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The peak of the heavy quark pair entropy at the deconfinement transition, observed in lattice QCD,
suggests that the transition is effectively driven by the increase of the entropy of bound states. The growth
of the entropy with the interquark distance leads to the emergent entropic force that induces dissociation of
quarkonium states. Since the quark-gluon plasma around the transition point is a strongly coupled system,
we use the gauge-gravity duality to study the entropy of heavy quarkonium and the real-time dynamics of
its dissociation. In particular, we employ the improved holographic QCD model as a dual description of
largeNc Yang-Mills theory. Studying the dynamics of the fundamental string between the quarks placed on
the boundary, we find that the entropy peaks at the transition point. We also study the real-time dynamics
of the system by considering the holographic string falling in the black hole horizon where it equilibrates.
In the vicinity of the deconfinement transition, the dissociation time is found to be less than a fermi,
suggesting that the entropic destruction is the dominant dissociation mechanism in this temperature
region.

DOI: 10.1103/PhysRevD.93.086009

I. INTRODUCTION

The heavy quarkonium is an important probe of the finite
temperature QCD matter. In particular, the dissociation of
the quarkonium has been proposed as a signature of
deconfinement, [1]. Lattice QCD results [2] indicate that
the entropy of the heavy quark-antiquark pair has a sharp
peak at the deconfinement transition. Recently, it was
proposed [3,4] that this peak reflects the nature of decon-
finement transition that may be driven by the entropy
associated with the bound states of QCD. Moreover, the
growth of the entropy with the interquark distance gives
rise to the entropic force that drives the dissociation of
heavy quarkonium [3].
In the holographic approach, the peak of the entropy

emerges when the string stretched between the heavy
quarks touches the horizon of black hole [4]. In terms of
the boundary theory, this is likely associated with the
condensation of “long strings” spanning the entire volume
of the finite temperature system [5–7].
In this paper, we extend the holographic studies of

Ref. [4] by using the improved holographic QCD (IHQCD)
model [8,9]. This is an Einstein-dilaton holographic model
of large Nc 4d Yang-Mills theory that reproduces quite well
its low energy behavior including the spectrum of hadrons
and thermodynamics [10,11]. We compute the entropy,
SðTÞ, of a heavy quark-antiquark pair as a function of

temperature, T, and find a peak of SðTÞ at the confinement-
deconfinement transition temperature, Tc. Using the fit of
the parameters that was made in Ref. [11] and without
introducing any other phenomenological parameters, we
find that SðTÞ agrees with the lattice result for T > 1.1Tc.
However, the peak at T ¼ Tc is lower than the peak
observed on the lattice, and the high temperature asymp-
totics of SðTÞ differs from the lattice QCD result. This latter
discrepancy appears in the UV where we do not expect the
classical treatment of the gravity side valid. However, it is
possible that some modification of the used Nambu-Goto
action may be done to reproduce the lattice result better in
the vicinity of Tc.
We also study the real-time dynamics of quarkonium

dissociation in the QCD medium. Holographically, the
background geometry is a black hole space-time describing
a certain temperature. The quark-antiquark pair is placed on
the boundary with interquark distance L with a string that
stretches between them. Initially, the string lies on the
boundary and then falls toward the black hole horizon
under the gravitational force of the background metric.
When the string reaches the horizon, the system reaches its
equilibrium state in which the string is split into two pieces.
Each piece of the string has an end point on the boundary
(on the quark or the antiquark), and the string stretches
along the holographic coordinate and falls inside the black
hole horizon. This state corresponds to a deconfined phase
where the quarkonium is dissociated. Our numerical result
suggests that the quarkonium dissociation is fast—less than
1 F around T ¼ Tc. The holographic string as a model of
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the quarkonium has also been previously studied in other
holographic theories in order to describe thermodynamics
and thermalization; see Refs. [12–14].

