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We consider a scenario where, along with the usual Higgs doublet, two scalar triplets are present. The
extension of the triplet sector is required for the Type II seesaw mechanism for the generation of neutrino
masses, if this mechanism has to generate a neutrino mass matrix with two-zero texture. One CP-violating
phase has been retained in the scalar potential of the model, and all parameters have been chosen
consistently with the observed neutrino mass and mixing patterns. We find that a large phase (≳60°) splits
the two doubly charged scalar mass eigenstates wider apart, so that the decay Hþþ

1 → Hþþ
2 h is dominant

(with h being the 125 GeV scalar). We identify a set of benchmark points where this decay dominates. This
is complementary to the situation, reported in our earlier work, where the heavier doubly charged scalar
decays as Hþþ

1 → Hþ
2 W

þ. We point out the rather spectacular signal, ensuing from Hþþ
1 → Hþþ

2 h, in the
form of Higgs plus the same-sign dilepton peak, which can be observed at the Large Hadron Collider.

DOI: 10.1103/PhysRevD.93.093003

I. INTRODUCTION

The observation of a rather distinctive pattern of neutrino
mixing, together with the available information on neutrino
mass splitting, has triggered numerous theoretical propos-
als going beyond the standard electroweak model (SM).
Seesaw models enjoy a fair share of these, along with
additional assumptions to suit particular textures of the
neutrino mass matrix.
Type-II seesaw models can generate Majorana neutrino

masses without any right-handed neutrino(s), with the
help of one or more Y ¼ 2 scalar triplets. The restriction
of the vacuum expectation value (VEV) of such a triplet,
arising from the limits on the ρ-parameter (with ρ ¼
m2

W=m
2
Zcos

2θ), is obeyed in a not so unnatural manner,
where the constitution of the scalar potential can accom-
modate large triplet scalar masses vis-à-vis a small VEV. In
fact, this very feature earns such models classification as a
type of “seesaw.”
A lot of work has been done on the phenomenology of

scalar triplets which, interestingly, also arise in left-right
symmetric theories [1]. One can, however, still ask the
question: is a single-triplet scenario self-sufficient, or does
the replication of triplets (together with, say, the single
scalar doublet of the SM) bring about any difference in
phenomenology? This question, otherwise a purely aca-
demic one, acquires special meaning in the context of some
neutrino mass models which aim to connect the mass
ordering with the values of the mixing angles, thereby
achieving some additional predictiveness. One class of such
models depends on texture zeros, where a number of zero

entries (usually restricted to two) in the mass matrix enable
one to establish the desired connection. The existence of
such zero entries require the imposition of some additional
symmetry; it has, for example, been shown that a horizontal
Z4 symmetry can serve the purpose. The simultaneous
requirement of zero textures and the Type-II seesaw
mechanism [2], however, turns out to be inconsistent, as
has been discussed in earlier works [3]. The inconsistency
is gone for two or more triplets. This resurrects the
relevance of the phenomenology of two-triplet, one-doublet
scalar sectors, this time with practical implications. We
have studied such phenomenology in Ref. [4]. An impor-
tant conclusion of this study was that, whereas the doubly
charged scalar in the single triplet scenario would decay
mostly in the l�l� or W�W� modes, the decay channel
Hþþ

1 ⟶ Hþ
2 W

þ acquires primacy over a large region of
the parameter space. Some predictions on this in the context
of the Large Hadron Collider were also shown in Ref. [4].
However, an added possibility with two triplets is the
possibility of at least one CP-violating phase being there.
This in principle can affect the phenomenology of the
model, which is worth studying.
With this in view, we have analyzed here the one-

doublet, two-triplet framework, including CP-violating
effects arising via a relative phase between the triplets.
Thus, the VEVof one triplet has been made complex, and
consequently, the coefficient of the corresponding trilinear
term in the scalar potential has also been rendered complex.
Indeed, the introduction of a phase results in some

interesting findings that were not present when the
relative phase was absent. First of all, as a result of mixing
between two triplets and the presence of a relative phase
between them, something on which no phenomenological
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restrictions exits, the heavier doubly charged scalar can
dominantly decay into the lighter doubly charged scalar
plus the SM-like Higgs boson, i.e. Hþþ

1 → Hþþ
2 h, over a

larger range of parameter space. This can give rise to a
spectacular signal in the context of the LHC. Basically, as a
final state, we obtainHþþ

1 → lþlþh, i.e. a doubly charged
scalar decaying into two same-sign leptons plus the SM-
like Higgs. This decay often dominates over all other decay
channels. When this decay is not present due to insufficient
mass difference between respective scalars, the decay
Hþþ

2 ⟶ Hþ
2 W

þ mostly dominates, and its consequence
was discussed in some detail in our earlier work [4] on the
CP-conserving scenario.
Second, for some combination of parameters, the decays

mentioned in the above paragraph are not possible with a
vanishing or small phase, due to an insufficient gap in
masses between the respective scalars. However, if we
continuously increase the value of the phase, keeping all the
other parameters fixed, the mass differences between the
scalars start to increase, so that the aforementioned channel
finally opens up.
Third, we have noticed in [4] that the gauge coupling

dominated decay Hþþ
1 → Hþ

2 W
þ dominates over the

Yukawa coupling dominated decay Δþþ → lþlþ, even
in those regions of parameter space where we have chosen
the Yukawa coupling matrices to be sufficiently large (≃1).
On the other hand, the CP-violating phase suppresses
the neutrino mass matrix elements for the same value of the
triplet VEVs. This in turn requires an increase in the
corresponding Yukawa coupling matrix elements, since
the VEVs and Yukawa couplings are related by the
expression for neutrino masses. The outcome of this whole
process is that, for several benchmark points (BPs), the
decay Hþþ

1 → lþlþ competes with the decay intoHþ
2 W

þ.
Finally, the CP-conserving scenario marks out regions

of the parameter space, where the branching ratios of the
decays Hþþ

1 ⟶ lþlþ and Hþþ
1 → WþWþ are of com-

parable, though subdominant, rates. As the phase picks up,
the same VEV necessitates a hike in Yukawa coupling, as
discussed above. In such situations, the decay Hþþ

1 →
lþlþ mostly dominates over the WþWþ mode.
Since, to the best of our knowledge, very little has

been written on CP-violating phase(s) in two-triplet sce-
narios, we introduce the issue in a minimalistic manner,
introducing one such phase. The presence of additional
phases can of course subject the allowed parameter space to
new possibilities. We postpone their discussion for a
further study.
We present a summary of the scenario with a single

triplet with complex VEV in Sec. II. In Sec. III, we outline
the two-triplet scenario with a complex phase, including the
corresponding scalar potential. The composition of physi-
cal states, the benchmark points for our numerical study
and the results are presented in Sec. IV. We summarize and
conclude in Sec. V.

