, because of their proportionality to
the HHH coupling. This is the first remarkable feature of
the μ−μþ → HH process.
The cross section for unpolarized μ∓ beams is

dσ
d cos θ

¼ pH

64πs
ffiffiffi
s

p
X
λ;λ0

jFλ;λ0 ðs; θÞj2: ð5Þ

Cross sections with left-handed or right-handed polarized
μ∓ beams will also be considered. Note that, due to the final
HH symmetrization, the cross sections are necessarily
forward-backward symmetric.

III. SM ONE-LOOP CONTRIBUTIONS

The one-loop corrections to the above Born terms
contain various types of diagrams; triangle diagrams for
initial and final vertices and H self-energy bubbles for
s-channel H exchange; triangle diagrams for up or down
vertices and μ∓ self-energy bubble for t, u-channel μ∓
exchange; and several types (direct, crossed, and twisted) of
box diagrams. Some of the triangles and bubbles are
divergent, and a choice of renormalization scheme has to
be made, consisting in the addition of specific counterterms
canceling these divergences. There are various schemes for
this, which differ by their choice of experimental inputs; see
Ref. [18]. One may, for example, use the on-shell (OS)
scheme; a special application to SM and minimal super-
symmetric SM Higgs couplings is done in Ref. [19].
However, in the present study, we are essentially

interested in the s dependence of the HHH vertex (to be
then compared with possible new physics effects) and not
in its precise renormalized on-shell value, which will be
difficult to measure accurately anyway. For this purpose,
we will compute the various one-loop terms in the super-
simple renormalization scheme (SRS) scheme [20] which
give simple high-energy expressions, the contents of which
are immediately readable and instructive, in particular for
suggesting possible models for new contributions.
We next list the various diagrams and their relative

importance:
(1) In the s-channel sector, we find:
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(a) left triangles:

ðWνWÞ; ðZμZÞ; ðμZμÞ; ðGνGÞ; ðG0μG0Þ;
ðHμHÞ; ðμG0μÞ; ðμHμÞ;

followed by s-channel H exchange and a final
HHH coupling.

(b) left triangles connected to the final HH by a
four-leg coupling:

ðWνWÞþðWWHHÞ; ðZμZÞþðZZHHÞ;
ðGνGÞþðGGHHÞ;
ðG0μG0ÞþðG0G0HHÞ; ðHμHÞþðHHHHÞ:

Denoting by TSM
left the sum of the a and b

diagrams, the implied helicity amplitude is
written as

Fleft SM
λ;λ0 ¼ eTSM

left ðsÞgHHH

s −m2
H þ imHΓH

ffiffiffi
s

p
δλ;λ0 ; ð6Þ

which is HV, like the s-channel Born terms, but
is numerically small (100 to 1000 times smaller
than Born, as expected from the α factor occur-
ring for a one-loop correction without special
enhancement effect).

(c) H self-energy and right triangles:
The implied amplitude consists of two parts.

The first part TseðSMÞ involves an initial ðμμHÞ
coupling followed by H self-energy bubbles and
a final gHHH coupling. The second part,
T triðSMÞ, involves an initial ðμμHÞ coupling
followed by H s-channel exchange and either
a SM HHH form factor or a bubble and a four-
leg coupling to HH. The sum of these two parts,

TSM
HHHðsÞ ¼ TseðSMÞ þ T triðSMÞ; ð7Þ

leads to the helicity amplitude

FHHH SM
λ;λ0 ¼ egμμHTSM

HHHðsÞ
s −m2

H þ imHΓH

ffiffiffi
s

p
δλ;λ0 ; ð8Þ

which, as Eq. (6), is also HV and angle inde-
pendent. The long list of contributions to TSM

HHH
is collected in the Appendix. It is found that,
above the tt threshold, it is largely dominated by
the ttt contribution. Numerically, the amplitude
in Eq. (8) contains important real and imaginary
parts, comparable to the HV Born terms
in1 Eq. (4).

(2) In the t, u sectors, we find:
(a) up or down triangles with μ∓ exchange:

ðνWWÞ; ðμZZÞ; ðμHHÞ; ðνGGÞ; ðμG0G0Þ;
ðZμμÞ; ðHμμÞ; ðG0μμÞ:

Among them, non-negligible contributions only
come from the ðνWWÞ and ðμZZÞ triangles,
which produce HV contributions (still 100 times
weaker than the Born ones) and tending to an
angular symmetric constant at high energy. The
other terms lead essentially to small HC ampli-
tudes, like the correspondingBorn ones inEq. (4).

(b) μ∓ self-energy bubbles:
These t-and u-channel μ exchanges, which

were already small at the Born level, lead to very
small HC contributions when μ self-energy
bubbles are added.