II. IHQCD

The improved holographic QCD is an effective five-
dimensional holographic model of (3þ 1)-dimensional
SUðNcÞ Yang-Mills (YM) theory [8]. The complete action
of the IHQCD model is given by

Sg ¼ M3
pN2

c

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3

ð∂λÞ2
λ2

þ VgðλÞ
�
þ SHG;

ð1Þ

where SHG is the Hawking-Gibbons term and Mp is the
five-dimensional Planck mass. The real scalar field λ ¼ eϕ

(where ϕ is the dilaton field) is dual to the TrF2 operator
and is identified as the holographic ’t Hooft coupling; VgðλÞ
is the dilaton potential. The ansatz for the vacuum solution
of the metric is

ds2 ¼ e2AðrÞ
�
−fðrÞdt2 þ dx23 þ

dr2

fðrÞ
�
; ð2Þ

where dx3 denotes the spatial line element, the warp factor
A is identified as the logarithm of the energy scale in the
field theory, and fðrÞ is the black hole factor. The factor
fðrÞ is equal to 1 in the confined phase of the theory and is
a nontrivial function of r in the deconfined phase. The
position of the black hole horizon, rh, is identified
by fðrhÞ ¼ 0.
Our convention will be that the UV boundary lies at

r ¼ 0, and the bulk coordinate therefore runs from zero to
infinity or to the black hole horizon, depending on the
phase of the theory. In the UV, r represents the inverse of
the energy scale of the dual field theory. The near boundary
asymptotics of the model are such that they match the
perturbative expansion of YM. The metric approaches the
anti-de Sitter (AdS) geometry, and the holographic ’t Hooft
coupling (i.e., the exponential of the dilaton) vanishes
logarithmically to model the running of the YM coupling.
The dilaton potential has an analytic expansion in terms

of λ as r → 0 (and λ → 0), VgðλÞ ¼ 12=l2ð1þ v0λþ � � �Þ,
where l is the AdS radius and the coefficients are matched
to the YM β-function. Then, the metric and the dilaton
close to the boundary read

A ∼ − log

�
r
l

�
þ 4

9 logðΛrÞ þ � � � ;

λ ∼ −
8

9v0 logðΛrÞ
þ � � � ; ð3Þ

where Λ corresponds to the ΛQCD scale. The UV structure
of the model matches the asymptotic perturbative

expansion of YM—however, the model is not expected
to describe the UV limit of the theory since the field theory
is weakly coupled and its holographic dual is expected to be
a string theory in this region. The current asymptotics
provide a reliable choice of boundary conditions of the
model. Nevertheless, one has to keep in mind that IHQCD
is an effective approach to low energy YM theory, and
hence its IR (or large r) structure is more relevant for our
discussion.
The IR limit of the theory is strongly coupled, and hence

we expect the dilaton in the confined phase to diverge in the
IR. The large λ expansion of the potential determines the IR
physics of the IHQCD model. To reproduce confinement
and to ensure that the glueball spectrum is gapped, discrete,
and follows the linear Regge trajectories asymptotically,
one chooses the IR asymptotics of the dilaton potential as
Vgðλ → ∞Þ ∼ λ

4
3

ffiffiffiffiffiffiffiffiffiffiffiffi
logðλÞp

[9]. The solution for the metric
and the dilaton in the IR is

AðrÞ ∼ −r2; λðrÞ ∼ re
3
2
r2 : ð4Þ

In the deconfined phase, A and λ have a regular expansion
around the horizon, and f vanishes. A simple interpolation
of the UV and IR asymptotics leads to the choice of the
dilaton potetnial

VgðλÞ ¼
12

l2

h
1þ V0λþ V1λ

4=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þ V2λ

4=3 þ V3Þ
q i

:

ð5Þ

Upon matching to the perturbative running of the Yang-
Mills coupling, two out of the four of the parameters V0,
V1, V3, and V4 are left independent. Those are fixed by
matching to lattice results for two thermodynamic quan-
tities, the latent heat and the entropy density at the
deconfinement transition. Then, the model describes suc-
cessfully the zero-T glueball spectrum and the thermody-
namics above the confinement-deconfinement transition
[11]. The five-dimensional Planck mass Mp is determined
by requiring that the high temperature asymptotics of the
free energy follows the Stefan-Boltzman law. This fixes

ðMplÞ3 ¼
1

45π2
: ð6Þ

III. QUARK-ANTIQUARK PAIR

The interaction of a pair of a heavy quark and antiquark
in the boundary field theory is modeled holographically by
the dynamics of a Nambu-Goto string in the bulk [15]. The
quark and antiquark, which are located at distance L at the
boundary, are attached at the end points of the string which
extends into the bulk. The Nambu-Goto action reads
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SNG ¼ −Tf

Z
dτdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgSÞμν∂αXμ∂βXν

q
; ð7Þ

where the string-frame metric is used and Tf is the string
tension. The string-frame metric is related to the Einstein
metric by

ðgSÞμν ¼ e2AsðzÞημν; AsðzÞ ¼ AðzÞ þ 2

3
ΦðzÞ: ð8Þ

The free energy of the quark-antiquark pair is equal to the
on-shell Nambu-Goto action

TFðLÞ ¼ SNG½Xmin�; ð9Þ

where XM
min is the solution for the embedding of the string in

the background with the minimum area.