II. A SINGLE SCALAR TRIPLET WITH
A CP-VIOLATING PHASE

We first give the reader a glimpse of the scenario with a
single triplet Δ ¼ ðΔþþ;Δþ;Δ0Þ, over and above the usual
Higgs doublet ϕ, using the notation of [5].Δ is equivalently
denoted by the 2 × 2 matrix

Δ ¼
�

Δþ ffiffiffi
2

p
Δþþffiffiffi

2
p

Δ0 −Δþ

�
: ð1Þ

The VEVs of the doublet and the triplet are expressed as

hϕi0 ¼
1ffiffiffi
2

p
�
0

v

�
and hΔi0 ¼

�
0 0

vT 0

�
; ð2Þ

respectively. The only doublet-dominated physical state
that survives after the generation of gauge boson masses is
a neutral scalar h.
The most general scalar potential including ϕ and Δ can

be written as

Vðϕ;ΔÞ ¼ aϕ†ϕþ b
2
TrðΔ†ΔÞ þ cðϕ†ϕÞ2 þ d

4
ðTrðΔ†ΔÞÞ2

þ e − h
2

ϕ†ϕTrðΔ†ΔÞ þ f
4
TrðΔ†Δ†ÞTrðΔΔÞ

þ hϕ†Δ†Δϕþ ðtϕ†Δ ~ϕþ H:c:Þ; ð3Þ

where ~ϕ≡ iτ2ϕ�. All parameters in the Higgs potential are
real except t which is complex in general. By performing a
global Uð1Þ transformation, v can always be chosen real
and positive. Because of the t-term in the potential there is
no second global symmetry to make vT real. Furthermore, t
can also be complex and, therefore, it can be written as
t ¼ jtjeiα and vT ¼ weiγ with w≡ jvT j. Minimization of
the scalar potential with respect to the phase of vT , i.e. γ,
gives the relation between the phases as αþ γ ¼ π.1

The choice a < 0, b > 0 ensures that the dominant
source of spontaneous symmetry breaking is the scalar
doublet. It is further assumed, following [5], that

a; b ∼ v2; c; d; e; f; h ∼ 1; jtj ≪ v: ð4Þ
Such a choice is motivated by the following considerations:

(i) The need to fulfill the electroweak symmetry break-
ing conditions,

(ii) To have w ≪ v sufficiently small, as required by the
ρ-parameter constraint,

(iii) To keep doublet-triplet mixing low in general, and
(iv) To ensure that all quartic couplings are perturbative.
The mass terms for the singly charged scalars can be

expressed in a compact form as

1For an analogous situation with two Higgs doublets, see for
example [6].
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L�
S ¼ −ðH−;ϕ−ÞM2þ

�
Hþ

ϕþ

�
ð5Þ

with

M2þ ¼
� ðqþ h=2Þv2 ffiffiffi

2
p

vðt� − vTh=2Þffiffiffi
2

p
vðt − v�Th=2Þ 2ðqþ h=2Þw2

�
and

q ¼ jtj
w
: ð6Þ

Keeping aside the charged Goldstone boson, the mass
squared of the singly charged physical scalar is obtained as

m2
Δþ ¼

�
qþ h

2

�
ðv2 þ 2w2Þ; ð7Þ

while the doubly charged scalar mass is expressed as

m2
Δþþ ¼ ðhþ qÞv2 þ 2fw2: ð8Þ

Thus, in the limit w ≪ v,

m2
Δþþ −m2

Δþ ≃ h
2
v2: ð9Þ

Thus a substantial mass splitting betweenΔþþ andΔþ is
in general difficult. This tends to disfavor the ΔþWþ decay
channel of Δþþ, as compared to lþlþ and WþWþ.

III. TWO-ZERO TEXTURE AND THE
INADEQUACY OF A SINGLE TRIPLET

Strong evidence has accumulated in favor of neutrino
oscillation from the solar, atmospheric, reactor and accel-
erator neutrino experiments over the past few years. It is
now widely believed that neutrinos have nondegenerate
masses and a very characteristic mixing pattern. A lot,
however, is yet to be known, including the mass generation
mechanism and the absolute values of the masses, as
opposed to mass-squared differences which affect oscil-
lation rates. Also, a lot of effort is on to ascertain the nature
of neutrino mass hierarchy, including the signs of the mass-
squared differences. A gateway to information of the above
kinds is the light neutrino mass matrix, in a basis where the
charged lepton mass matrix is diagonal.
Here, too, in the absence of very clear guidelines, various

“textures” for the neutrino mass matrix are often inves-
tigated. A possibility that frequently enters into such
investigations is one where the mass matrix has some zero
entries, perhaps as the consequence of some built-in
symmetry of lepton flavors. At the same time, such “zero
textures” lead to a higher degree of predictiveness and
interrelation between mass eigenvalues and mixing angles,
by virtue of having fewer free paramaters (see for example
[7]). In the context of Majorana neutrinos which have a

symmetric mass matrix, various texture zeros have thus
been studied from a number of angles. Of them, two-zero
textures have a rather wide acceptability. It has been hinted
in [8] that none of the seven possible two-zero-texture cases
can be achieved by assuming only one scalar triplet.
To see this, note that there are seven possible two-zero

textures for the 3 × 3 symmetric Majorana mass matrix of
the light neutrinos, denoted byMν here. These are given by

CaseA1∶ Mν ∼

0
B@

0 0 ×

0 × ×

× × ×

1
CA;

Case A2∶ Mν ∼

0
B@

0 × 0

× × ×

0 × ×

1
CA; ð10Þ

Case B1∶ Mν ∼

0
B@

× × 0

× 0 ×

0 × ×

1
CA;

Case B2∶ Mν ∼

0
B@

× 0 ×

0 × ×

× × 0

1
CA; ð11Þ

Case B3∶ Mν ∼

0
B@

× 0 ×

0 0 ×

× × ×

1
CA;

Case B4∶ Mν ∼

0
B@

× × 0

× × ×

0 × 0

1
CA; ð12Þ

Case C∶ Mν ∼

0
B@

× × ×

× 0 ×

× × 0

1
CA: ð13Þ

These textures are defined in a basis where the charged
lepton mass matrix is diagonal. In the context of Type-II
seesaw the Yukawa couplings of scalar triplets Δk , which
we write in 2 × 2 matrix notation, are given by

LY ¼ 1

2

X2
k¼1

yðkÞij L
T
i C

−1iτ2ΔkLj þ H:c:; ð14Þ

where i, j ¼ e, μ, τ, C is the charge conjugation matrix, and

the yðkÞij are the symmetric Yukawa coupling matrices of the
triplets Δk. From the above Lagrangian, the neutrino mass
matrix is given by

Mν
ij ¼ wkykij ð15Þ

CP-VIOLATING PHASE IN A TWO HIGGS TRIPLET … PHYSICAL REVIEW D 93, 093003 (2016)

093003-3



with wk being the VEVof the triplets. Among the neutrino
mass terms, some are allowed, while others are not, as the
consequence of a particular texture. This fact can be
associated with a conserved global Uð1Þ summetry, under
which all fields have some charge. Under this symmetry,
the lepton doublets Li and the scalar triplet Δk transform as