(3) Boxes are of two types: the direct boxes

ðνWWWÞ; ðμZZZÞ; ðνGGGÞ; ðμG0G0G0Þ;
ðμHHHÞ; ðZμμμÞ; ðHμμμÞ; ðG0μμμÞ

and the corresponding crossed ones and the twisted
boxes

ðZμμZÞ; ðHμμHÞ; ðG0μμG0Þ

and the corresponding crossed ones. Among them,
the important contributions come from ðνWWWÞ,
ðμZZZÞ, and their crossed boxes because of the
presence of W, Z couplings and the total absence of
suppressed Hμμ couplings. The induced invariant
amplitudes are then given by

AνWWW ¼ −2α2g2WWHg
2
WμL

× f−mμD11I1L þ I1pLðD12 −D13Þg;
AμZZZ ¼ α2g2ZZHf4mμgZμLgZμRI1D0

− 2½−mμD11ðg2ZμLI1L þ g2ZμRI1RÞ
þ ðg2ZμLI1pL þ g2ZμRI1pRÞðD12 −D13Þ�g;

ð9Þ

written in terms of Passarino-Veltman D functions
[21], and the helicity forms decomposed as

I1 ¼ v̄ðl0; λ0ÞPLuðl; λÞ → −
ffiffiffi
s

p
δλ;λ0 ;

I1L ¼ v̄ðl0; λ0ÞPLuðl; λÞ → −
ffiffiffi
s

p
δλ;λ0δλ;−;

I1R ¼ v̄ðl0; λ0ÞPRuðl; λÞ → −
ffiffiffi
s

p
δλ;λ0δλ;þ ð10Þ

for the HV contributions which are suppressed by
mμ factors, and

1Note that the SRS scheme [20] is globally satisfactory above
∼1 TeV.
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I1p ¼ v̄ðl0; λ0Þpuðl; λÞ
→ −pH

ffiffiffi
s

p
sin θδλ;−λ0 ðδλ;− − δλ;þÞ;

I1pL ¼ v̄ðl0; λ0ÞpPLuðl; λÞ
→ −pH

ffiffiffi
s

p
sin θδλ;−λ0δλ;−;

I1pR ¼ v̄ðl0; λ0ÞpPRuðl; λÞ
→ pH

ffiffiffi
s

p
sin θδλ;−λ0δλ;þ; ð11Þ

for the HC contributions. In Eq. (9), the couplings

gWμL ¼
1

sW
ffiffiffi
2

p ; gZμL ¼−
1−2s2W
2sWcW

; gZμR ¼
sW
cW

;

gWWH ¼mW

sW
; gZZH ¼ mZ

sWcW
ð12Þ

are used. Notice that the HC amplitudes of these
boxes do not involve any mass suppressed coupling
constant, such that they are only reduced by the one-
loop α=π factor. For comparison, the Born HC
amplitudes (due to t- and u-channel μ∓ exchange)
are reduced by the factor ðmμ=mWÞ2. Because of
these features, the box HC amplitudes are
ðαπÞðmW

mμ
Þ2 ∼ 1000 times larger then the HC Born ones

and have a size almost comparable to the Born HV
amplitudes. Both real and imaginary parts are
important.

The remaining box HV contributions coming from
mμ terms do not have this enhancement and get the
usual α=π reduction factor as compared to the Born
terms.

FIG. 1. The complete SM one-loop HC amplitudes (upper panels) and the corresponding HV amplitudes (lower panels). Left panels
present the energy dependencies at θ ¼ 60°, while right panels present the angular dependencies at

ffiffiffi
s

p ¼ 0.5 TeV.
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A. Resulting total SM amplitudes and cross sections

These are constructed by summing the various one-loop
contributions and adding them to the Born ones. The
important terms are the HV Born term of Eq. (4), the H
self-energy and HHH right triangles of Eq. (8) coming
essentially from top-quark diagrams (see the Appendix),
and the aforementioned contribution from the two boxes
leading to Eq. (9).
These final complete one-loop results (Born þ one-loop

diagrams) for the HC and HV SM helicity amplitudes are
illustrated in Fig. 1, where we show their energy and angle
dependencies. Note that these complete SM, HC, and HV
amplitudes have comparable sizes, although their s and θ
dependencies are rather different. In particular, the two HC
amplitudes almost coincide at 0.5 TeV (upper right panel),
which also happens for the HV amplitudes at θ ¼ 60°, in a
wide range of energies (lower left panel).

The corresponding (complete one-loop) cross sections,
shown in Fig. 2, reflect the properties of the unpolarized
cross sections defined in Eq. (5) and the μ∓ polarized cross
sections denoted as dσλλ0=d cos θ. For the latter, the alter-
native notation indicating whether the contributing ampli-
tudes are HV or HC may also be inspiring:

dσLL ≡ dσLðHVÞ; dσRR ≡ dσRðHVÞ;
dσðHVÞ≡ dσLðHVÞ þ dσRðHVÞ; ð13Þ

dσLR ≡ dσLðHCÞ; dσRL ≡ dσRðHCÞ;
dσðHCÞ≡ dσLðHCÞ þ dσRðHCÞ: ð14Þ

As seen in Fig. 2, the HV differential cross sections are
angularly constant at

ffiffiffi
s

p ¼ 0.5 TeV and reflect mainly the
s-channel H exchange parts containing the effect of the

