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Using a set of rephasing-invariant variables, it is shown that the renormalization group equations for
quark mixing parameters can be written in a form that is compact, in addition to having simple properties
under flavor permutation. We also found approximate solutions to these equations if the quark masses are
hierarchical or nearly degenerate.
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I. INTRODUCTION

With the recent discovery of the Higgs boson, the last
“missing piece” of the standard model (SM) was finally
found. However, the long-standing mystery, that the Higgs
couplings (mass matrices) appear to be rather arbitrary,
remains to be resolved. A commonly held view posits that
the SM is but an effective theory originating from some
other theory valid at high energies, and that more regularity
can be found there. To bridge these two energy regimes,
one makes use of the renormalization group equations
(RGEs). Such RGEs for the mass matrices have been
around for a long time (see, e.g., Refs. [1–9]). They are
relatively simple when written in terms of the mass matrices
themselves. However, these matrices contain a large num-
ber of unphysical degrees of freedom, which must be
stripped away to reveal the values of the physical variables,
viz., the masses and the mixing matrices. The procedure is
by no means easy, and it is hard to correlate the variables in
the two energy regions. For this reason a lot of efforts have
gone into recasting the RGEs into equations containing
only physical variables [6–9]. With these equations the
physical variables at different energies can be directly
related. Thus, for instance, one may test possible scenarios
for mass patterns at high energies, using the RGEs to see if
they could evolve into the existing low-energy values. The
challenge here comes from the complexity of the RGEs,
which are lengthy, nonlinear, partial differential equations,
so that the relations of variables at different energy scales
are often obscure, and one can have only a partial view with
the use of various approximation schemes. This difficulty,
one would hope, can be mitigated to some extent by a
judicious choice of the physical variables. Indeed, in this
paper we propose to cast the one-loop quark RGEs in terms
of a set of rephasing-invariant variables introduced earlier
[10]. It is found that these RGEs can be written in a

compact form. In addition, they exhibit manifest sym-
metries which, as a consequence of the permutation
properties of the chosen variables, give these equations a
very simple structure. As it turns out, this set of equations is
still too complicated to be solved analytically. However,
under reasonable assumptions (hierarchy, degeneracy, etc.),
approximate solutions are available. These will be pre-
sented in this paper. As more properties are found about
these equations, one may hope that they will help in the
search for a viable high-energy theory.

II. REPHASING-INVARIANT
PARAMETRIZATION

It is well known that physical observables are indepen-
dent of rephasing transformations on the mixing matrices of
quantum-mechanical states. Thus, instead of individual
elements of the mixing matrix, only rephasing-invariant
combinations thereof are physical. Whereas there is noth-
ing wrong with using these elements in intermediate steps
of a calculation, at the end of the day, they must form
rephasing-invariant combinations in physical quantities.
This situation is similar to that in gauge theory, where
one often resorts to a particular gauge choice for certain
problems. The final results, however, must be gauge
invariant. In this paper, we propose to use, from the outset,
parameters that are rephasing invariant. As we will dem-
onstrate in Sec. III, in terms of these, the quark RGEs
become quite simple in structure, making it easier to
analyze the properties of their solutions.
We turn now to Ref. [10], where it was pointed out that

six rephasing-invariant combinations can be constructed
from elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, V:

Γijk ¼ V1iV2jV3k ¼ Rijk − iJ; ð1Þ

where ði; j; kÞ is a cyclic permutation of (1,2,3) and
detV ¼ þ1 is imposed. The common imaginary part is
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identified with the Jarlskog invariant [11], and the real parts
are defined as

ðR123; R231; R312;R132; R213; R321Þ ¼ ðx1; x2; x3; y1; y2; y3Þ:
ð2Þ

The ðxi; yjÞ parameters are bounded, −1 ≤ ðxi; yjÞ ≤ 1,
with xi ≥ yj for any pair of ði; jÞ. It is also found that the six
parameters satisfy two conditions,

detV ¼ ðx1 þ x2 þ x3Þ − ðy1 þ y2 þ y3Þ ¼ 1; ð3Þ

ðx1x2 þ x2x3 þ x3x1Þ − ðy1y2 þ y2y3 þ y3y1Þ ¼ 0; ð4Þ

leaving four independent parameters for the mixing matrix.
They are related to the Jarlskog invariant,