Li ⟶ piLi and Δk ⟶ p0Δk ð16Þ
with phase factors jpij, jp0j ¼ 1. An examination of each
of the allowed textures reveals that the three phase factors
for different lepton flavors, i.e. pe, pμ, pτ, have to be
different from each other. The Higgs doublet transforms
trivially under the horizontal symmetry, thus enabling the
charged-lepton mass matrix to be diagonal. Now, let us
look at the consequence of such a synmetry when just one
triplet is present. We shall see that this assumption leads us
to a contradiction.
In all the seven possible two-texture-zero cases, the μτ

element of Mν is nonzero. Thus, the corresponding
Yukawa coupling element yμτ must be nonzero, and the
resulting interaction term must conserve the Uð1Þ charge.
This implies

p0pμpτ ¼ 1: ð17Þ

We first examine the Cases B1, B2, B3, B4, and C. For these
five cases, yee ≠ 0. Therefore, upon applying the symmetry
operation we have

p0p2
e ¼ 1: ð18Þ

The inequality of the Uð1Þ charges for the different
neutrino flavor eigenstates then results in yeμ picking up
a phase factor,

p0pepμ ¼
pμ

pe
≠ 1: ð19Þ

This leads to the conclusion

yeμ ¼ 0: ð20Þ

Proceeding in the same way with the eτ element of Yukawa
coupling, we obtain

p0pepτ ¼
pτ

pe
≠ 1; ð21Þ

which again implies

yeτ ¼ 0: ð22Þ
On the other hand, we clearly see that in none of the cases
B1, B2, B3, B4 and C, the Yukawa couplings yeμ and yeτ are

both zero. Thus none of these five textures is viable when
only one triplet is present in the scenario.
We next address the two remaining cases, namely A1

and A2. For both of these, one has yμμ ≠ 0. Thus we have
again after the symmetry operation

p0p2
μ ¼ 1: ð23Þ

However, that would again mean

p0pμpτ ¼
pτ

pμ
≠ 1: ð24Þ

This in turn destroys the viability of these two textures as
well. Thus one is forced to conclude that none of the seven
possible two-zero-texture cases can be achieved by an
Abelian horizontal symmetry assuming only one scalar
triplet. But, when two or more triplets are present, then
there will be more freedom in terms of the charges
possessed by them, and the phase factor relations will be
less constraining. Thus the contradictions that appear with a
single triplet can be avoided, so that at least some of the
seven possible two-zero textures are allowed. And therefore
it is important to examine the phenomenological conse-
quences of an augmented triplet sector, if the Type-II
seesaw has to be consistent with two-zero textures. We
proceed in that direction in the following sections.

IV. TWO SCALAR TRIPLETS AND
A CP-VIOLATING PHASE

In view of the conclusions outlined in the previous
section, one is thus encouraged to consider a scenario
consisting of one complex doublet and two Y ¼ 2 triplet
scalars Δ1, Δ2, both written as 2 × 2 matrices,

Δ1 ¼
 

δþ1
ffiffiffi
2

p
δþþ
1ffiffiffi

2
p

δ01 −δþ1

!
and

Δ2 ¼
 

δþ2
ffiffiffi
2

p
δþþ
2ffiffiffi

2
p

δ02 −δþ2

!
: ð25Þ

The VEVs of the scalar triplets are given by

hΔ1i0 ¼
�

0 0

w1 0

�
and

hΔ2i0 ¼
�

0 0

w2 0

�
: ð26Þ

The VEVof the Higgs doublet is as usual given by Eq. (2).
The scalar potential in this model involving ϕ,Δ1 andΔ2

can be written as
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Vðϕ;Δ1;Δ2Þ ¼ aϕ†ϕþ 1

2
bklTrðΔ†

kΔlÞ þ cðϕ†ϕÞ2 þ 1

4
dklðTrðΔ†

kΔlÞÞ2 þ
1

2
ðekl − hklÞϕ†ϕTrðΔ†

kΔlÞ

þ 1

4
fklTrðΔ†

kΔ
†
l ÞTrðΔkΔlÞ þ hklϕ†Δ†

kΔlϕþ gTrðΔ†
1Δ2ÞTrðΔ†

2Δ1Þ þ g0TrðΔ†
1Δ1ÞTrðΔ†

2Δ2Þ
þ ðtkϕ†Δk

~ϕþ H:c:Þ; ð27Þ

where summation over k, l ¼ 1, 2 is understood. This
potential is not the most general one, since we neglected
some of the quartic terms. This is justified in view of the
scope of this paper, as laid out in the Introduction.
In [4], all the VEVs as well as the parameters in the

potential were assumed to be real. As has already been
mentioned, this need not be the situation in general. To see
the phenomenology including CP-violation, we make a
minimal extension of the simplified scenario by postulating
one CP-violating phase to exist. This entails a complex
VEV for any one triplet (in our case we have chosen it to be
Δ1). At the same time, there is a complex phase in the
coefficient t1 of the trilinear term in the potential. Thus one
can write t1 ¼ jt1jeiβ and w1 ¼ jw1jeiα.
Using considerations very similar to those for the single-

triplet model, we have taken

a; bkl ∼ v2; c; dkl; ekl; hkl; fkl; g; g0 ∼ 1; jtkj ≪ v:

ð28Þ

We have also chosen to restrict ourselves to cases wherew1,
w2 ≪ v, keeping in mind the constraint on the ρ-parameter.
The mass eigenvalues, scalar mixing matrices, etc.,

following from the potential (27) can only be obtained
numerically in general. However, one can use the smallness
of the triplet VEVs wk, and drop the quartic terms in the
scalar triplets during the diagonalization of the mass
matrices. This enables one to use approximate analytical
expressions, which makes our broad conclusions somewhat
transparent. However, the numerical results presented in
Sec. V are obtained using the full potential (27), including
the effects of the triplet VEVs.
It is convenient to speak in terms of the following

matrices and vectors:

B ¼ ðbklÞ; E ¼ ðeklÞ; H ¼ ðhklÞ; ð29Þ

t ¼
� jt1j cos β

t2

�
; t0 ¼

� jt1j sin β
0

�
;

w ¼
� jw1j cos α

w2

�
; w0 ¼

� jw1j sin α
0

�
: ð30Þ

In terms of them, the conditions for a stationary point of
the potential are

�
Bþ v2

2
ðE −HÞ

�
wþ v2t ¼ 0; ð31Þ

aþ cv2 þ 1

2
wTðE −HÞwþ 2t · wþ 2t0 · w0

þ 1

2
w0TðE −HÞw0 ¼ 0; ð32Þ

�
b11 þ

v2

2
ðe11 − h11Þ

�
jw1j sin α − v2jt1j sin β ¼ 0; ð33Þ

using the notation t · w ¼Pktkwk. These three equations
are exact if one neglects all terms quartic in the triplet
VEVs in V0 ≡ Vðhϕi0; hΔi0Þ. In Eq. (32) we have already
divided by v, assuming v ≠ 0. The small VEVs wk are
thereafter obtained as

w ¼ −v2
�
Bþ 1

2
v2ðE −HÞ

�
−1
t: ð34Þ

And from Eq. (33) the phase of t1 can be expressed as

sin β ¼ v−2ðb11 þ v2
2
ðe11 − h11ÞÞjw1j sin α

jt1j
: ð35Þ

This reiterates the fact that the phases t1 and w1 are related
to each other. It is also evident from (35) that the value of
the angle α has to be nπ where n ¼ 0; 1; 2; 3;…. when the
phase β is absent.
We next discuss the mass matrices of charged

scalars. The mass matrix of the doubly charged scalars
is obtained as

M2þþ ¼ Bþ v2

2
ðEþHÞ: ð36Þ

It is interesting to note that if we drop those quartic terms
for simplification from our scalar potential, then our doubly
charged mass matrix remains the same as in [4]. This gives
the impression that the relative phase between triplets
does not affect the doubly charged mass matrix if we drop
the quartic terms in the potential. But in our numerical
calculation, where we have taken the full scalar potential
including the quartic terms, we find such a dependence,
arising obviously from the quartic terms. This will be
discussed further in the next section.
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As for the singly charged fields Δþ
k , one has to consider their mixing with ϕþ of the Higgs doublet. This introduces the