FIG. 2. SM one-loop differential cross sections as defined in Eqs. (13), (14). Left panels present the energy dependencies at θ ¼ 60°,
while right panels present the angular ones at

ffiffiffi
s

p ¼ 0.5 TeV.
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FIG. 3. The s dependence of SM form factor TSM
HHH defined in Eq. (7), together with the new physics contributions to it from AðsÞFFF

of Eq. (21) (upper panels), AðsÞXXX of Eq. (20) (middle panels), and AðsÞRes of Eq. (22) (lower panels). Left and right panels present real
and imaginary parts, respectively. T refers to the SM contribution, and A refers to the new physics contributions, with the following
parameters mX ¼ 0.5 TeV and gHXX ¼ −10 TeV, mF ¼ 0.5 TeV and gHFF ¼ −4, MR ¼ 1 TeV, ΓR ¼ 0.3 TeV, and
gHRgRHH ¼ 0.5 TeV. The SRS predictions given in Eqs. (A1) and (A2) are denoted T(sim).
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HHH form factor. On the contrary, the HC cross section
has a specific angular shape; it starts with smaller values at
low energy but becomes of comparable size to the HVone
at high energies, due to the large box contributions.
The unpolarized cross section contains all these features

but obviously does not allow their easy disentangling.

IV. ANOMALOUS HHH CONTRIBUTIONS

We are now looking for possible effects of a modification
of the SM HHH form factor due to new physics contri-
butions. They will only affect the HV helicity amplitudes
according to the H exchange diagram, giving

δFλ;λ0 ¼
egμμHδTHHHðsÞ
s −m2

H þ imHΓH

ffiffiffi
s

p
δλ;λ0 ; ð15Þ

where δTHHHðsÞ is the departure to the SM prediction
TSM
HHHðsÞ in Eq. (7), which is induced by the H self-energy

and HHH form factor discussed in Sec. III, item i.c.

A. Examples of new physics contributions

Our aim is not to study particular new models but only to
look at the sensitivity of the μ−μþ → HH process to
modifications of the SM gHHH coupling and especially
to the s-dependent form factor that they generate.
Modifications are often described by effective operators;

see Refs. [6,7]. There are various types of dimension-6
operators leading to anomalous couplings. Among them,
we can mention the ones generating direct effective μμHH
couplings like

O ¼ c
Λ2

ðH†Dμ

↔
HÞðμ̄γμPL;RμÞ; ð16Þ

which would add global contributions to the μ−μþ → HH
amplitude of the type

c
s
Λ2

vðl0; λ0Þðp 0 − pÞPL;Ruðl; λÞ ð17Þ

as long as s ≪ Λ2, where Λ is an effective new phys-
ics scale.
More closely related to our study of the HHH form

factor, there is also a dimension-6 operator,

OT ¼ cT
2Λ2

ðH†Dμ

↔
HÞ2; ð18Þ

which would give an additional contribution δTHHHðsÞ to
the standard HHH coupling of the type cTðs=Λ2Þ.
However, these descriptions only parametrize a depar-

ture from the SM prediction as long as s ≪ Λ2 but not a
complete s dependence (the shape) of the form factor,
which is our purpose.
We therefore come back to the precise structure of the

HHH vertex. With the idea of compositeness, we can take
as an example the hadronic structure of the σσσ vertex
where the σ is a qq̄ bound state. This vertex can be pictured
through a triangular quark loop, but it is obviously affected
by nonperturbative binding interactions. With such a
picture, the whole HHH coupling should then come from
ðXXXÞ triangles made by the constituents X and an
effective HXX coupling related to the binding. This would
generate an effective HHH vertex replacing the usual SM
HHH Born term. On another hand, if the Higgs boson is

FIG. 4. The new physics contributions to the HVamplitudes induced by the HHH form factors of Fig. 3. The HC amplitudes and the
imaginary parts in the “new fermion” and “new scalar” HVamplitudes are vanishing, and they are not shown. The left panel presents the
energy dependencies, while the right panel presents the angular ones, as in Fig. 1.
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connected to a new sector, one may have triangles
involving the corresponding new particles. In the case of
a strong sector (similarly to the hadronic case), there may
be resonances R leading to HHH contributions of the
type H → RðXXÞ → HH.
In Fig. 3, we give illustrations of the contributions

to the ðHHHÞ form factor corresponding to such

examples, and we compare them to the total SM one
(essentially controlled by the ttt triangle) and to its super-
simplicity approximation (called sim) given in Sec. III,
item i.c.:

(i) For a scalar Higgs-constituent X with a gHXX
coupling, we get the departure δTHHHðsÞ due to
the XXX triangle contribution to theHHH coupling,

FIG. 5. Dependencies of ½dσðSMþ newÞ=d cos ϑ − dσðSMÞ=d cos ϑ�=½dσðSMÞ=d cos ϑ�, on the “new fermion” (upper), “new scalar”
(middle), and the “new resonance” (lower panel) contributions for the total HV case in Eq. (13) and for the unpolarized case.
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δTHHHðsÞ → AXXXðsÞ
¼ −

eα
4π

g3HXXC0ðs;m2
H;m

2
H;m

2
X;m

2
X;m

2
XÞ; ð19Þ

where C0 is the Passarino-Veltman [21] function.
Using its high-energy expansion [31], one gets [see
Eq. (A1)]

−
eα
4π

g3HXX
ln2sX
2s

: ð20Þ

In the illustration, we take mX ¼ 0.5 TeV and
gHXX ¼ −10 TeV.