J2 ¼ x1x2x3 − y1y2y3 ð5Þ

and the squared elements of V,

W ¼ ½jVαij2� ¼

0
B@

x1 − y1 x2 − y2 x3 − y3
x3 − y2 x1 − y3 x2 − y1
x2 − y3 x3 − y1 x1 − y2

1
CA: ð6Þ

The matrix of the cofactors of W, denoted as w with
wTW ¼ ðdetWÞI, is given by

w ¼

0
B@

x1 þ y1 x2 þ y2 x3 þ y3
x3 þ y2 x1 þ y3 x2 þ y1
x2 þ y3 x3 þ y1 x1 þ y2

1
CA: ð7Þ

The elements of w are also bounded, −1 ≤ wαi ≤ þ1, andX
i

wαi ¼
X
α

wαi ¼ detW; ð8Þ

detW ¼
X

x2i −
X

y2j ¼
X

xi þ
X

yj: ð9Þ

The relations between ðxi; yjÞ and the standard paramet-
rization can be found in Ref. [12].
There are some useful expressions for the rephasing-

invariant combinations. One first considers the product of
four mixing elements [11]

παβij ¼ VαiVβjV�
αjV

�
βi; ð10Þ

which can be reduced to

παβij ¼ jVαij2jVβjj2 −
X
γk

ϵαβγϵijkVαiVβjVγk

¼ jVαjj2jVβij2 þ
X
γk

ϵαβγϵijkV�
αjV

�
βiV

�
γk: ð11Þ

In addition, for α ≠ β ≠ γ and i ≠ j ≠ k, we define

παβij ≡ πγk ¼ Λγk þ iJ: ð12Þ
Since Reðπαβij Þ takes the forms,

Reðπαβij Þ ¼ jVαij2jVβjj2 − xa ¼ jVβij2jVαjj2 þ yb; ð13Þ
we have

Λγk ¼
1

2
ðjVαij2jVβjj2 þ jVαjj2jVβij2 − jVγkj2Þ: ð14Þ

In terms of the ðx; yÞ variables,
Λγk ¼ xayj þ xbxc − yjðyk þ ylÞ; ð15Þ

where ðxa; yjÞ comes from jVγkj2 ¼ xa−yj, and a ≠ b ≠ c,
j ≠ k ≠ l.

III. RGEs FOR QUARKS

The one-loop RGEs for the quark mass matrices have
been developed and widely studied [5–7]. In terms of the
mass-squared matrices for the u-type quarks, Mu ¼ YuY

†
u,

and that for the d-type quarks, Md ¼ YdY
†
u, where Y is the

Yukawa coupling matrices of the Higgs boson to the
quarks, the RGEs take a simple form:

DMu ¼ auMu þ bM2
u þ cfMu;Mdg; ð16Þ

DMd ¼ adMd þ bM2
d þ cfMu;Mdg: ð17Þ

Here, D≡ ð16π2Þ d
dt and t ¼ lnðμ=MWÞ, where μ is the

energy scale and MW is the W boson mass. The model
dependence of the RGEs is implanted in au, ad, b, and c.
Although the RGEs are simple in their matrix forms, one

must extract the physical variables (masses and mixing
parameters) from these matrices. This is complicated
because they contain a large number of unphysical degrees
of freedom and it is not easy to infer the evolution of the
physical variables from that of the mass matrices. For this
reason it is useful to deduce from Eqs. (16)–(17) the RGEs
in terms of the physical variables, which can then yield
direct information on the evolution of these variables. This
procedure results in the following equations for the masses
and CKM elements Vij:

D lnðf2i Þ ¼ au þ bf2i þ 2c
X
j

h2j jVijj2; ð18Þ

D lnðh2i Þ ¼ ad þ bh2i þ 2c
X
j

f2j jVijj2; ð19Þ

DVij ¼ c

�X
l;k≠i

Fikh2l VilV�
klVkj þ

X
m;k≠j

Hjkf2mV�
mkVmjVik

�
;

ð20Þ
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where f2i and h2i are the eigenvalues of Mu and Md,
respectively, and

