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We report on a classification of supersymmetric solutions to 11D supergravity with SOð2; 2Þ × SOð3Þ
isometry, which are AdS=CFT dual to 2D CFTs with N ¼ ð0; 4Þ supersymmetry. We recover the
Maldacena, Strominger, Witten near-horizon with small superconformal symmetry and identify a class of
AdS3 × S2 × S2 × CY2 geometries with emergent large superconformal symmetry. This exhausts known
compact geometries. Compactification of M-theory on CY2 results in a vacuum of 7D supergravity with
large superconformal symmetry, providing a candidate near-horizon for an extremal black hole and a
potential new setting to address microstates.
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I. INTRODUCTION

To obey the second law of thermodynamics, black holes
must possess entropy, which Bekenstein and Hawking
showed is proportional to the area of the event horizon
[1]. This observation paved the way for the holographic
principle and AdS=CFT [2]. One of the earliest AdS=CFT
calculations (it predates the conjecture) shows that asymp-
totic symmetries of gravity in AdS3 correspond to the
Virasoro algebra [3], a feature of 2D CFTs. This observa-
tion together with the Cardy formula [4] for the asymptotic
growth of states for a CFT with central charge c is enough
to provide a microscopic derivation for the Bekenstein-
Hawking (BH) entropy [5,6]. For black holes with AdS3
near-horizons, this methodology has been an incredible
success, culminating in recent years in generalizations to
extreme Kerr black holes [7], potential astrophysical
bodies [8].
However, Einstein’s gravity is at best an effective

description [9], and the BH entropy is expected to be
corrected in a candidate UV complete theory, such as M-
theory. More concretely, compactifying the 6D M5-brane
theory on a four-cycle in a Calabi-Yau three-manifold,CY3,
gives rise to the Maldacena, Strominger, Witten (MSW)
CFT [10], withN ¼ ð0; 4Þ supersymmetry at low energies.
The corresponding black hole exhibits the near-horizon
AdS3 × S2 × CY3, and subleading corrections to the BH
entropy have been shown to perfectly match corrections to
the central charge [10,11].
The MSWCFTexhibits small superconformal symmetry

[12] with an SUð2Þ R symmetry that is manifest in the two-
sphere in the dual geometry. Since other superconformal
symmetries exist [13–15], a rich class of AdS=CFT

geometries can be expected, e.g. [16]. In this paper, we
identify a new class of M-theory vacua AdS3 × S2×
S2 × CY2, implying the existence of a distinct class of
2DN ¼ ð0; 4Þ CFTs with large superconformal symmetry
and R symmetry SUð2Þ × SUð2Þ. We recall that CFTs with
large superconformal symmetry remain largely enigmatic.
While constructions based on string theory, such as AdS3 ×
S3 × S3 × S1 [17,18], exist, contrary to small superconfor-
mal CFTs, interpretation as a symmetric product CFT is
problematic [19]. This issue continues to attract exciting
new holographic proposals [20,21], against a backdrop
where we have witnessed a deeper understanding of the role
of integrability [22–24].
More concretely, we report the results of a complete

classification of supersymmetric solutions to 11D super-
gravity, the low-energy description of M-theory, where we
assume SOð2; 2Þ × SOð3Þ isometry, i.e. warped AdS3 ×
S2 ×M6 spacetime, with M6 being an SUð2Þ-structure
manifold. Since 2D N ¼ ð0; 4Þ superconformal field the-
ories (SCFTs) are expected to exhibit at least an SUð2Þ
isometry, corresponding to the R symmetry, this is a
minimal requirement. One may contemplate a distinct
class where the SUð2Þ R symmetry is realized as a
squashed three-sphere, ~S3, but such an ansatz would
preclude the MSW geometry. Indeed, noncompact AdS3 ×
~S3 × S2 × T3 geometries, generated via non-Abelian T-
duality [25,26], were identified recently in Ref. [27]. It
is also an immediate corollary of this work that compact
AdS3 × ~S3 × ~S3 × T2 geometries with N ¼ ð0; 4Þ super-
symmetry may be generated through T-duality-shift-T-
duality (TsT) transformations [28].
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Our results pertain to general warped AdS3 × S2 space-
times and are not intended to apply to all M-theory
geometries dual to 2D N ¼ ð0; 4Þ SCFTs. Within our
assumptions, we prove that M6 is either CY3, thus
recovering the MSW geometry, or it possesses an addi-
tional SUð2Þ R symmetry that emerges from the super-
symmetry analysis. Truncating the emergent SUð2Þ to
Uð1Þ, we recover a known class [29,30] of spacetimes
with SUð2Þ ×Uð1Þ isometry [31].
The existence of a class of AdS3 × S2 × S2 × CY2