(ii) For a fermionic constituent F, we get similarly the
departure due to the FFF triangle

δTHHHðsÞ → AFFFðsÞ
¼ −

eα
4π

g3HFFf2m3
FC0 þ 2mF½3m2

HðC21 þ C22Þ
þ 6p:p0C23 þ 3nC24 þ 2q:pC11 þ 2q:p0C12

þ 2m2
HC11 þ 2p:p0C12 þ q:pC0�g

→ −
eα
4π

g3HFF

�
2mF

�
−ln2sF

4
− ln sFF

��
; ð21Þ

with the notations defined in Eqs. (A1) and (A2) of
the Appendix. In the illustration, we take mF ¼
0.5 TeV and gHFF ¼ −4.

(iii) For a typical resonance effect, we get the (trivial)
shape

δTHHHðsÞ → AResðsÞ ¼
gHRgRHH

s −M2
R þ iMRΓR

: ð22Þ

The illustration is made with MR ¼ 1 TeV,
ΓR ¼ 0.3 TeV, gHRgRHH ¼ 0.5 TeV.

The numerical values of the above masses and effective
couplings have been chosen such that, in the illustrations,
the shape of the resulting HHH form factor can be quickly
compared with that of the SM case such that one can
appreciate the different spectacular s dependencies. One
indeed sees that the s dependencies appearing in these
examples are very different from each other and also very
different from the SM case.
So, we believe that there is much to learn from the

measurement of the HHH form factor.
We can now see how this is reflected in the HV μ−μþ →

HH amplitudes (see Fig. 4) and in the cross sections (see
Fig. 5) with their specific energy dependencies, threshold
effects, and resonance shapes.
In Fig. 5, we show the relative differences ½σSMþNP −

σSM�=σSM between the cross sections involving these new
contributions and the pure SM cross sections, for the HV
contribution [see Eq. (13)] and for the unpolarized case.
Because of the common dominating final δTHHHðsÞ term,

the left-left and right-right HV cases defined in Eq. (13)
would give similar results to the complete HV case. So, one
sees that polarized beams allowing the separation of HV
from HC contributions would help to differentiate HHH
form factor effects from possible other anomalous effects.
As one can see in the illustrations, the s and θ

dependencies of the cross sections (even the unpolarized
one) should allow one to identify the nature of the new
contribution.
At this point, we should add a few words about the

observability of such effects. The energy of a μ−μþ collider
has been considered up to 6 TeV [22]. For our study, the
required energy would correspond to the yet unknown new
physics scale, although the curious anomalies observed at
the LHC around 0.75 and 2 TeV [23] could be in mind, but
it is too early to know how they would affect the HHH
coupling.
With an expected luminosity of the order of

1035 cm−2 s−1 [22], the SM cross section (see Fig. 2) would
lead to only a few events per year. But we have seen that
large enhancements could appear due to anomalous HHH
couplings, threshold, and resonance effects in the HHH
form factor, which should then be observable. In case these
luminosities could not be reached, we can mention that
there may be other processes (for example,WW fusion; see
the next section) where HH production could be observed
with a higher statistics; see, for example, Ref. [24].

V. CONCLUSIONS

In this work, we have computed the full one-loop SM
contributions to the μ−μþ → HH process, and we have
studied the role of the final HHH coupling and of its SM
form factor. Our aim is to show how possible new
contributions to the HHH form factor could be identified
through observables. We have emphasized the specific
properties of the HC and HV amplitudes and their energy
and angular dependencies and how this reflects in the
observable polarized and unpolarized cross sections.
We have compared the real and imaginary parts of the

SM one-loop contributions to the HHH form factor, to
examples of possible new physics effects corresponding
either to Higgs boson compositeness, or to the coupling of
the Higgs boson to a new sector. In each case, we have also
given the corresponding simple analytic expressions, in the
adequate “sim” approximation discussed in the Appendix,
allowing a quick estimate of the effect at high s.
We have emphasized the fact that the q2 ≡ s depend-

encies of the HHH form factor can be very different,
depending on their origin. We have taken some arbitrary
cases with new scalar or new fermion contributions to the
HHH form factor, or strong resonances, and made the
corresponding illustrations. As it can be seen in these
illustrations, the differences can be spectacular and reflect
the specific nature of the new physics.
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We have shown that polarized cross sections (μ∓ beam
polarization could be available according to some studies
[15,16]) are essential for differentiating HV contributions
(which are the only ones containing HHH form factor
effects) from HC contributions.
But even the shape of the s and θ dependencies of the

unpolarized cross sections should help for identifying the
nature of the new contribution.
The present study is an example of what could be done

for the search of HHH form factor effects in the process
μ−μþ → HH. Spectacular resonance or threshold effects
could easily be seen, but high luminosity would be required
in order to make precise analyses. This would correspond
to the simplest situation.
More complex processes like ZZ → HH, W−Wþ →

HH, gg → HH, or γγ → HH could be considered and
would benefit from larger cross sections at e−eþ, μ−μþ
colliders or at the LHC. Note that the fusion subprocesses
ZZ → HH and W−Wþ → HH involve, like in the above
μ−μþ case, the simple s-channelH exchange diagram, with
in addition a four-leg ZZHH or W−WþHH vertex, as well
as t- and u-channel Z orW exchanges. These subprocesses
can be measured by making detailed specific analyses.
The processes gg → HH and γγ → HH contain an

s-channel H exchange, but the initial vertex needs a
one-loop contribution, and there are also several other
one-loop diagrams producing the final HH state. Specific
works should be devoted to each of these processes; see,
e.g., Refs. [25–29].
The aim of this paper was only to put forward the idea of

looking especially at the s dependence of the HHH form
factor and to show that observable consequences may
exist.
We hope that these first results will encourage further

phenomenological and experimental studies of the pos-
sibilities to measure this form factor.