Fik ¼
f2i þ f2k
f2i − f2k

; Hjk ¼
h2j þ h2k
h2j − h2k

: ð21Þ

It should be emphasized that Eq. (20), as it stands, is not
rephasing invariant. The physical part thereof is obtained
by using it only on rephasing-invariant combinations of
Vij, such as jVijj2 or the ðx; yÞ variables defined in Eq. (2).
In Ref. [13], we obtained the evolution equations of xi and
yj in the form

−Dxi=c ¼ ½Δf223;Δf231;Δf212�½Ai�½H23; H31; H12�T
þ ½Δh223;Δh231;Δh212�½Bi�½F23; F31; F12�T; ð22Þ

−Dyi=c ¼ ½Δf223;Δf231;Δf212�½A0
i�½H23; H31; H12�T

þ ½Δh223;Δh231;Δh212�½B0
i�½F23; F31; F12�T; ð23Þ

where Δf2ij ¼ f2i − f2j and Δh2ij ¼ h2i − h2j . In terms of
ðxi; yjÞ, the explicit forms of the matrices ½Ai�, ½A0

i�, ½Bi�,
and ½B0

i� are given in Table II of Ref. [13]. SinceP
Δf2ij ¼

P
Δh2ij ¼ 0, to the matrices ½Ai�, ½Bi�, ½A0

i�,
and ½B0

i�, we can add arbitrary matrices of the form

0
B@

δ1 δ2 δ3

δ1 δ2 δ3

δ1 δ2 δ3

1
CA:

Thus, for instance, from Table II in Ref. [13]

½A1� ¼

0
B@

2x1y1 x1x2 þ y2y3 x1x3 þ y2y3
x1x3 þ y1y2 2x1y3 x1x2 þ y1y2
x1x2 þ y1y3 x1x3 þ y1y3 2x1y2

1
CA

¼ 2½Z1� − ½Z0� þ
�
J2 þ 3

X
xixj − x2x3

�0B@
1 1 1

1 1 1

1 1 1

1
CA −

0
B@

y2y3 y1y2 y1y3
y2y3 y1y2 y1y3
y2y3 y1y2 y1y3

1
CA; ð24Þ

where we have used the relations WKLΛKL ¼ J2 þ xayj, WKL ¼ xa − yj. It follows that

½Δf223;Δf231;Δf212�½A1� ¼ ½Δf223;Δf231;Δf212�ð2½Z1� − ½Z0�Þ:
ð25Þ

Similarly, all the ½A� and ½B� matrices can be so transformed and we may recast Eqs. (22)–(23) in a more suggestive form,

−Dxi=c ¼ ½Δf223;Δf231;Δf212�ð2½Zi� − ½Z0�Þ½H23; H31; H12�T
þ ½Δh223;Δh231;Δh212�ð2½Zi� − ½Z0�ÞT ½F23; F31; F12�T; ð26Þ

−Dyi=c ¼ ½Δf223;Δf231;Δf212�ð2½Z0
i� − ½Z0�Þ½H23; H31; H12�T

þ ½Δh223;Δh231;Δh212�ð2½Z0
i� − ½Z0�ÞT ½F23; F31; F12�T: ð27Þ

TABLE I. The explicit expressions of the matrices ½Zi�, ½Z0
i�, and ½Z0�. Here Λγk is defined in Eq. (14).

Z1 ¼
 Λ11 0 0

0 Λ22 0

0 0 Λ33

!
, Z2 ¼

 
0 Λ12 0

0 0 Λ23

Λ31 0 0

!
, Z3 ¼

 
0 0 Λ13

Λ21 0 0

0 Λ32 0

!

Z0
1 ¼

 Λ11 0 0

0 0 Λ23

0 Λ32 0

!
, Z0

2 ¼
 

0 Λ12 0

Λ21 0 0

0 0 Λ33

!
, Z0

3 ¼
 

0 0 Λ13

0 Λ22 0

Λ31 0 0

!