CP-violating phase into the singly charged mass matrix. We write the mass term as

−L�
S ¼ ðδ−1 ; δ−2 ;ϕ−ÞM2þ

0
B@

δþ1
δþ2
ϕþ

1
CAþ H:c:; ð37Þ

and Eq. (27) leads to

M2þ ¼
�

Bþ v2
2
E

ffiffiffi
2

p
vðt −Hw=2Þffiffiffi

2
p

vðt −Hw=2Þ† aþ cv2 þ 1
2
wTðEþHÞwþ 1

2
w0TðEþHÞw0

�
: ð38Þ

Now, this mass matrix must have a zero eigenvalue,
corresponding to the would-be-Goldstone boson. Indeed,
on substituting the minimization equations (31), (32) and
(33), we see that

DetðM2þÞ ¼ 0; ð39Þ

which ensures a consistency check.
The mass matrices (37) and (38) are diagonalized by

U†
1M

2þþU1 ¼ diagðM2
1;M

2
2Þ and

U†
2M

2þU2 ¼ diagðμ21; μ22; 0Þ; ð40Þ

respectively, with

�
δþþ
1

δþþ
2

�
¼ U1

�
Hþþ

1

Hþþ
2

�
;

0
B@

δþ1
δþ2
ϕþ

1
CA ¼ U2

0
B@

Hþ
1

Hþ
2

Gþ

1
CA: ð41Þ

We have denoted the fields with definite mass by Hþþ
k

and Hþ
k , and Gþ is the charged would-be-Goldstone

boson.
We also outline the neutral sector of the model, which

cannot now be separated into CP-even and CP-odd
sectors. Thus the mass matrix for the neutral sector of
the present scenario turns out to be a 6 × 6 matrix,
including mixing between real and imaginary parts of
the complex neutral fields. The symmetric neutral mass
matrix is denoted by Mneut, whose elements are listed in
the Appendix. So, the mass term for the neutral part can
be written as

−L0
S ¼ ðN01; N02; N03; N04; N05; N06ÞM2

neut

0
BBBBBBBB@

N01

N02

N03

N04

N05

N06

1
CCCCCCCCA

þ H:c:; ð42Þ

where N0n are the neutral states in the flavor basis. This
mass matrix is diagonalized by

U†
3M

2
neutU3 ¼ diagðM2

01;M
2
02;M

2
03;M

2
04;M

2
h; 0Þ ð43Þ

with

0
BBBBBBBB@

N01

N02

N03

N04

N05

N06

1
CCCCCCCCA

¼ U3

0
BBBBBBBB@

H01

H02

H03

H04

h

G0

1
CCCCCCCCA
; ð44Þ

where h is identified with the Standard Model Higgs
boson and G0 is the neutral Goldstone boson.
It is interesting to note that once we remove the phases

of the coefficient of the trilinear term in scalar potential
and the VEVof triplet Hþþ

1 by setting α ¼ β ¼ 0, then the
mixing between the CP-even and CP-odd scalars vanishes
and we get back the usual separate 3 × 3 matrices for these
two sectors. This also serves as a consistency check for the
model. And of course the lightest neutral scalar of this
sector can be identified with SM Higgs.
The ΔL ¼ 2 Yukawa interactions of the triplets are

LY ¼ 1

2

X2
k¼1

yðkÞij L
T
i C

−1iτ2ΔkLj þ H:c:; ð45Þ
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where C is the charge conjugation matrix, the yðkÞij are the
symmetric Yukawa coupling matrices of the tripletsΔk, and
the i, j are the summation indices over the three neutrino
flavors. The charged-lepton mass matrix is diagonal in
this basis.
The neutrino mass matrix is generated from LY as

ðMνÞij ¼ yð1Þij jw1j cos αþ yð2Þij w2: ð46Þ

This relates the Yukawa coupling constants yð1Þij , yð2Þij and
the real part of the triplet VEVs, namely, jw1j cos α and w2.

The neutrino mass eigenvalues are fixed according to a
particular type of mass spectrum. In this work we illustrate
our points, without any loss of generality, in the context
of the normal hierarchy, setting the lowest neutrino mass
eigenvalue to zero. Next, using the observed central values
of the various lepton mixing angles, the elements of the
neutrino mass matrix Mν can be found by using

Mν ¼ U†M̂νU; ð47Þ

where U is the Pontecorvo-Maki-Nakagawa-Sakata matrix
given by [9]

U ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CA ð48Þ

and M̂ν is the diagonal matrix of the neutrino masses.
We have neglected possible Majorana phases, and the
recent global analysis of neutrino data is used to compute
the elements of U [10]. Also, the phase δ has been set to
zero. For θ13, the results from the Daya Bay and RENO
experiments [11,12] have been used.
After all this, all terms of the left-hand side of Eq. (45)

are approximately known, which is sufficient for predicting
phenomenology in the 100 GeV–1 TeV scale. The actual
mass matrix thus constructed, on numerical evaluation,
approximately reflects a two-zero texture which is one of
the motivations of this study.
For each benchmark point used in the next section, w1

and w2 get determined by values of the other parameters in
the scalar potential. Of course, the coupling matrices yð1Þ

and yð2Þ are still indeterminate. We fix the matrix yð2Þ by
choosing a single suitable value for all elements of the μ-τ
block and a smaller value for the rest of the matrix. As has

already been mentioned in [4], our broad conclusions do
not depend on this “working rule.”
Of course, the success of a two-triplet scenario in the

context of a seesaw mechanism requires the electroweak
vacuum to be (meta)stable till at least the seesaw scale. In
general, the tendency of the top quark Yukawa coupling
to turn the doublet quartic couplings negative is respon-
sible for the loss of stability. Additional scalar quartic
couplings usually offset this effect [13], and the present
scenario is no exception. It been shown in [14] that one
can ensure stability up to 1016–18 GeV with a single
triplet. With the low-energy quartic couplings not too
different from these, and with one more triplet, interact-
ing with the doublet, introduced, the situation is even
more optimistic. Moreover, the acceptence of a metasta-
ble electroweak vacuum can help the scenario even
further.

TABLE I. Charged scalar masses for phase α ¼ 30°.

α ¼ 30° Mass [GeV] BP 1 BP 2 BP 3 BP 4

Scenario 1

Hþþ
1

516.61 513.83 522.13 537.62
Hþþ

2
391.40 389.82 426.93 440.96

Hþ
1

516.58 513.81 522.10 537.55
Hþ

2
390.60 389.79 408.83 416.30

Scenario 2

Hþþ
1

526.00 529.85 477.38 485.76
Hþþ

2
397.61 390.10 389.10 389.33

Hþ
1

525.94 529.80 477.34 485.70
Hþ

2
393.79 390.01 389.00 389.28

Scenario 3

Hþþ
1

558.71 562.35 485.76 477.38
Hþþ

2
427.00 407.20 389.33 389.10

Hþ
1

557.59 559.11 485.70 477.34
Hþ

2
392.90 405.91 389.28 389.00

TABLE II. Neutral scalar masses for phase α ¼ 30°.