solutions to 11D supergravity, with 2D N ¼ ð0; 4Þ
SCFT duals, comes somewhat as a surprise. In the case
where CY2 ¼ T4, it was shown long ago that there are
geometries related through T-duality to well-known
AdS3 × S3 × S3 × S1 solutions in 10D [17]. When
CY2 ¼ K3, the class appears new. It did not feature in
a study of wrapped M5-brane geometries [29]. More
recently, M-theory geometries dual to 2D N ¼ ð0; 2Þ
SCFTs have been discussed, but where supersymmetry is
enhanced to N ¼ ð0; 4Þ, the geometry is either MSW
[32,33], or no good AdS3 vacuum exists [34,35].
Moreover, it is expected that M-theory on K3 is dual
to heterotic string theory on T3 [36], a statement that can
be made precise in the supergravity limit [37]. Despite
this, in a recent classification of heterotic supergravity
[38], the only compact, regular solutions with eight
supersymmetries are shown to be AdS3 × S3 × CY2 [39].
It can be expected our simply stated results will be

of interest to anyone studying the holography of 2D
N ¼ ð0; 4Þ CFTs.

II. SOð2;2Þ × SOð3Þ-INVARIANT SPACETIMES

We recall that bosonic sector of 11D supergravity
consists of a metric, g, and a three-form potential, C, with
four-form field strength, G ¼ dC. The equations of motion
follow from the action

S ¼ 1

2κ2

Z
�R −

1

2
G ∧ �G −

1

6
C ∧ G ∧ G: ð1Þ

Supersymmetric solutions satisfy the Killing spinor equa-
tion (KSE):

∇Mηþ
1

288
½ΓNPQR

M − 8δNMΓPQR�GNPQRη ¼ 0; ð2Þ

where M;N ¼ 0;…; 10, ∇Mη≡ ∂Mηþ 1
4
ωMNPΓNPη, with

spin connection ω, and η is a Majorana Killing spinor. It is
well known that the Einstein equation is implied by the
KSE once the Bianchi identity, dG ¼ 0, and equation of
motion for C hold [40].
2D N ¼ ð0; 4Þ CFTs enjoy both SOð2; 2Þ conformal

symmetry and SUð2Þ≃ SOð3Þ R symmetry, which moti-
vates the general ansatz

ds2 ¼ e2A
�
1

m2
ds2ðAdS3Þ þ e2Bds2ðS2Þ þ ds2ðM6Þ

�
;

G ¼ 1

m3
volðAdS3Þ ∧ Aþ volðS2Þ ∧ Hþ G; ð3Þ

wherem is the inverse AdS3 radius, A, B denote scalar warp
factors and A, H, G are respectively closed one-, two- and
four-forms. The curvatures of symmetric spaces are canoni-
cally normalized and fields depend only on the coordinates
of the internal 6D Riemannian manifold M6.
In order to characterize the internal space and the fields,

we decompose the 11D gamma matrices [41],

Γμ ¼ τμ ⊗ σ3 ⊗ γ7;

Γα ¼ 12 ⊗ σα ⊗ γ7;

Γm ¼ 12 ⊗ 12 ⊗ γm; ð4Þ

and 11D Killing spinor,

η ¼ ψ ⊗ eA=2½χþ ⊗ ϵþ þ χ− ⊗ ϵ−�; ð5Þ

where μ ¼ 0, 1, 2 label AdS3 directions, α ¼ 1, 2 denote
those of S2, m ¼ 1;…; 6 correspond to M6 and we define
γ7 ≡ iγ123456. ψ is a solution to the AdS3 KSE, ∇μψ ¼
1
2
τμψ , resulting in Poincaré spinors of definite chirality,