½Z0� ¼

0
B@ 1 − jV11j2ÞΛ11 ð1 − jV12j2ÞΛ12 ð1 − jV13j2ÞΛ13

ð1 − jV21j2ÞΛ21 ð1 − jV22j2ÞΛ22 ð1 − jV23j2ÞΛ23

ð1 − jV31j2ÞΛ31 ð1 − jV32j2ÞΛ32 ð1 − jV33j2ÞΛ33

1
CA
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The matrices ½Zi�, ½Z0
i�, and ½Z0� are listed in Table I. It is

noteworthy that the matrix structures of ½Zi� and ½Z0
i� mirror

those of xi and yi, when written as products of Vij, e.g.,
x1 ¼ ReðV11V22V33Þ. It is also satisfying to establish
½Bi� ¼ ½Ai�T and ½B0

i� ¼ ½A0
i�T , which is a consequence of

the conjugate roles played by the u-type and d-type quarks.
The RGEs of WijðjVijj2Þ and J2 can be obtained:

−
1

2c
DWij ¼ ½Δf223;Δf231;Δf212�½Sij�½H23; H31; H12�T

þ ½Δh223;Δh231;Δh212�½Sij�T ½F23; F31; F12�T;
ð28Þ

−
1

2c
D lnJ2=c¼ ½Δf223;Δf231;Δf212�½w�½H23;H31;H12�T

þ ½Δh223;Δh231;Δh212�½w�T ½F23;F31;F12�T:
ð29Þ

Although ½Sij� can be directly written down from ½Zi� and
½Z0

i�, we list them explicitly in Table II, since it will be used
for the analyses of DWij in the next section.
The simple and compact form of Eqs. (26)–(29) can be

contrasted with the RGEs written in terms of the standard
parametrization (see, e.g., Ref. [14]), for which it is hard to
find any regularity in the structure. It is seen that these
equations clearly exhibit symmetries under permutation of
the indices, owing to the same properties inherent in the
definition of the ðx; yÞ variables. The situation here can be
compared to a familiar one in electricity and magnetism.
While the wave equations take a simple form for the
(gauge-invariant) ~E and ~B fields, depending on the choice

of gauge, the corresponding equations for the potential Aμ

can be very complicated. Another salient feature of them is
the prominent role played by the rephasing invariants Λγk,
which are the same Jarlskog invariants that appear in
formulas of the neutrino oscillation probabilities,
Pðνα → νβÞ. Without them the RGEs would look rather
cumbersome, as written in Ref. [13]. In addition, they
facilitate the calculation of approximate solutions of the
RGEs, as we will see in the next section. Last, from
Eqs. (26) and (27), and Table I, it can be verified thatP

DðxiÞ−
P

DðyjÞ¼ 0 and
P

DðxixjÞ −
P

DðyiyjÞ ¼ 0,
as one expects from the constraint equations [Eqs. (3)
and (4)].
Notice that the evolution equations of Λγk can also be

cast in compact forms similar to that of Wij and J2:

−
1

2c
DΛγk ¼ ½Δf223;Δf231;Δf212�½Yγk�½H23; H31; H12�T

þ ½Δh223;Δh231;Δh212�½Yγk�T ½F23; F31; F12�T:
ð30Þ

Here the matrix ½Yγk� takes the form

½Yγk� ¼

0
B@

c11Λ11 c12Λ12 c13Λ13

c21Λ21 c22Λ22 c23Λ23

c31Λ31 c32Λ32 c33Λ33

1
CA; ð31Þ

where the coefficients cij are functions of jVijj2. As an
example,

½Y11� ¼

0
BB@

ðjV23j2 þ jV32j2 − jV22j2 − jV33j2ÞΛ11 ðjV2
22 − jV32j2ÞΛ12 ðjV33j2 − jV23j2ÞΛ13

ðjV22j2 − jV23j2ÞΛ21 ð1 − jV22j2ÞΛ22 ð−1þ jV23j2ÞΛ23

ðjV33j2 − jV32j2ÞΛ31 ð−1þ jV32j2ÞΛ32 ð1 − jV33j2ÞΛ33

1
CCA: ð32Þ

It is seen that

X
i

cIi ¼
X
I

cIi ¼ 0; ð33Þ

and the 2 × 2 submatrix (indices 2 and 3) has a simple
structure, cγk ¼ �1� jVγkj2, ðγkÞ ¼ ð2; 3Þ. With the con-
dition (33), one can construct the 3 × 3 matrix from the
known 2 × 2matrix. Finally, the evolution equations for the

TABLE II. The explicit expressions of the matrix ½Sij�.