APPENDIX: SM CONTRIBUTIONS
TO THE HHH FORM FACTOR

The SM prediction for theHHH form factor consists of a
zero-order contribution given by the pointlike coupling
gHHH in Eq. (3) and of higher-order corrections. In the OS
scheme [18,19], these corrections consist of parameter
renormalization and additional one-loop diagrams. We
are interested in the q2 ≡ s dependence when one H is
off shell, while the two other H (with 4-momenta p; p0) are
on shell, in order to make the comparison of this SM
prediction with possible compositeness structures.
So, we will use a procedure allowing us to quickly get

simple forms which reflect sufficiently well the size and the
s dependence of each contribution. This is the SRS
procedure [20,30], which leads to the simplest expressions
in terms of augmented Sudakov logarithms. Among them,
we will only need the augmented Sudakov forms (see
Refs. [20,30] for details),

ln2sX ≡ ln2sX þ 4LHXX; sX ≡
�
−s − iϵ
m2

X

�
; ðA1Þ

lnsij≡ lnsijþbij0 ðm2
HÞ−2; lnsij≡ ln

−s− iϵ
mimj

; ðA2Þ

where ðX; i; jÞ refer to internal exchanges in the contrib-
uting diagrams. The explicit expressions for bij0 ðm2

HÞ and
LHXX are given, e.g., in Eqs. (A.6) and (A.5) of Ref. [30].
We note that the counterterms needed in the SRS scheme
respect the structure (A1), (A2) [20,30].
Globally, this procedure consists in replacing the diver-

gent terms related to the ði; jÞ internal lines of any
contributing diagram, as

ln
−s − iϵ

μ2
− Δ → ln sij þ bij0 ðm2

HÞ; ðA3Þ

where μ here denotes the renormalization scale and
Δ ¼ 1=ϵ − γE þ lnð4πÞ, with the number of dimensions
used for regularization written as n ¼ 4 − 2ϵ.
In the present case, with only triangle and bubble

diagrams contributing, there is no ambiguity related to
the internal lines ði; jÞ. They can only be H, Z,W, and t so
that we can only have ðijÞ ¼ ðHHÞ; ðZZÞ; ðWWÞ; ðttÞ. The
SRS results thus obtained are always denoted as “sim” in
the illustrations [20,30].
We next describe the exact expressions for the various

triangle and bubble diagrams with four-leg couplings as
well as their high-energy SRS (sim) forms. At first α order,
the TSM

HHHðsÞ form factor of Eq. (7) may be written as

TSM
HHHðsÞ ¼ egHHH þ ASMðsÞ: ðA4Þ

In the following two subsections, we first give the ASMðsÞ
results implied by the one-loop triangles and bubbles with
four-leg couplings and then from the H self-energy.

1. Triangles and bubbles with four-leg couplings

Depending on the natures of the exchanged particles, the
contributions to ASMðsÞ from the various two-point and
three-point Passarino-Veltman functions, denoted as B and
C, are given by [21,31]

(i) Scalar ðSSSÞ triangles and ðSSÞ bubbles with a 4-leg
SSHH coupling:

ASM
SSSðsÞ ¼ −

eα
4π

fg3HSSC0ðs;m2
H;m

2
H;m

2
S; m

2
S; m

2
SÞ

þ gHSSgHHSS½B0ðs;m2
S; m

2
SÞ

þ 2B0ðm2
H;m

2
S; m

2
S�g

→ −
eα
4π

�
g3HSS

ln2sS
s

− gHSSgHHSSln sSS

�
:

ðA5Þ
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This applies to the triangles

SSS ¼ HHH;G0G0G0; CZCZCZ;G�G�G�;

C�C�C�

and the bubbles

SS ¼ HH;G0G0; G�G�;

while gHHH is given in Eq. (3) and2

gHHHH ¼ −
3m2

H

4s2Wm
2
W
; gHGG ¼ −

m2
H

2sWmW
;

gHHGG ¼ 1

2s2Wc
2
W
;

gHCZCZ ¼ −
mW

2sWc2W
; gHC�C� ¼ −

mW

2sW
: ðA6Þ

Note that there is no four-leg diagram for the ghost
loop and that a global fermionic minus sign has been
inserted. In all cases, the internal S mass for
H;G0; CZ; G�; C� is respectively equal to the one
of H, Z, Z, W, W.