while χ� denote an SUð2Þ-doublet satisfying the KSE on
S2, ∇αχ� ¼ � i

2
σαχ�, with χ− ¼ σ3χþ. It is a common

feature of Refs. [30,41,42] that the Majorana condition is
not manifest, however conjugate spinors, ηc, may easily be
constructed e.g. [43]. Following the decomposition
through, one determines the effective 6D KSE equations
in terms of ϵ� [41] and recasts them in terms of conditions
on differential forms [44], which we illustrate later.
We stress that there is a priori no relation between ϵ�,

even if one is to be expected [45]. In related work, the
authors of Ref. [42] simplified the problem by omitting a
term in the four-form flux, which enabled a simplification
of the KSE analysis, before showing that the omitted term
could not be reconciled perturbatively. This term was later
ruled out in general [46]. In the current setting, this
simplification involves fixing A ¼ G ¼ 0. However, since
geometries with nonzero A, H, G can be generated via
T-duality [27], this simplification is difficult to motivate.

III. SUPERSYMMETRY CONDITIONS

We review the salient conditions on bilinears, defined in
the Appendix, which we construct from spinors ϵ� [41],
which encapsulate the local supersymmetry conditions we
must solve. First, supersymmetry demands that the follow-
ing bilinears vanish [41],

W− ¼ Xþ ¼ ReðYÞ ¼ ~Z ¼ 0: ð6Þ
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Moreover, the remaining bilinears are constrained:

2mVþ þ e−BImðYÞ

¼ e−3A

2

�
1

2!
ImðL3Þmnð�6GÞmn þ Kþ

mAm

�
; ð7Þ

~Y ¼ −
i

2meB
Wþ; Z ¼ −

i
2meB

X−: ð8Þ

Thus, there are only three real scalars, V�, Wþ, and one
complex scalar, X−, which can be independent.
From the vector spinor bilinears, one can identify four

real Killing vectors on M6 [41], three of which, Imð ~K3Þ,
ReðK4Þ and ImðK4Þ extend to symmetries of the overall
solution (3). In contrast, the S2 warp factor (also H)
depends on ~Kþ, thus hinting at spacetimes with larger
superisometry groups [47]. Thankfully, ~Kþ may be
truncated out consistently provided V− ¼ 0, i.e. for 6D
spinors ϵ� with equal norm. Henceforth, we consider
ϵ†þϵþ ¼ ϵ†−ϵ−, so that V− ¼ ~Kþ ¼ 0.
The scalars satisfy differential constraints [41],

dVþ ¼ 0; ð9Þ

d½e−BImðYÞ� ¼ 0; ð10Þ

e−3Ad½e3AX−� ¼ −2m ~K4; ð11Þ

e−3Ad½e3AWþ� ¼ 2mReðK3Þ; ð12Þ

while the vectors must satisfy

d½e3AþBK−� ¼ −e−BImðYÞHþ e3A ~L1; ð13Þ

d½e6AþBReð ~K3Þ� ¼ −e3AþBImðYÞ �6 G
− e3AþBA ∧ K− − e6AImðL3Þ; ð14Þ

d½e6Aþ2BImð ~K3Þ� ¼ −e3AWþHþ 2me6Aþ2BL1

þ 2e6AþBReðL3Þ; ð15Þ

d½e6Aþ2BK4� ¼ ie3AX−Hþ 2me6Aþ2BL6

− 2ie6AþB ~L4: ð16Þ

We have removed all trivial bilinears and conditions that
play no role in our analysis [48]. With ~Y pure imaginary
from (8), and ~Kþ zero, A and G are fully determined in
terms of bilinears:

A ¼ 2me3A

Vþ Kþ; G ¼ 2me3A

Vþ �6 ImðL3Þ: ð17Þ

This ends our review of the supersymmetry conditions
of Ref. [41]. We will now solve the conditions by

evoking G-structures to characterize the internal manifold
M6.
We introduce two unit-norm, chiral spinors, ξi, which are

orthogonal, ξ†i ξj ¼ δij. Each chiral spinor individually
defines an SUð3Þ-structure. To see this, we introduce
projection conditions,

γ12ξ1 ¼ γ34ξ1 ¼ γ56ξ1 ¼ iξ1 ⇒ γ7ξ1 ¼ ξ1;