α ¼ 30° Mass [GeV] BP 1 BP 2 BP 3 BP 4

H01 730.57 726.65 738.36 760.19
Scenario 1 H02 730.49 726.62 738.32 760.15

H03 552.30 551.25 551.40 552.65
H04 552.15 551.20 551.34 552.56
h 125.16 125.18 125.20 125.15

H01 743.85 749.33 675.11 686.96
Scenario 2 H02 743.00 749.25 675.00 686.90

H03 552.21 551.50 550.17 550.53
H04 552.10 551.39 550.05 550.40
h 125.21 125.18 125.22 125.23

H01 787.10 789.25 687.00 676.15
Scenario 3 H02 787.00 789.10 686.90 676.08

H03 541.16 542.00 552.21 549.90
H04 541.07 541.91 552.00 549.75
h 125.23 125.26 125.13 125.16
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V. BENCHMARK POINTS AND
NUMERICAL PREDICTIONS

The trademark signal of Higgs triplets is contained in the
doubly charged components. In the current scenario, too,
one would like to see the signatures of the two doubly
charged scalars, especially the heavier one, namely Hþþ

1

whose decays have already been shown to contain a rather
rich phenomenology.
The Hþþ

1 , produced at the LHC via the Drell-Yan
process, can in general have two-body decays in the
following channels:

TABLE III. Decay branching ratios and production cross sections for doubly charged scalars for phase α ¼ 30°.

α ¼ 30° Data BP 1 BP 2 BP 3 BP 4

BRðHþþ
1 → Hþþ

2 hÞ 5.1 × 10−3 Not allowed Not allowed Not allowed
BRðHþþ

1 → Hþ
2 W

þÞ 0.99 0.99 0.79 0.99
BRðHþþ

1 → WþWþÞ 2.8 × 10−3 6.5 × 10−2 0.21 3.1 × 10−7

BRðHþþ
1 → lþ

i l
þ
j Þ 4.8 × 10−21 1.6 × 10−20 1.3 × 10−18 2.1 × 10−23

Scenario 1 BRðHþþ
2 → WþWþÞ 0.99 0.99 0.99 0.99

BRðHþþ
2 → lþ

i l
þ
j Þ 1.6 × 10−18 2.7 × 10−18 3.9 × 10−17 1.3 × 10−20

σðpp → Hþþ
1 H−−

1 Þ 1.10 fb 1.13 fb 1.05 fb 0.42 fb
σðpp → Hþþ

2 H−−
2 Þ 3.97 fb 4.10 fb 2.70 fb 1.06 fb

BRðHþþ
1 → Hþþ

2 hÞ 0.84 0.96 Not allowed Not allowed
BRðHþþ

1 → Hþ
2 W

þÞ 0.13 0.03 0.76 0.42
BRðHþþ

1 → WþWþÞ 3.1 × 10−20 1.9 × 10−20 1.2 × 10−19 2.8 × 10−21

BRðHþþ
1 → lþ

i l
þ
j Þ 0.03 8.9 × 10−3 0.24 0.58

Scenario 2 BRðHþþ
2 → WþWþÞ 1.9 × 10−19 2.8 × 10−19 1.8 × 10−20 3.7 × 10−19

BRðHþþ
2 → lþ

i l
þ
j Þ 0.99 0.99 0.99 0.99

σðpp → Hþþ
1 H−−

1 Þ 1.01 fb 1.02 fb 1.56 fb 1.43 fb
σðpp → Hþþ

2 H−−
2 Þ 3.60 fb 4.04 fb 3.97 fb 3.95 fb

BRðHþþ
1 → Hþþ

2 hÞ 0.99 0.99 Not allowed Not allowed
BRðHþþ

1 → Hþ
2 W

þÞ 2.1 × 10−3 1.3 × 10−2 0.99 0.99

BRðHþþ
1 → WþWþÞ 2.6 × 10−14 3.1 × 10−14 4.3 × 10−10 2.8 × 10−11

BRðHþþ
1 → lþ

i l
þ
j Þ 1.5 × 10−11 2.3 × 10−11 3.7 × 10−7 5.4 × 10−8

Scenario 3 BRðHþþ
2 → WþWþÞ 0.03 0.01 0.04 0.02

BRðHþþ
2 → lþ

i l
þ
j Þ 0.97 0.99 0.96 0.98

σðpp → Hþþ
1 H−−

1 Þ 0.77 fb 0.74 fb 1.45 fb 1.58 fb
σðpp → Hþþ

2 H−−
2 Þ 3.61 fb 2.75 fb 3.95 fb 3.98 fb

TABLE IV. Charged scalar masses for phase α ¼ 45°.

α ¼ 45° Mass [GeV] BP 1 BP 2 BP 3 BP 4

Hþþ
1

542.27 539.35 549.85 566.55
Scenario 1 Hþþ

2
406.60 405.20 438.46 450.96

Hþ
1

542.22 539.20 548.73 564.92
Hþ

2
405.90 405.07 422.28 428.94

Hþþ
1

543.30 538.15 551.62 564.34
Scenario 2 Hþþ

2
405.10 404.10 440.10 448.82

Hþ
1

542.50 537.65 550.90 563.65
Hþ

2
405.00 403.20 439.72 447.90

Hþþ
1

545.82 540.32 550.90 567.80
Scenario 3 Hþþ

2
409.80 405.00 439.50 452.45

Hþ
1

544.71 539.46 550.15 565.90
Hþ

2
409.00 404.75 425.38 432.80

TABLE V. Neutral scalar masses for phase α ¼ 45°.

α ¼ 45° Mass [GeV] BP 1 BP 2 BP 3 BP 4

H01 766.78 762.75 774.79 797.22
Scenario 1 H02 766.60 762.11 774.23 797.00

H03 573.00 572.50 575.50 576.17
H04 572.65 572.00 575.15 575.95
h 125.15 125.22 125.19 125.13

H01 768.10 760.37 772.90 795.85
Scenario 2 H02 768.00 760.13 772.75 795.50

H03 575.32 570.00 574.30 576.85
H04 575.15 569.22 573.78 576.20
h 125.12 125.16 125.24 125.17

H01 771.10 758.52 778.10 798.37
Scenario 3 H02 770.85 758.00 777.85 798.00

H03 577.31 568.75 578.29 577.21
H04 577.00 568.13 578.00 577.00
h 125.18 125.21 125.13 125.16
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Hþþ
1 → Hþþ

2 h; ð49Þ

Hþþ
1 → lþ

i l
þ
j ; ð50Þ

Hþþ
1 → WþWþ; ð51Þ

Hþþ
1 → Hþ

2 W
þ; ð52Þ

Hþþ
2 → lþ

i l
þ
j ; ð53Þ

Hþþ
2 → WþWþ; ð54Þ

where h is the SM-like Higgs and li, lj ¼ e, μ.
The decay modes (49) and (52) are absent in the single-

triplet model. On the other hand, mixing between two

TABLE VI. Decay branching ratios and production cross sections for doubly charged scalars for phase α ¼ 45°.