(ii) Fermion triangles ðfffÞ: Because of the strong mass
dependence of the Hff coupling, it is adequate to
restrict to the ðtttÞ þ ðt̄ t̄ t̄Þ case. The result is

ASM
ttt ðsÞ¼

eα
4π

3m3
t

2s3Wm
3
W
f2m3

t C0þ2mt½3m2
HðC21þC22Þ

þ6p:p0C23þ3nC24þ2q:pC11þ2q:p0C12

þ2m2
HC11þ2p:p0C12þq:pC0�g

→
eα
4π

3m3
t

2s3Wm
3
W

�
2mt

�
−ln2st

4
− lnstt

��
:

ðA7Þ

(iii) Vector triangles ðVVVÞ and bubbles ðVVÞ with a
four-leg HHVV coupling:

ASM
VVVðsÞ
¼ eα

4π
fg3HVVnC0 þ gHVVgHHVV ½2B0ðm2

H;m
2
V;m

2
VÞ

þ B0ðs;m2
V;m

2
VÞ�g

→ −
eα
4π

�
2g3HVV

ln2sV
s

þ gHVVgHHVV ½−ln sVV �
�
;

ðA8Þ

applied only to V ¼ Z,W, since there are noHZγ or
HHZγ couplings. Because of this, the V masses in

the SRS forms ln2sV and ln sVV can either be mZ
or mW.

(iv) ðVVSÞ triangles:

ASM
VVSðsÞ ¼

eα
4π

g2VSHg
2
VVHfm2

HðC21 þ C22Þ
þ 2p:p0C23 þ nC24 þ ðp:p0 þ 3q:pÞC11

þ ðm2
H þ 3q:p0ÞC12 þ 2ðq2 þ q:p0ÞC0g

→
eα
4π

g2VSHg
2
VVH

�
1

2
ðln2sV þ ln sVVÞ

�
;

ðA9Þ

applied to ZZG0;W�W�G�; compare Eq. (A8).
(v) ðVSVÞ triangles:

ASM
VSVðsÞ¼

eα
4π

g2VSHg
2
VVHfm2

HðC21þC22Þþ2p:p0C23

þnC24þð3m2
H−p:p0ÞðC11−C12Þ

þ2ðm2
H−p:p0ÞC0g

→
eα
4π

g2VSHg
2
VVH

�
1

4
ln2sV þ2lnsVV

�
;

ðA10Þ

applied to ZG0Z;W�G�W�.
(vi) ðSVVÞ triangles:

ASM
SVVðsÞ¼

eα
4π

g2VSHg
2
VVHfm2

HðC21þC22Þþ2p:p0C23

þnC24− ðm2
Hþq:pÞC11

− ðp:p0 þq:p0ÞC12Þþq:pC0g

→
eα
4π

g2VSHg
2
VVH

�
−
1

2
ðln2sV þ lnsVVÞ

�
;

ðA11Þ

applied to G0ZZ;G�W�W�.
(vii) ðVSSÞ triangles:

ASM
VSSðsÞ¼

eα
4π

g2VSHg
2
SSHf−m2

HðC21þC22Þ−2p:p0C23

−nC24−2ðm2
Hþq:pÞC11

−2ðp:p0 þq:p0ÞC12Þ−4q:pC0g

→
eα
4π

g2VSHg
2
SSH

�
−
1

2
ln2sVþ lnsVV

�
;

ðA12Þ

applied to ZG0G0;W�G�G�.
2ðG�; G0Þ denote the SM Goldstone fields, and ðC�; CZÞ

denote the Faddeev-Popov (FP) ghosts.
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(viii) ðSVSÞ triangles:

ASM
SVSðsÞ¼

eα
4π

g2VSHg
2
SSHf−m2

HðC21þC22Þ−2p:p0C23

−nC24−ð−m2
Hþq:pþp:p0ÞC11

−ðm2
H−p:p0 þq:p0ÞC12Þ

þðp:p0 þq:pÞC0g
→

eα
4π

g2VSHg
2
SSHfln2sV − lnsVVg; ðA13Þ

applied to G0ZG0; G�W�G�.
(ix) ðSSVÞ triangles:

ASM
SSVðsÞ¼

eα
4π

g2VSHg
2
SSHf−m2

HðC21þC22Þ−2p:p0C23

−nC24−ðm2
H−q:p−p:p0ÞC11

−ð−m2
Hþp:p0−q:p0ÞC12Þ

þð−q:p0 þq:pÞC0g

→
eα
4π

g2VSHg
2
SSH

�
−
1

2
ln2sVþ lnsVV

�
;

ðA14Þ

applied to G0G0Z;G�G�W�.
In the above contributions, the following couplings are

needed:

gZZH ¼ mZ

sWcW
; gZZHH ¼ 1

2s2Wc
2
W
;

gWWH ¼ mW

sW
; gWWHH ¼ 1

2s2W
;

gZGH ¼ gWGH ¼ 1

2sWcW
: ðA15Þ

2. H self-energy

This additional contribution is given by

ASM
se ðsÞ ¼ −

egHHH

s −m2
H
ΣHðsÞ; ðA16Þ

where ΣHðsÞ is computed from the following diagrams:
(i) Bubbles VV leading to

ΣHðsÞ ¼
X2
1

4π2
½B0� →

X2
1

4π2
½−ln sVV �; ðA17Þ

for which we respectively get

VV ¼ ZZ → X2
1 ¼

e2M2
W

2s2Wc
4
W
;

VV ¼ W�W∓ → X2
1 ¼

e2M2
W

s2W
: ðA18Þ

(ii) Bubbles SV leading to

ΣHðsÞ ¼ −
X2
1

16π2
½sðB0 þ B21 − 2B1Þ þ nB22�

→ −
X2
1

16π2
½−2sln sSV �; ðA19Þ

for which we respectively get

SV ¼ G0Z → X2
1 ¼

e2

4s2Wc
2
W
;