A. Confined phase

The string profile in the confined phase of the IHQCD
model was studied in Ref. [9]; let us briefly review it here.
The world sheet coordinates are taken to be τ ¼ t and
σ ¼ x, and the string is embedded in the five-dimensional
bulk space-time, i.e., r ¼ rðxÞ,

SNG ¼ Tf

Z
L

0

dxe2As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0ðxÞ2

q
: ð10Þ

In the confined phase of the theory, the world sheet has a
turning point r� determined by the condition r0ðxÞ ¼ 0. The
quark-antiquark distance L is expressed in terms of r� as

L ¼ 2

Z
r�

ϵ

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4AsðrÞ−Asðr�Þ − 1

p ; ð11Þ

and the free energy is

FðLÞ ¼ −2Tf

Z
r�

ϵ
dr

e4AsðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4AsðrÞ−4Asðr�Þ − 1

p : ð12Þ

The point r� is a minimum of AsðrÞ. In the limit of large L,
we find the potential energy of the quark-antiquark pair is
given by

FðLÞ ¼ Tfe2Asðr�ÞLþ � � � ; ð13Þ

which is a linear law signaling confinement. In Ref. [11],
the Nambu-Goto string tension Tf was determined by
matching to the confining string tension as found by lattice
methods. Their relation is σ ¼ Tfe2Asðr�Þ. The fit to the data
results in

Tfl2 ¼ 6.5; ð14Þ

where the tension is measured in units of the AdS
radius.

B. Deconfined phase

The holographic dual of the deconfined phase of the field
theory is a black hole metric in the bulk. In this case, the
string falls into the horizon, so its embedding in the bulk is
a straight line starting from the boundary and extending
into the horizon, XM ¼ ðt; x; 0; 0; rÞ. The free energy is
equal to the on-shell string action

FðLÞ ¼ −2Tf

Z
rH

ϵ
dre2AsðrÞ: ð15Þ

This free energy has been calculated for a gravity-dilaton
holographic model in the same class as IHQCD in
Ref. [14]. Additional string configurations contributing
the free energy of the quark-antiquark pair were considered
in Ref. [16]. Then, the entropy of the quark-antiquark pair
follows

S ¼ −
∂F
∂T ¼ 2Tfe2ASðrHÞ ∂rH∂T : ð16Þ

The temperature of the black hole is defined as
T ¼ jf0ðrHÞj=ð4πÞ. In Ref. [17], the phase structure of
IHQCD was studied. It was shown that confining gravity-
dilaton theories admit black hole solutions above a mini-
mum value of temperature, Tmin. For T > Tmin, two
branches of black hole solutions for a given value of the
temperature exist. Typically, one branch has a large horizon
which is closer to the boundary (i.e., zH is small), and the
other branch has a small horizon (large zH). The large black
hole branch is thermodynamically stable, while the small
branch is unstable. Hence, the large black hole branch is
dual to the deconfined phase of the field theory. Moreover,
the model is shown to exhibit a first order confinement-
deconfinement phase transition at some critical temper-
ature, Tc. This is a direct analog of the Hawking-Page
transition which was found for Einstein-Hilbert action with
a cosmological constant. In Fig. 1, we show the position of
the horizon in terms of the temperature in units of Tc.
The high-T asymptotics of the entropy as calculated by

perturbation theory in Yang-Mills is [2]

SYM ¼ 83=2π2

3113=2
1

log
3
2ðπTΛ Þ

: ð17Þ

From the AdS point of view, the high-T asymptotics of
(16) corresponds to a large black hole with the horizon
located in the near-boundary region of the bulk space-time.
When the horizon is located close to the boundary, the
temperature is given by the pure AdS formula
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T ¼ 1