α ¼ 45° Data BP 1 BP 2 BP 3 BP 4

BRðHþþ
1 → Hþþ

2 hÞ 0.99 0.99 Not allowed Not allowed
BRðHþþ

1 → Hþ
2 W

þÞ 8.2 × 10−4 9.1 × 10−4 0.90 0.96
BRðHþþ

1 → WþWþÞ 2.4 × 10−5 1.7 × 10−4 0.09 0.04

Scenario 1

BRðHþþ
1 → lþ

i l
þ
j Þ 3.1 × 10−22 3.8 × 10−22 6.1 × 10−19 4.2 × 10−20

BRðHþþ
2 → WþWþÞ 0.99 0.99 0.99 0.99

BRðHþþ
2 → lþ

i l
þ
j Þ 7.4 × 10−19 8.3 × 10−19 2.1 × 10−19 6.7 × 10−19

σðpp → Hþþ
1 H−−

1 Þ 0.88 fb 0.87 fb 0.80 fb 0.71 fb
σðpp → Hþþ

2 H−−
2 Þ 3.39 fb 3.33 fb 2.43 fb 2.13 fb

Scenario 2

BRðHþþ
1 → Hþþ

2 hÞ 0.99 0.99 Not allowed Not allowed
BRðHþþ

1 → Hþ
2 W

þÞ 4.5 × 10−4 3.9 × 10−4 0.64 0.88
BRðHþþ

1 → WþWþÞ 1.3 × 10−21 9.1 × 10−22 7.6 × 10−20 6.4 × 10−21

BRðHþþ
1 → lþ

i l
þ
j Þ 3.1 × 10−6 1.7 × 10−4 0.36 0.12

BRðHþþ
2 → WþWþÞ 2.7 × 10−20 2.5 × 10−19 3.2 × 10−19 5.7 × 10−20

BRðHþþ
2 → lþ

i l
þ
j Þ 0.99 0.99 0.99 0.99

σðpp → Hþþ
1 H−−

1 Þ 0.93 fb 0.89 fb 0.86 fb 0.75 fb
σðpp → Hþþ

2 H−−
2 Þ 2.55 fb 3.35 fb 2.46 fb 2.18 fb

Scenario 3

BRðHþþ
1 → Hþþ

2 hÞ 0.99 0.99 Not allowed Not allowed
BRðHþþ

1 → Hþ
2 W

þÞ 3.6 × 10−5 1.4 × 10−4 0.99 0.99
BRðHþþ

1 → WþWþÞ 8.6 × 10−14 7.3 × 10−13 1.4 × 10−9 5.8 × 10−10

BRðHþþ
1 → lþ

i l
þ
j Þ 4.8 × 10−11 3.7 × 10−11 5.6 × 10−11 4.7 × 10−9

BRðHþþ
2 → WþWþÞ 0.02 0.04 0.97 0.05

BRðHþþ
2 → lþ

i l
þ
j Þ 0.98 0.96 0.03 0.95

σðpp → Hþþ
1 H−−

1 Þ 0.92 fb 0.95 fb 0.84 fb 0.73 fb
σðpp → Hþþ

2 H−−
2 Þ 3.42 fb 3.37 fb 2.44 fb 2.15 fb

TABLE VII. Charged scalar masses for phase α ¼ 60°.

α ¼ 60° Mass [GeV] BP 1 BP 2 BP 3 BP 4

Scenario 1

Hþþ
1

557.90 563.51 564.20 556.56
Hþþ

2
412.20 411.51 434.37 439.71

Hþ
1

557.62 563.25 559.18 548.00
Hþ

2
411.65 411.18 423.27 426.15

Scenario 2

Hþþ
1

558.20 565.20 566.40 554.30
Hþþ

2
411.90 413.61 436.56 438.12

Hþ
1

558.00 564.50 565.90 553.65
Hþ

2
410.75 412.85 435.85 435.32

Scenario 3

Hþþ
1

556.65 560.30 567.80 552.90
Hþþ

2
410.25 408.35 437.90 436.59

Hþ
1

556.00 559.75 563.21 550.00
Hþ

2
409.85 407.80 425.56 429.11

TABLE VIII. Neutral scalar masses for phase α ¼ 60°.

α ¼ 60° Mass [GeV] BP 1 BP 2 BP 3 BP 4

Scenario 1

H01 788.52 796.91 784.64 765.05
H02 788.35 796.27 784.21 764.62
H03 581.43 583.16 579.62 577.78
H04 581.32 582.95 579.13 577.21
h 125.16 125.24 125.14 125.20

Scenario 2

H01 790.21 793.82 786.52 762.90
H02 790.00 793.11 786.09 762.42
H03 579.32 580.16 582.32 574.21
H04 579.00 579.92 582.00 573.86
h 125.15 125.10 125.21 125.09

Scenario 3

H01 786.51 790.63 785.00 760.71
H02 786.00 790.27 784.32 760.29
H03 577.82 576.21 580.14 570.90
H04 577.50 576.00 579.55 570.58
h 125.23 125.14 125.23 125.18
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triplets opens up situations where the mass separation
between Hþþ

1 , Hþþ
2 and Hþþ

1 , Hþ
2 is sufficient to kine-

matically allow the transitions (49) and (52). The decay
(49) opens up a spectacular signal, especially when Hþþ

2

mostly decays into two same sign leptons, leading to

Hþþ
1 → lþ

i l
þ
j h: ð55Þ

Let us denote the mass of SM Higgs byMh, that ofH
þþ
k by

Mk and that ofH
þ
k by μk (k ¼ 1, 2). Then, in the convention

M1 > M2, μ1 > μ2, the decays (49) and (52) are possible
only if M1 > M2 þMh and M1 > μ2 þmW . We demon-
strate numerically that this can naturally happen, by
considering three distinct regions of the parameter space
and selecting four BPs for each region. The relative phase
between two triplets also plays an important roll in these

TABLE IX. Decay branching ratios and production cross sections for doubly charged scalars for phase α ¼ 60°.