−γ135ξ1 ¼ ξ�1; ð18Þ

permitting us to specify the SUð3Þ-structure through a

two-form Jð3Þi ¼ − i
2
ξ†i γmnξiem ∧ en and (3,0)-form

Ωð3Þ
i ¼ − 1

3!
ξTi γmnpξiem ∧ en ∧ ep. With the second spinor,

γ5ξ
�
2 ¼ ξ1, whose projection conditions follow from (18),

we can define two canonical SUð3Þ-structures, with forms

(Jð3Þ1 , Ωð3Þ
1 ) and (Jð3Þ2 , Ωð3Þ

2 ), or equivalently, a canonical
SUð2Þ-structure, which is specified by three two-forms and
two one-forms:

Jα ¼ −
i
4
ðσαÞijξ†i γmnξjem ∧ en; ð19Þ

K1 þ iK2 ¼ −
1

2
ϵijξTi γmξje

m; ð20Þ

where σα, α ¼ 1, 2, 3 denote Pauli matrices. In general, we
expand ϵ� in terms of the chiral spinors and their
conjugates

ϵþ ¼ α1ξ1 þ α2ξ
�
1 þ α3ξ2 þ α4ξ

�
2;

ϵ− ¼ β1ξ1 þ β2ξ
�
1 þ β3ξ2 þ β4ξ

�
2; ð21Þ

where αi; βi ∈ C. Modulo phases of ξi, these are the most
general spinors consistent with SUð2Þ-structure.

IV. SUð2Þ-STRUCTURE MANIFOLDS

As a warm-up, we consider SUð3Þ-structure manifolds
by simply eliminating, α3, α4, β3, β4, so that only ξ1
remains in (21). We recall that SUð3Þ-structure manifolds
are classified according to five torsion classes Wi [49]. We
will now demonstrate that all torsion classes vanish, so
Calabi-Yau is the only M6 with SUð3Þ-structure.
One can use the constraints from vanishing scalars (6) to

infer, ϵ− ¼ �iϵþ, where ϵþ need not be chiral. If it is chiral,
the argument reverts to Ref. [41]; if nonchiral, since
Kþ ¼ ImðL3Þ ¼ 0, A and G also are zero. Next, from
(7), we deduce 2meB ¼ ∓1, and from (13),
H ¼ �e3A=ð2mÞJð3ÞðVþ ¼ 1Þ. Further differentiating
(13)–(16), we can directly confirm that dJð3Þ ¼ dΩð3Þ ¼ 0.
We now turn to the generic case. Evaluating the vector

bilinears in terms of αi, βi using (21), we find that K− and
~K− are orthogonal allowing us without loss of generality to
align them with the e5, e6 axes of the internal space.
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Moreover, imposing (6), and V− ¼ ~Kþ ¼ 0, we determine
the following relations:

β1 ¼ −
½α3ðα24 þ β24Þ þ α1ðβ2β4 þ α2α4Þ�

ðβ2α4 − α2β4Þ
;

β3 ¼
½α1ðα22 þ β22Þ þ α3ðβ2β4 þ α2α4Þ�

ðβ2α4 − α2β4Þ
;

if1 ¼ β2α
�
2 þ β4α

�
4; f2 ¼ α�1α4 þ α�2α3; ð22Þ

where fi ∈ R are yet to be determined. With SUð2Þ-
structure, it follows from ~Kþ ¼ 0 that Kþ ¼ 0 and, as a
result of (17), A ¼ 0, i.e. no electric flux. As another
consequence of these relations, we discover Reð ~K3Þ ¼ 0,
which through (14) and (17) leads to the constraint

Y ¼ −
i

2meB
Vþ: ð23Þ

Since Vþ is a constant, so too is eB through (10).
We can now combine this with (8) to find that

�
β4 þ

i
2meB

α4

�
ðf2 − α�2α3 − α�3α2Þ ¼ 0: ð24Þ

If we impose the vanishing of the first bracket, through the
constraints it follows that G ¼ 0 and βi ¼ −iαi, i.e.
ϵ− ¼ −iϵþ, so that we recover Calabi-Yau. To find some-
thing new, we impose the second condition, which implies
K− ¼ ~K− ¼ 0. We recall that these are the original vectors
that we aligned with the axes, so now we have the freedom
to chooseK3 and ~K3, which are orthogonal, and rotate them
to align with the axes. Doing so, we find it is possible to
solve for all the spinor coefficients so that our constraints
are satisfied:

α1 ¼
ffiffiffiffiffiffiffi
Vþp

cos
ζ

2
cos

θ

2
eiφ1 ; α2 ¼

ffiffiffiffiffiffiffi
Vþp

sin
ζ

2
cos

θ

2
eiφ2 ;

α3 ¼
ffiffiffiffiffiffiffi
Vþp

cos
ζ

2
sin

θ

2
eiφ3 ; α4 ¼

ffiffiffiffiffiffiffi
Vþp

sin
ζ

2
sin

θ

2
eiφ4 ;

β1 ¼
1

2

�
L
R2

cot
ζ

2
α4 − i

L
R1

α1

�
; β4 ¼

β2
β�1

β�3;

β3 ¼ −
1

2

�
L
R2

cot
ζ

2
α2 þ i

L
R1

α3

�
; β2 ¼ −

α2
α�1

β�1;

ð25Þ

where φ1 þ φ2 ¼ φ3 þ φ4 and we have redefined
m ¼ L−1, R1 ¼ eB, R2 ¼ eB=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2e2B − 1

p
. With these

expressions, we determine Wþ ¼ Vþ cos ζ, X− ¼
Vþ sin ζeiφ1þiφ2 and solve (11) and (12) to show the warp
factor eA is a constant and

e5 ¼ −R2dζ; e6 ¼ −R2 sin ζdχ; ð26Þ

where we have defined dχ ¼ dðφ1 þ φ2Þ. This allows us to
identify the one-forms dual to the Killing vectors,

Imð ~K3Þ ¼ −
LVþ

2
sin2ζdχ;

K4 ¼ −
LVþ

2
eiχðdζ þ i cos ζdχÞ; ð27Þ

which correspond to an emergent SUð2Þ. We can ensure the
Killing vectors are canonically normalized through the
choice Vþ ¼ 2R2

2=L. Solving the remaining supersym-
metry conditions, one arrives at the conclusion that χ
aside, the other angular parameters are constant, with
M6 being a direct product of S2 and CY2, more concretely
T4 or K3. The final expression for the four-form flux reads

G ¼ 2e3A

LVþ ½−R2
1
~L1 ∧ volðS2Þ þ �6ImðL3Þ�: ð28Þ

It is easy to check that the equations of motion are satisfied,
in line with expectations [40]. We also see that both ξ1, ξ2
and conjugates need to appear in the spinor. This may be
contrasted with the spinor considered in Ref. [50], which is
not the most general, and would appear to preclude this
outcome. For this reason, setting β4 ¼ α4 ¼ 0 in (24), one
recovers the results of existing classifications [29,30].
Setting A ¼ 0, since the overall warp factor is constant,
we can confirm the radii satisfy

4

L2
¼ 1

R2
1

þ 1

R2
2

: ð29Þ

The ratio between S2 radii, α, corresponds to the
supergroup Dð2; 1; αÞ, with bosonic subgroup SLð2;RÞ×
SUð2Þ × SUð2Þ.
To establish the connection to minimal ungauged super-

gravity in 7D [51], we exploit the following consistent
Kaluza-Klein reduction ansatz:

ds211 ¼ e−
8
5
Bds27 þ e2Bds2ðCY2Þ;

G ¼ F þ
X3
a¼1

Fa ∧ Ja; ð30Þ

where Ja denote the three self-dual harmonic two-forms of
CY2, B is a scalar and F and Fa are respectively field
strengths corresponding to a three-form and one-form
potentials, F ¼ dC, Fa ¼ dAa. The resulting action in
Einstein frame in 7D is