S11 ¼
 
0 0 0

0 Λ22 −Λ23

0 −Λ32 Λ33

!
, S12 ¼

 
0 0 0

−Λ21 0 Λ23

Λ31 0 −Λ33

!
, S13 ¼

 
0 0 0

Λ21 −Λ22 0

−Λ31 Λ32 0

!

S21 ¼
 
0 −Λ12 Λ13

0 0 0

0 Λ32 −Λ33

!
, S22 ¼

 Λ11 0 −Λ13

0 0 0

−Λ31 0 Λ33

!
, S23 ¼

 −Λ11 Λ12 0

0 0 0

Λ31 −Λ32 0

!

S31 ¼
 
0 Λ12 −Λ13

0 −Λ22 Λ23

0 0 0

!
, S32 ¼

 −Λ11 0 Λ13

Λ21 0 −Λ23

0 0 0

!
, S33 ¼

 Λ11 −Λ12 0

−Λ21 Λ22 0

0 0 0

!
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combinations of Λγk, such as DðPγΛγkÞ, DðPkΛγkÞ, and
DðPγ;kΛγkÞ, can also be cast in similar forms, in which cij
are functions of the elements of Wij and wij. We will not
show the details here.

IV. ANALYSIS OF THE RGEs

Although the solutions to the quark RGEs are not
available, it turns out that, under certain reasonable
assumptions, one can find approximate solutions for them.
Before embarking on this analysis, it should be noticed that,
with the observed values in the mass matrices, the param-
eter c=16π2 and all Λij’s are small. This means that
renormalization effects are generally small if one starts
from low energy using the SM and the known values of the
physical variables. However, it is interesting to entertain the
possibility that, at some point, a new theory can intervene
with a fast-paced renormalization evolution. It is then
relevant to consider RGE evolution from high to low t
values, with other assumed parameters at high energies. To
do this we consider various scenarios of the mass param-
eters: A) f23 ≫ f22 ≫ f21 and h23 ≫ h22 ≫ h21; B) f

2
3 ≫ f22 ≈

f21 and h
2
3 ≫ h22 ≈ h21; C) f

2
3 ≫ f22 ≫ f21 and h

2
3 ≫ h22 ≈ h21.

While case A) corresponds to the mass patterns at low
energy, the other choices are possibilities which may
prevail at some high energy scale. These considerations
are useful for model building, so that one can bridge the
mixing patterns between the high and low energy scales.
We will now present the detailed results for case A), but
leave the discussion of the other cases to the Appendix.
For the hierarchical case in A), one may simplify the

matrices so that ½F23; F31; F12�≃ ½−1; 1;−1� and
½H23; H31; H12�≃ ½−1; 1;−1�. In addition,

½Δf223;Δf231;Δf212�≃ f23½−1; 1; 0�; ð34Þ

½Δh223;Δh231;Δh212�≃ h23½−1; 1; 0�: ð35Þ

The approximations lead to

−
1

2c
DWij ≃

�
f23

�X
p;q

ð−1ÞpþqSpqij

�

þ h23

�X
p;q

ð−1ÞpþqSpqij �T
�
; ð36Þ

where Spqij is the ðp; qÞ element of Sij with p ¼ 1, 2 and
q ¼ 1, 2, 3. We show the explicit expressions of DWij in
the Appendix.
Note that out of the nine equations, six of them can be

cast in the following forms:

1

2c
D lnW11 ¼ f23W31 þ h23W13; ð37Þ

1

2c
D lnW13 ¼ −f23W33 − h23ð1 −W13Þ; ð38Þ

1

2c
D lnW23 ¼ −f23W33 − h23ðW33 −W13Þ; ð39Þ

1

2c
D lnW31 ¼ −f23ð1 −W31Þ − h23W33; ð40Þ

1

2c
D lnW32 ¼ −f23ðW33 −W31Þ − h23W33; ð41Þ

1

2c
D lnW33 ¼ f23ð1 −W33Þ þ h23ð1 −W33Þ: ð42Þ

A RGE invariant can then be derived directly,

D ln

�
W13W31W33

W23W32

�
¼ 0: ð43Þ

Since from the theoretical point of view there is no
preferred scenario concerning the relative magnitudes of f2i
and h2i at high energies, it would be interesting to further
pursue possible invariants under the following assumptions
about the couplings. (i) If f23 ≫ h23, we obtain three more
approximate invariants:

D ln

�
W13

W23

�
≃ 0; ð44Þ

D ln

�
W11W13

W32

�
≃ 0; ð45Þ

D ln

�
W31W33

W32

�
≃ 0: ð46Þ

(ii) If on the other hand, f23 ≪ h23, we have

D ln

�
W31

W32

�
≃ 0; ð47Þ

D ln
�
W13W33

W23

�
≃ 0; ð48Þ

D ln

�
W11W31

W23

�
≃ 0: ð49Þ

Despite the complexity of its original forms, the RGEs of
Wij can be solved approximately. With c0 ¼
16π2=½2cðf23 þ h23Þ� and aij the initial value of Wij,
Eq. (A9) yields

W33 ≃ 1

ða−133 − 1Þe−ðt−t0Þ=c0 þ 1
: ð50Þ
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With the solution of W33, one may in principle solve for
W13, W33, and W11. However, we will not show the long
expressions here, but instead further assume the following
scenarios of the couplings to obtain simple, approximate
solutions for the rest of the Wij. Note that f23 and h23 are
treated as constants here, i.e., the approximate solutions are
only valid for a range of t values in which the variations of
f23 and h23 are negligible.

(i) If f23 ≫ h23, it leads to

W13 ≃ a13
ð1 − a33Þ þ a33eðt−t0Þ=cf

; ð51Þ

W31 ≃ a31
a31 þ ð1 − a31Þeðt−t0Þ=cf

; ð52Þ

W11 ≃ a11
ð1 − a31Þ þ a31e−ðt−t0Þ=cf

; ð53Þ

where cf ¼ 16π2=ð2cf23Þ ≈ c0.

(ii) If f23 ≪ h23,

W13 ≃ a13
a13 þ ð1 − a13Þeðt−t0Þ=ch

; ð54Þ

W31 ≃ a31
ð1 − a33Þ þ a33eðt−t0Þ=ch

; ð55Þ

W11 ≃ a11
ð1 − a13Þ þ a13e−ðt−t0Þ=ch

; ð56Þ

where ch ¼ 16π2=ð2ch23Þ ≈ c0.
(iii) If f23 ≈ h23, then cf ≈ ch ≈ 2c0, and

W13 ≃ a13ð1 − a33Þ
a13K
1−L þ ð1 − a13 − a33ÞK

; ð57Þ

W31 ≃ a31ð1 − a33Þ
a31K
1−L þ ð1 − a31 − a33ÞK

; ð58Þ

W11 ≃ a11ð1 − a33Þ½−1þ 2a13 þ a33 − a213L�−1=2½−1þ 2a31 þ a33 − a231L�−1=2

·

�
a13ðK þ 1Þ − ð1 − a33Þ
a13ðK − 1Þ þ ð1 − a33Þ

�
1=2

·

�
a31ðK þ 1Þ − ð1 − a33Þ
a31ðK − 1Þ þ ð1 − a33Þ

�
1=2

; ð59Þ

where L¼ 1− exp½−ðt− t0Þ=c0� and K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Lþ a33L

p
.
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FIG. 1. The approximate solutions (dashed) are compared with the full, numerical solutions (solid) for the hierarchical scenario with
f23 ¼ h23 ¼ 4, where f23 ≫ f22 ≫ f21 and h

2
3 ≫ h22 ≫ h21. Here ðb; cÞ ¼ ð3;−3=2Þ under the standard model. The initial values of ðx; yÞ at

t ¼ 30 are taken to be x1 ¼ ð1=6Þ þ ε, x2 ¼ ð1=6Þ − ε, y1 ¼ −ð1=6Þ þ ε, and −ð1=6Þ − ε, where ε ¼ 0.01.
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For the purpose of illustration, we show a numerical
example in Fig. 1, in which the approximate solutions for
W11, W13, W31, and W33 are compared with the full
numerical solutions. It is seen that although f23 and h23
are treated as constants in the approximation, the resultant
solutions agree well with the full numerical solutions in
which f23 and h23 vary by a factor of 4. Note that due to a
lack of details at the high-energy regimes, the chosen input
at high energy in this example only leads to W11 ≈ 3=5 at
low energy.