α ¼ 60° Data BP 1 BP 2 BP 3 BP 4

Scenario 1

BRðHþþ
1 → Hþþ

2 hÞ 0.99 0.98 0.99 Not allowed
BRðHþþ

1 → Hþ
2 W

þÞ 3.9 × 10−4 2.6 × 10−2 0.01 0.94
BRðHþþ

1 → WþWþÞ 1.7 × 10−5 8.9 × 10−3 6.9 × 10−5 0.05
BRðHþþ

1 → lþ
i l

þ
j Þ 2.6 × 10−22 4.7 × 10−21 3.1 × 10−22 5.6 × 10−20

BRðHþþ
2 → WþWþÞ 0.99 0.99 0.99 0.99

BRðHþþ
2 → lþ

i l
þ
j Þ 6.7 × 10−19 7.2 × 10−19 5.3 × 10−20 3.5 × 10−15

σðpp → Hþþ
1 H−−

1 Þ 0.79 fb 0.71 fb 0.72 fb 0.84 fb
σðpp → Hþþ

2 H−−
2 Þ 3.22 fb 3.15 fb 2.48 fb 2.51 fb

Scenario 2

BRðHþþ
1 → Hþþ

2 hÞ 0.99 0.79 0.99 Not allowed
BRðHþþ

1 → Hþ
2 W

þÞ 3.2 × 10−5 0.21 3.1 × 10−3 0.88
BRðHþþ

1 → WþWþÞ 3.9 × 10−22 5.6 × 10−22 5.9 × 10−22 4.3 × 10−22

BRðHþþ
1 → lþ

i l
þ
j Þ 2.1 × 10−4 1.4 × 10−4 3.7 × 10−4 0.12

BRðHþþ
2 → WþWþÞ 3.2 × 10−19 5.6 × 10−20 7.8 × 10−18 6.3 × 10−19

BRðHþþ
2 → lþ

i l
þ
j Þ 0.99 0.99 0.99 0.99

σðpp → Hþþ
1 H−−

1 Þ 0.77 fb 0.74 fb 0.81 fb 0.86 fb
σðpp → Hþþ

2 H−−
2 Þ 3.26 fb 3.19 fb 2.46 fb 2.53 fb

Scenario 3

BRðHþþ
1 → Hþþ

2 hÞ 0.99 0.90 0.99 Not allowed
BRðHþþ

1 → Hþ
2 W

þÞ 2.5 × 10−4 0.10 1.2 × 10−2 0.99
BRðHþþ

1 → WþWþÞ 9.3 × 10−15 2.7 × 10−14 5.3 × 10−11 5.1 × 10−11

BRðHþþ
1 → lþ

i l
þ
j Þ 6.4 × 10−11 1.7 × 10−12 7.6 × 10−13 2.3 × 10−9

BRðHþþ
2 → WþWþÞ 0.03 0.04 0.89 0.02

BRðHþþ
2 → lþ

i l
þ
j Þ 0.97 0.96 0.11 0.98

σðpp → Hþþ
1 H−−

1 Þ 0.81 fb 0.75 fb 0.72 fb 0.83 fb
σðpp → Hþþ

2 H−−
2 Þ 3.28 fb 3.20 fb 2.50 fb 2.54 fb

FIG. 1. Variation of mass difference between (a) Hþþ
1 and Hþþ

2 and (b) Hþþ
1 and Hþ

2 with phase of triplet α.
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cases. In order to emphasize this, we have also chosen three
different values of the phase, namely α ¼ 30°, 45° and 60°
for each benchmark point. Thus we have considered 36 BPs
altogether, comprising three distinct regions of the param-
eter space and relative phases between triplets to justify our
findings.
We have seen that, in a single-triplet model, the doubly

charged Higgs decays into either lþ
i l

þ
j or WþWþ. The

former is controlled by the ΔL ¼ 2 Yukawa couplings yij,
while the latter is driven by w, the triplet VEV. Neutrino
masses are given by (46), implying large values of yij for
small w, and vice versa. Interestingly, the presence of a
triplet phase through the cosα term in this equation actually
suppresses the VEV w1 of the first triplet. This in turn
implies that we get higher values for Yukawa coupling
matrix entries yij1 compared to the case where CP-violating
effects are absent. Accordingly, we have identified, for the
chosen values of the triplet phase, three regions in the
parameter space, corresponding to

(i) ΓðHþþ
1;2 → lþ

i l
þ
j Þ ≪ ΓðHþþ

1;2 → WþWþÞ,
(ii) ΓðHþþ

1;2 → lþ
i l

þ
j Þ ≫ ΓðHþþ

1;2 → WþWþÞ,
(iii) ΓðHþþ

1;2 → lþ
i l

þ
j Þ ∼ ΓðHþþ

1;2 → WþWþÞ.
These are referred to as scenarios 1, 2 and 3, respectively, in
the subsequent discussion.
The masses of the various physical scalars and some

of their phenomenological properties are shown in
Tables I–IX. Although our study involves mainly the
phenomenology of charged scalars, we have also listed
the masses of neutral scalars. It should be noted that
the lightest neutral scalar, dominated by the doublet
component, has mass ∼125 GeV for each BP, identifying
it with the observed Higgs particle.
In Ref. [4], we had concentrated on those benchmark

points in the parameter space, for which Hþþ
1 → Hþ

2 W
þ

becomes a dominant decay mode. Here we draw the
reader’s attention to an interesting complementary situa-
tion: one can have, in certain regions of the parameter
space, Hþþ

1 → Hþþ
2 h as the dominant channel in Hþþ

1

decay. Since the triplet masses are free parameters, this
can of course happen without any “theoretical design.”
However, the presence of the CP-violating phase can also
play an interesting role here. This is demonstrated in Fig. 1.
To understand the situation, suppose the mass parameters in
the potential are fixed in such a way that the decay Hþþ

1 →
Hþþ

2 h is not possible for α ¼ 0. Now, if the CP-violating
phase α is gradually increased from zero, keeping all the
other parameters fixed, then both the mass differences
mHþþ

1
−mHþþ

2
and mHþþ

1
−mHþ

2
start increasing rather

sharply for α≳ 60°. This is because the degree of dou-
blet-triplet mixing for Δ1 in our parametrization changes
with α. In such situations, as shown, for example, in
Table IX, the quartic couplings cause the decay Hþþ

1 →
Hþþ

2 h to dominate over Hþþ
1 → Hþ

2 W
þ. Thus, other than

the free parameters corresponding to the scalar masses, the
CP-violating phase has a part to play in the phenomenol-
ogy of a two-triplet scenario. One consequence of this will
be discussed below.
Earlier, we neglected contributions from the quartic

terms in our scalar potential in the approximate forms of
the doubly and singly charged mass matrices. However, the
import of the phase is not properly captured unless one
retains these terms. Thus it is only via a full numerical
analysis of the potential retaining all terms that the above
effect of the phase of the trilinear term becomes apparent.
It should also be noted that the cosine of the complex

phase suppresses the contribution to neutrino masses.
Consequently, for the same triplet VEV, one requires larger
values of the Yukawa interaction strengths. This makes the
lþlþ decay mode of a doubly charged scalar more com-
petitive with WþWþ, as compared to the results in [4].
The branching ratios for a given scalar in different

channels are of course dependent on the various parameters
that characterize a BP. We list all the charged scalar masses
in Tables I, IVand VII. Moreover, the neutral scalar masses
are shown in Tables II, Vand VIII for three different values
of triplet phase α. The branching ratios for Hþþ

1 and Hþþ
2

FIG. 2. Invariant mass distribution of same sign dileptons for (a) α ¼ 60° and (b) α ¼ 65° for BP 4 of Scenario 2.
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for different triplet phases are listed in Tables III, VI
and IX, together with their pair-production cross sections
at the LHC with

ffiffiffi
s

p ¼ 13 TeV. The cross sections and
branching ratios have been calculated with the help of the
package FeynRules version 1.6.0) [15,16], thus creating a
new Universal Feynrules Object model file in MadGraph5-
aMC@NLO (version 2.3.3) [17]. Using the full machinery
of scalar mixing in this model, the decay widths into
various channels have been obtained.

From Tables III, VI and IX, we see that decay (55)
dominates, when the masses of Hþþ

1 and Hþþ
2 are suffi-

ciently separated. Also, when the phase space needed for
this decay (55) is not available, the process (52) dominates
over all other remaining decays. Benchmark points when
decay (52) mostly dominates for H��

1 have been discussed
in detail in Ref. [4]. Here we supplement those observations
with some results for the case when decay (55) has an
interesting consequence, as exemplified by Figs. 2 and 3.