SV ¼ G∓W� → X2
1 ¼

e2

2s2W
: ðA20Þ

(iii) Bubble tt leading to

ΣHðsÞ ¼ −
1

4π2
½ðsðB1 þ B21Þ þ nB22 þm2

t B0ÞX2
1�

→ −
X2
1

4π2

�
s
2
ln stt

�
; ðA21Þ

with

X2
1 ¼

3e2

4s2WM
2
W
½m2

t �: ðA22Þ

(iv) Bubbles SS leading to

ΣHðsÞ ¼
X2
1

16π2
½B0� →

X2
1

16π2
½−ln sSS�; ðA23Þ

with

X2
1 ¼

9e2m4
H

8s2WM
2
W
;

e2m4
H

8s2WM
2
W
;

e2m4
H

4s2WM
2
W
;

−
e2m2

W

4s2Wc
4
W
; −

e2m2
W

2s2W
; ðA24Þ

for

SS ¼ HH;G0G0; Gþ; G−; CZCZ; CþC−; ðA25Þ

respectively. Note that in these SS bubbles the
internal S mass is correspondingly equal to the
mass of H, Z, W, Z, W.

G. J. GOUNARIS and F. M. RENARD PHYSICAL REVIEW D 93, 093018 (2016)

093018-12



[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1
(2012); S. Chatrchyan et al. (CMS Collaboration),
Phys. Lett. B 716, 30 (2012); G. J. Davies (CDF and D0
Collaborations), Front. Phys. 8, 270 (2013);
ATLAS Collaboration, https://twiki.cern.ch/twiki/bin/view/
AtlasPublic/HiggsPublicResults;CMS Collaboration, https://
twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG.

[2] P. Higgs, Phys. Lett. 12, 132 (1964); Phys. Rev. Lett. 13,
508 (1964); Phys. Rev. 145, 1156 (1966); F. Englert and R.
Brout, Phys. Rev. Lett. 13, 321 (1964); G. Guralnik, C.
Hagen, and T. Kibble, Phys. Rev. Lett. 13, 585 (1964).

[3] S. L. Glashow, Nucl. Phys. B22, 579 (1961); S. Weinberg,
Phys. Rev. Lett. 19, 1264 (1967); A. Salam, Proceedings
of the 8th Nobel Symposium, edited by N. Svartholm
(Almqvist and Wiskell, Stockholm, 1968), p. 367.

[4] B. Gripaios, arXiv:1503.02636; arXiv:1506.05039; A.
Wulzer, Proc. Sci., EPS-HEP2015, (2015) 005.

[5] See A. Djouadi, Phys. Rep. 457, 1 (2008) and
arXiv:1505.01059.

[6] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi,
J. High Energy Phys. 06 (2007) 045.

[7] J. Ellis, V. Sanz, and T. You, J. High Energy Phys. 03 (2015)
157.

[8] B. Patt and F. Wilczek, arXiv:hep-ph/0605188.
[9] H. Terazawa, Y. Chikashige, and K. Akama, Phys. Rev. D

15, 480 (1977); for other references, see H. Terazawa and
M. Yasue, arXiv:1508.00172; J. Mod. Phys. 05, 205
(2014).

[10] D. B. Kaplan and H. Georgi, Phys. Lett. 136B, 183 (1984);
K. Agashe, R. Contino, and A. Pomarol, Nucl. Phys. B719,
165 (2005).

[11] R. Contino, T. Kramer, M. Son, and R. Sundrum, J. High
Energy Phys. 07 (2005) 076.

[12] G. Panico and A. Wulzer, Lect. Notes Phys. 913, 1
(2016).

[13] M. E. Peskin, arXiv:1506.08185; M. Muhlleitner, arXiv:
1410.5093.

[14] J. Baglio et al., arXiv:1212.5581; J. High Energy Phys. 04
(2013) 151.

[15] D. B. Cline, Nucl. Instrum. Methods Phys. Res., Sect. A 350
(1994) 24; V. D. Barger, M. S. Berger, J. F. Gunion, and T.
Han, Phys. Rep. 286, 1 (1997); C. Rubbia, arXiv:1308.6612;
Y. Alexahin et al., arXiv:1308.2143; D. Neuffer et al.,
arXiv:1502.02042.

[16] D. Cline et al., acc-phys/9609002; B. Grzadkowski et al.,
arXiv:hep-ph/0003091.

[17] G. J. Gounaris and F. M. Renard, Phys. Rev. Lett. 94,
131601 (2005); Phys. Rev. D 73, 097301 (2006).

[18] M. Böhm, H. Spiesberger, and W. Hollik, Fortschr. Phys.
34, 687 (1986); W. Hollik, Fortschr. Phys. 38, 165 (1990);
A. Denner, Fortschr. Phys. 41, 307 (1993).

[19] A. Dobado, M. J. Herrero, W. Hollik, and S. Peñaranda,
Phys. Rev. D 66, 095016 (2002).

[20] G. J. Gounaris and F.M. Renard, Acta Phys. Pol. A 42, 2107
(2011); Phys. Rev. D 86, 013003 (2012); 90, 073007 (2014).