V. CONCLUSION

One of the cornerstones of quantum field theories is the
RGE of coupling “constants,” which describe the change of
couplings as functions of energy scales. When applied to
gauge couplings, they led to the well-established phenome-
non of asymptotic freedom, in addition to the concept of
unification, which is a most interesting conjecture for high-
energy theories. Given the plethora of masses and mixing
parameters, one would hope that RGEs can introduce some
regularity, or at least certain insights, into this set of
seemingly random observables. However, so far this goal
remains largely unfulfilled. One obvious obstacle comes
from the complexity of the RGEs, when written in terms of
the variables of the standard parametrization. In this paper
we obtained evolution equations for a set of rephasing-
invariant mixing parameters. They exhibit compact and
simple structures, with manifest permutation symmetry.
Although a full analysis of these equations is still lacking,
they are simple enough for one to find approximate
solutions under a number of reasonable assumptions for
possible mass parameters. They should be helpful in
assessing the viability of proposed theories at high energies.
Hopefully, as we learn more about these equations, we can
have a clear picture of the relations of Higgs couplings
between low and high energies.
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APPENDIX

Following the discussions in Sec. IV, in this appendix we
collect the explicit RGEs under various assumptions about
the quark masses, whether hierarchical or nearly degener-
ate, when appropriate, we also present approximate sol-
utions for the individual cases.

1. Case A): f 23 ≫ f 22 ≫ f 21 and h23 ≫ h22 ≫ h21
In this case, the explicit expressions of DWij following

Eq. (36) are given by

1

2c
DW11 ≃ f23W11W31 þ h23W11W13; ðA1Þ

1

2c
DW12 ≃ f23ðW13W33 −W11W31Þ þ h23W12W13; ðA2Þ

1

2c
DW13 ≃ −f23W13W33 − h23W13ð1 −W33Þ; ðA3Þ

1

2c
DW21 ≃ f23W21W31 þ h23ðW31W33 −W11W13Þ; ðA4Þ

1

2c
DW22 ≃ −f23ðW21W31 −W23W33Þ

− h23ðW12W13 −W32W33Þ; ðA5Þ

1

2c
DW23 ≃ −f23W23W33 − h23W23ðW33 −W13Þ; ðA6Þ

1

2c
DW31 ≃ −f23W31ð1 −W31Þ − h23W31W33; ðA7Þ

1

2c
DW32 ≃ −f23W32ðW33 −W31Þ − h23W32W33; ðA8Þ

1

2c
DW33 ≃ f23W33ð1 −W33Þ þ h23W33ð1 −W33Þ: ðA9Þ

Here, use has been made of the identities such as
Λ11 þ Λ12 ¼ −W23W33, etc. Also, it can be verified
that

P
αDWαi ¼

P
iDWαi ¼ 0.

2. Case B): f 23 ≫ f 22 ≈ f 21 and h23 ≫ h22 ≈ h21
In this case, ½F23; F31; F12�≃ ð2f22=ϵfÞ½0; 0;−1� and

½H23; H31; H12�≃ ð2h22=ϵhÞ½0; 0;−1�, where ϵf ¼ f22 − f21
and ϵh ¼ h22 − h21. In addition,

½Δf223;Δf231;Δf212�≃ f23½−1; 1; 0�; ðA10Þ

½Δh223;Δh231;Δh212�≃ h23½−1; 1; 0�: ðA11Þ

The general expression for DWij becomes

1

2c
DWij ¼ −ηðS13ij þ S23ij Þ þ η0ðS23ij Þ; ðA12Þ

with Spqij the ðp; qÞ element of Sij, η ¼ 2f23h
2
2=ϵh, and

η0 ¼ 2h23f
2
2=ϵf. Their explicit forms are given by

1

2c
DW11 ≃ −ðηΛ23 þ η0Λ32Þ; ðA13Þ

1

2c
DW12 ≃ ηΛ23 − η0Λ31; ðA14Þ
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1

2c
DW13 ≃ −η0W13W23; ðA15Þ

1

2c
DW21 ≃ −ηΛ13 þ η0Λ32; ðA16Þ

1

2c
DW22 ≃ ηΛ13 þ η0Λ31; ðA17Þ

1

2c
DW23 ≃ η0W13W23; ðA18Þ

1

2c
DW31 ≃ −ηW31W32; ðA19Þ

1

2c
DW32 ≃ ηW31W32; ðA20Þ

1

2c
DW33 ≃ 0: ðA21Þ

It is seen that DðW13 þW23Þ≃ 0, DðW31 þW32Þ≃ 0,
W33 ≃ constant, and W11 þW12 þW21 þW22 ≃ constant.
With the immediate solution for DW33,