FIG. 3. Invariant mass distribution of same sign dileptons for chosen benchmark points. In (a) BP 3 and (b) BP 4 of Scenario 2 for
α ¼ 30°. In (c) BP 3 and (d) BP 4 of Scenario 2 for α ¼ 45°. In (e) BP 4 of Scenario 2 for α ¼ 60°.
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Figure 2 specifically shows the effect of enhancement
of the CP-violating phase. We have seen in Fig. 1 that
mHþþ

1
−mHþþ

2
goes up for α≳ 60°. With this in view, the

plots in Fig. 2 have been drawn for a case where both of the
doubly charged scalars have appreciable coupling to same-
sign dileptons. In Fig. 2(a), where the phase is lower, one
notices two such dilepton pair peaks. The leptons selected
for this purpose satisfy jplepton

T j > 20 GeV, jηlepj < 2.5,
jΔRllj > 0.2 and jΔRljj > 0.4 where ΔR2 ¼ Δη2 þ Δϕ2.
Each peak is the result of Drell-Yan pair production of the
corresponding doubly charged scalar, and the presence of
two triplets is clearly discernible from the peaks them-
selves. In Fig. 2(b), however, with α ¼ 65°, one notices
only the lower mass peak. This is because the decay
Hþþ

1 → Hþþ
2 h then reigns supreme. As a result, one

notices only a lower mass peak, but events in association
with an SM-like Higgs are noticeable. Thus the signature
of two triplets shows an interesting dichotomy of LHC
signals, depending on the value of the CP-violating phase.
Figure 3 further elaborates the first of the above

situations. The plots there bear testimony to the situation
where two peaks are still visible. Table X contains the
numerical values of the number of events around each peak,
for five of our benchmark spectra, with varying phases. The
numbers are illustrated for an integrated luminosity of
2500 fb−1. The number of events correspond to a bin
within �20 GeV of the invariant mass peak. From the
table, we clearly expect several hundred events around the
lower mass peak and 60–140 events around the higher one.

VI. SUMMARY AND CONCLUSIONS

We have considered a one-doublet, two-triplet Higgs
scenario, with one CP-violating phase in the potential. It is
noticed that a larger phase leads to bigger mass separations
between the two doubly charged mass eigenstates, and
also between the states Hþþ

1 and Hþ
2 . Consequently, this

scenario admits a larger region of the parameter space,
when the decay Hþþ

1 → Hþþ
2 h opens up. When it is

allowed, this decay often overrides Hþþ
1 → Hþ

2 W
þ.

While the role of the latter decay as a characteristic signal
of such models was discussed in our earlier work, we
emphasize here that the former mode leads to another

interesting signal, arising fromHþþ
1 → lþ

i l
þ
j h. This would

mean that the production of SM-like Higgs together with
same-sign dileptons peak at the mass of the lighter doubly
charged scalar. Such a signal, too, may give us a distinctive
signature of a two-triplet scenario at the LHC.
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APPENDIX

The various elements of Mneut, the neutral scalar mass
matrix, are as follows:

m11 ¼ 2

�
b22 þ

1

2
ðe22 − h22Þv2

þ 2ð3d22w2
2 þ d12jw1j2 cos 2αþ 2ðgþ g0Þjw1j2Þ

�
;

ðA1Þ
m12 ¼ m21

¼ 2b12 þ ðe12 − h12Þv2
þ 4ðd12 þ 2ðgþ g0ÞÞjw1j cos αw2; ðA2Þ

m13 ¼ m31

¼
ffiffiffi
2

p
vð2t2 þ ðe12 − h12Þjw1j cos αþ ðe22 − h22Þw2Þ;

ðA3Þ

m14 ¼ m41 ¼ 2d12jw1j2 sin 2α; ðA4Þ

m15 ¼ m51 ¼ −4ðd12 − 2ðgþ g0ÞÞw2jw1j sin α; ðA5Þ

m16 ¼ m61 ¼ 0; ðA6Þ

m22 ¼ 2

�
b11 þ

1

2
ðe11 − h11Þv2

þ ðd12 þ 2ðgþ g0ÞÞw2
2 þ d11jw1j2ð2cos2αþ 1Þ

�
;

ðA7Þ

m23 ¼ m32

¼
ffiffiffi
2

p
vð2jt1j cos β þ ðe11 − h11Þjw1j cos α

þ ðe12 − h12Þw2Þ; ðA8Þ

m24 ¼ m42 ¼ 4d12w2jw1j sin α; ðA9Þ

TABLE X. Number of same-sign dilepton events generated at
the LHC, for the benchmark points corresponding to Fig. 3. The
integrated luminosity is taken to be 2500 fb−1, for

ffiffiffi
s

p ¼ 13 TeV.

Benchmark points,
Scenario 2

No. of events
at the Hþþ

2 peak
No. of events

at the Hþþ
1 peak

BP 3 for α ¼ 30° 527 100
BP 4 for α ¼ 30° 520 139
BP 3 for α ¼ 45° 329 65
BP 4 for α ¼ 45° 287 60
BP 4 for α ¼ 60° 389 72
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m25 ¼ m52 ¼ 2d11jw1j2 sin 2α; ðA10Þ

m26 ¼ m62 ¼ 2
ffiffiffi
2

p
vjt1j sin β; ðA11Þ

m33 ¼
1

4
ð2aþ 6cv2 þ 4jt1jjw1j cosðαþ βÞ − h11w2

1

þ 4t2w2 þ 2ðe12 − h12Þjw1j cos αw2

þ ðe22 − h22Þw2
2 − h11jw1j2sin2αþ e11jw1j2Þ;

ðA12Þ

m34 ¼ m43 ¼
ffiffiffi
2

p
ðe12 − h12Þvjw1j sin α; ðA13Þ

m35 ¼ m53 ¼
ffiffiffi
2

p
vððe11 − h11Þjw1j sin α − 2jt1j sin βÞ;

ðA14Þ

m36 ¼ m63 ¼ 2jt1jjw1j sinðαþ βÞ; ðA15Þ

m44 ¼ 2

�
b22 þ

1

2
ðe22 − h22Þv2 þ d22w2

2 þ d12jw1j2 cos 2α

þ 2ðgþ g0Þjw1j2
�
; ðA16Þ

m45 ¼ m54 ¼ 2b12 þ ðe12 − h12Þv2 þ 4d12jw1j cos αw2;

ðA17Þ

m46 ¼ m64 ¼ 4
ffiffiffi
2

p
t2v; ðA18Þ

m55 ¼ 2

�
b11 þ

1

2
ðe11 − h11Þv2 − 2ðd12 − 2ðgþ g0ÞÞw2

2

þ 2d11jw1j2ð2sin2αþ 1Þ
�
; ðA19Þ

m56 ¼ m65 ¼ 2
ffiffiffi
2

p
jt1jv cos β; ðA20Þ

m66 ¼
1

4
ð2aþ 2cv2 − 4jt1jjw1j cosðαþ βÞ

− ðe11 − h11Þjw1j2 − 4t2w2

þ 2ðe12 − h12Þjw1jw2 cos αþ ðe22 − h22Þw2
2Þ:

ðA21Þ
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