L7 ¼ Rvol7 −
36

5
dB ∧ �7dB −

1

2
e
24
5
BF ∧ �7F

− e−
12
5
BFa ∧ �7Fa − F ∧ Fa ∧ Aa: ð31Þ

To cast the action in the original notation of Ref. [51], one
should employ the following redefinitions:
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B ¼
ffiffiffi
5

p

6
ϕ; Fus ¼

ffiffiffi
2

p
Fthem; Fa

us ¼
ffiffiffi
2

p
Fa
them: ð32Þ

V. DISCUSSION

We have initiated a classification of all solutions to 11D
supergravity with SOð2; 2Þ × SOð3Þ isometry. This is the
simplest geometric signature of a supergravity solution dual
to a 2D CFTwithN ¼ ð0; 4Þ supersymmetry, including the
MSW CFT. In the process, we have identified a novel class
of near-horizon geometries in M-theory with large super-
conformal symmetry. Compactifying M-theory on CY2, we
identify a resulting AdS3 × S2 × S2 vacuum to 7D super-
gravity, thus providing a candidate near-horizon for an
extremal black hole and a potential new controlled setting
to count black hole microstates.
The M-theory geometry provides a unifying description

of well-known AdS3 × S3 × S3 × S1 geometries of type II
string theory through T-duality [27] and heterotic vacua via
M-theory/heterotic duality [36]. A careful treatment of the
central charge reveals the expected form of a large super-
conformal algebra [52]

c ∼
kþk−

kþ þ k−
; ð33Þ

with affine SUð2Þ� current algebras at levels k� related to
the quantized charges, yet where c ∼ N2, for large charge
N, and not the more usual c ∼ N3 of geometries corre-
sponding to M5-branes.
Our work has two interesting implications. First, it is

striking that the AdS3 × S2 × S2 × CY2 geometries are not
identifiable as AdS3 limits of wrapped M5-branes [29]. This
suggests the M5-brane picture is novel and motivates further
study to understand anomaly inflow [11]. Second, as we
have shown, since 11D supergravity compactifies on CY2 to
7D minimal supergravity, the AdS3 × S2 × S2 solution hints
at being the near-horizon of an extremal black hole. While
such solutions have in principle been classified [53], we are
not aware of a near-horizon uniqueness theorem in 7D,
cf. [54]. Assuming a black hole exists, strong parallels to the
MSW case, with M-theory compactified on Calabi-Yau, are
expected to facilitate a microscopic derivation of the entropy.
Since the small superconformal algebra is recovered from
the large one through a decompactification of a two-sphere,
it is tempting to speculate that contact with the MSW results
may be made in the same limit.
Last, we remark that we have assumed SUð2Þ-structure,

and more general solutions with identity structure are known
to exist [27]. We hope to extend the classification to consider
more general internal manifolds in future work [52].
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APPENDIX: SPINOR BILINEARS

In our conventions, the 6D gamma matrices are
Hermitian γ†m ¼ γm and antisymmetric γTm ¼ −γm.
Consistent with the symmetries of the gamma matrices,
given ϵ�, we can define an exhaustive set of scalar

V� ¼ 1

2
ðϵ†þϵþ � ϵ†−ϵ−Þ;

W� ¼ 1

2
ðϵ†þγ7ϵþ � ϵ†−γ7ϵ−Þ;

X� ¼ 1

2
ðϵTþϵþ � ϵT−ϵ−Þ;

Y ¼ ϵ†þϵ−; ~Y ¼ ϵ†þγ7ϵ−;

Z ¼ ϵTþϵ−; ~Z ¼ ϵTþγ7ϵ−; ðA1Þ

and vector spinor bilinears:

K�
m ¼ 1

2
ðϵ†þγmϵþ � ϵ†−γmϵ−Þ;

~K�
m ¼ i

2
ðϵ†þγmγ7ϵþ � ϵ†−γmγ7ϵ−Þ;

K3
m ¼ ϵ†þγmϵ−; ~K3

m ¼ ϵ†þγmγ7ϵ−;

K4
m ¼ ϵTþγmϵ−; ~K4

m ¼ ϵTþγmγ7ϵ−; ðA2Þ

where factors of i ensure vectors are real. We define the
following two-forms:

L1
mn ¼

i
2
ðϵ†þγmnϵþ þ ϵ†−γmnϵ−Þ;

~L1
mn ¼

i
2
ðϵ†þγmnγ7ϵþ þ ϵ†−γmnγ7ϵ−Þ;

L3
mn ¼ ϵ†þγmnϵ−; ~L4

mn ¼ ϵTþγmnγ7ϵ−;

L6
mn ¼

1

2
ðϵTþγmnγ7ϵþ − ϵT−γmnγ7ϵ−Þ; ðA3Þ

where notation follows Ref. [41].
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