[21] G. Passarino and M. Veltman, Nucl. Phys. B160, 151
(1979).

[22] J. P. Delahaye et al., arXiv:1502.01647.
[23] ATLAS note, ATLAS-Conf-2015-081; CMS note, CMS

PAS EXO-15-004.
[24] A. Conway, H. Wentzel, E. Eichten, and R. Lipton,

arXiv:1405.5910.
[25] R. Contino, M. Ghezzi, M. Moretti, G. Panico, F. Piccinini,

and A. Wulzer, J. High Energy Phys. 08 (2012) 154; C.-R.
Chen and I. Low, Phys. Rev. D 90, 013018 (201); F. Goertz,
A. Papaefstathiou, L. L. Yang, and J. Zurita J. High Energy
Phys. 04 (2015) 167; A. Azatov, R. Contino, G. Panico, and
M. Son, Phys. Rev. D 92, 035001 (2015).

[26] S. Dawson, A. Ismail, and I. Low, Phys. Rev. D 91, 115008
(2015).

[27] V. I. Telnov, J. Instrum. 9, C09020 (2014).
[28] E. Asakawa et al., arXiv:1009.4670; Phys. Rev. D 82,

115002 (2010).
[29] A. Levy, Eur. Phys. J. Web Conf. 95, 03022 (2015).
[30] G. J. Gounaris and F. M. Renard, Phys. Rev. D 88, 113003

(2013).
[31] M. Beccaria, G. J. Gounaris, J. Layssac, and F. M. Renard,

Int. J. Mod. Phys. A 23, 1839 (2008).

TESTS OF THE TRIPLE HIGGS BOSON FORM FACTOR … PHYSICAL REVIEW D 93, 093018 (2016)

093018-13

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1007/s11467-013-0293-0
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://arXiv.org/abs/1503.02636
http://arXiv.org/abs/1506.05039
http://arXiv.org/abs/1505.01059
http://dx.doi.org/10.1088/1126-6708/2007/06/045
http://dx.doi.org/10.1007/JHEP03(2015)157
http://dx.doi.org/10.1007/JHEP03(2015)157
http://arXiv.org/abs/hep-ph/0605188
http://dx.doi.org/10.1103/PhysRevD.15.480
http://dx.doi.org/10.1103/PhysRevD.15.480
http://arXiv.org/abs/1508.00172
http://dx.doi.org/10.4236/jmp.2014.55031
http://dx.doi.org/10.4236/jmp.2014.55031
http://dx.doi.org/10.1016/0370-2693(84)91177-8
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.035
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.035
http://dx.doi.org/10.1007/978-3-319-22617-0
http://dx.doi.org/10.1007/978-3-319-22617-0
http://arXiv.org/abs/1506.08185
http://arXiv.org/abs/1410.5093
http://arXiv.org/abs/1410.5093
http://arXiv.org/abs/1212.5581
http://dx.doi.org/10.1007/JHEP04(2013)151
http://dx.doi.org/10.1007/JHEP04(2013)151
http://dx.doi.org/10.1016/0168-9002(94)91150-9
http://dx.doi.org/10.1016/0168-9002(94)91150-9
http://dx.doi.org/10.1016/S0370-1573(96)00041-5
http://arXiv.org/abs/1308.6612
http://arXiv.org/abs/1308.2143
http://arXiv.org/abs/1502.02042
http://arXiv.org/abs/acc-phys/9609002
http://arXiv.org/abs/hep-ph/0003091
http://dx.doi.org/10.1103/PhysRevLett.94.131601
http://dx.doi.org/10.1103/PhysRevLett.94.131601
http://dx.doi.org/10.1103/PhysRevD.73.097301
http://dx.doi.org/10.1002/prop.19860341102
http://dx.doi.org/10.1002/prop.19860341102
http://dx.doi.org/10.1002/prop.2190380302
http://dx.doi.org/10.1002/prop.19930410402
http://dx.doi.org/10.1103/PhysRevD.66.095016
http://dx.doi.org/10.5506/APhysPolB.42.2107
http://dx.doi.org/10.5506/APhysPolB.42.2107
http://dx.doi.org/10.1103/PhysRevD.86.013003
http://dx.doi.org/10.1103/PhysRevD.90.073007
http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://arXiv.org/abs/1502.01647
http://arXiv.org/abs/1405.5910
http://dx.doi.org/10.1007/JHEP08(2012)154
http://dx.doi.org/10.1103/PhysRevD.90.013018
http://dx.doi.org/10.1007/JHEP04(2015)167
http://dx.doi.org/10.1007/JHEP04(2015)167
http://dx.doi.org/10.1103/PhysRevD.92.035001
http://dx.doi.org/10.1103/PhysRevD.91.115008
http://dx.doi.org/10.1103/PhysRevD.91.115008
http://dx.doi.org/10.1088/1748-0221/9/09/C09020
http://arXiv.org/abs/1009.4670
http://dx.doi.org/10.1103/PhysRevD.82.115002
http://dx.doi.org/10.1103/PhysRevD.82.115002
http://dx.doi.org/10.1051/epjconf/20159503022
http://dx.doi.org/10.1103/PhysRevD.88.113003
http://dx.doi.org/10.1103/PhysRevD.88.113003
http://dx.doi.org/10.1142/S0217751X08039839