W33 ≈ a33; ðA22Þ

and the conditionW13 þW23 ¼ W31 þW32 ¼ 1 − a33, we
obtain the following:

W13 ≃ 1 − a33
1 − ð1 − 1−a33

a13
Þeð1−a33Þðt−t0Þ=aη0 ; ðA23Þ

W23 ≃ 1 − a33
1 − ð1 − 1−a33

a23
Þe−ð1−a33Þðt−t0Þ=aη0 ; ðA24Þ

W31 ≃ 1 − a33
1 − ð1 − 1−a33

a31
Þeð1−a33ðt−t0Þ=aη ; ðA25Þ

W32 ≃ 1 − a33
1 − ð1 − 1−a33

a32
Þe−ð1−a33Þðt−t0Þ=aη ; ðA26Þ

where aη ¼ 16π2=ð2cηÞ and aη0 ¼ 16π2=ð2cη0Þ.

3. Case C): f 23 ≫ f 22 ≫ f 21 and h23 ≫ h22 ≈ h21
In this case, ½F23; F31; F12�≃ ½−1; 1;−1� and

½H23; H31; H12�≃ ð2h22=ϵhÞ½0; 0;−1�. In addition,

½Δf223;Δf231;Δf212�≃ f23½−1; 1; 0�; ðA27Þ

½Δh223;Δh231;Δh212�≃ h23½−1; 1; 0�: ðA28Þ

The general expression for DWij becomes

1

2c
DWij ¼ η½−S13ij þ S23ij � − h23

�X3
p;q≠3

Spqij ð−1Þpþq

�
: ðA29Þ

The explicit expressions are

1

2c
DW11 ≃ −ηΛ23 þ h23W11W13; ðA30Þ

1

2c
DW12 ≃ ηΛ23 þ h23W12W13; ðA31Þ

1

2c
DW13 ≃ −h23W13ð1 −W13Þ; ðA32Þ

1

2c
DW21 ≃ −ηΛ13 þ h23ðW31W33 −W11W13Þ; ðA33Þ

1

2c
DW22 ≃ ηΛ13 þ h23ðW32W33 −W12W13Þ; ðA34Þ

1

2c
DW23 ≃ h23W23ðW13 −W33Þ; ðA35Þ

1

2c
DW31 ≃ −ηW31W32 − h23W31W33; ðA36Þ

1

2c
DW32 ≃ ηW31W32 − h23W32W33; ðA37Þ

1

2c
DW33 ≃ h23W33ð1 −W33Þ: ðA38Þ

The approximate solutions of W33, W13, and W23 are
given by

W33 ≃ 1

1þ ða−133 − 1Þe−ðt−t0Þ=ch ; ðA39Þ

W13 ≃ 1

1þ ða−113 − 1Þeðt−t0Þ=ch ; ðA40Þ

W23≃ a23
½ð1−a13Þþa13e−ðt−t0Þ=ch �½ð1−a33Þþa33eðt−t0Þ=ch �

;

ðA41Þ
where ch ¼ 16π2=ð2ch23Þ. A special case when
η ¼ 2f23h

2
2=ϵh ≪ h23, leads to

W11 ≃ a11
ð1 − a13Þ þ a13e−ðt−t0Þ=ch

; ðA42Þ

W12 ≃ a12
ð1 − a13Þ þ a13e−ðt−t0Þ=ch

; ðA43Þ

W31 ≃ a31
ð1 − a33Þ þ a33eðt−t0Þ=chÞ

; ðA44Þ
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W32 ≃ a32
ð1 − a33Þ þ a33eðt−t0Þ=chÞ

: ðA45Þ

The RGEs and their solutions for the case of f23 ≫ f22 ≈ f21 and h23 ≫ h22 ≫ h21 can be obtained from that for case C) by
replacing f↔h. One notes that in the literature, there exist solutions for the RGEs under different approximate schemes;
see, e.g., Refs. [14,15].
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