πrH
; ð18Þ

where we have taken fðrÞ ¼ 1 − r4

r4H
. Using the UV expan-

sions of the bulk fields AðrÞ and λðrÞ given in Eq (3),
Eq. (16) becomes

SIHQCD ≃ 2Tfl2

�
8

9V1

�
4=3 1

log
4
3ðπTΛ Þ

: ð19Þ

The power of the logarithm in this “Nambu-Goto" entropy
at high T is slightly higher than the perturbative result. This
means that the UV asymptotics of the Nambu-Goto action
does not seem to match the perturbative QCD, even though
the power of the logarithm is numerically close in the two
formulas.
In Fig. 2, we show the entropy of the quark-antiquark

pair as a function of T=Tc for the IHQCD model. In the
confined phase, the background does not depend on
temperature since the bulk theory describes the large Nc
limit of the field theory. In the deconfined phase, the bulk
solution is a dilaton black hole that results in an entropy
which notably is in qualitative agreement with the lattice
result, [2]. It should be noticed that in the calculation of the
quark-antiquark entropy we have not changed the param-
eters of the model from the original fit in Ref. [11]. At
temperatures T > 1.1Tc, our results agree with the lattice
data quantitatively. The fact that there is a peak of the
entropy of the quark-antiquark pair is a generic feature
of holographic models which have a confinement-
deconfinement transition. Equation (16) and the depend-
ence of rH to T, as seen in Fig 1, show that the entropy is a
decreasing function of T, in the region close to Tc for
T > Tc. The entropy is zero in the confined phase, and
hence there is a peak at Tc. This statement is also supported
by the results of studies of other holographic models in this
class as in Refs. [4] and [18].

IV. REAL-TIME DYNAMICS OF QUARKONIUM
DISSOCIATION

We now address the question of the quarkonium thermal-
ization. We will assume that a pair of a heavy quark and
antiquark is produced at a fixed relative distance L at the
boundary. If the quarks are sufficiently far apart at a given
temperature, the gluon cloud around the pair will eventually
thermalize and become part of the medium. At this point in
time, the heavy quarkonium will be dissociated.
The holographic description of the dissociated quark pair

is given by a string with its two end points fixed at the
boundary and the string extending toward the black hole
horizon. The string falls in the background gravitational
field and eventually reaches the horizon. Then, it equili-
brates becoming a straight string falling in the black hole.
The string coordinate is then XM ¼ ðt; x; 0; 0; rðt; xÞÞ.
The Nambu-Goto action then reads

SNG ¼ −Tf

Z
dtdxe2AðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _r2

fðrÞ þ r02
s

; ð20Þ

where r ¼ rðt; xÞ, _r ¼ ∂tr, and r0 ¼ ∂xr. The equation of
motion for the string is then

∂t

0
B@ e2AsðrÞ _r

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _r2

fðrÞ þ r02
q

1
CA − ∂x

0
B@ e2AsðrÞr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ − _r2
fðrÞ þ r02

q
1
CA

− ∂rðe2AsðrÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _r2

fðrÞ þ r02
s

−
e2AsðrÞ∂rfðrÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _r2

fðrÞ þ r02
q �

1þ _r2

fðrÞ2
�

¼ 0: ð21Þ
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FIG. 2. The entropy of the heavy quark-antiquark pair in the
deconfined phase, as calculated in the IHQCD model (red curve)
and in the lattice QCD (blue points). The lattice points were
calculated in Ref. [2]. In the y axis, it is the entropy times the
temperature in MeV, and the x axis is the temperature in units
of Tc.
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FIG. 1. The horizon of the large black hole branch in terms of
the temperature, in units of critical temperature.
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We numerically solve Eq. (21) in the case of the AdS-
Schwarzschild black hole, where λðrÞ ¼ 0, AðrÞ ¼ logðlrÞ,
and fðrÞ ¼ 1 − r4=r4H. We consider the ends of the string to
be fixed at a certain distance on the boundary,
rðt; x ¼ �LÞ ¼ ϵ. The string is initially on the boundary
rðt ¼ 0; xÞ ¼ ϵ with zero velocity, _rðt ¼ 0; xÞ ¼ ϵ, where ϵ
is the boundary cutoff. In Fig. 3, we show the profile of the
falling string. Notice that in the case of large interquark
distance L the profile of the string is independent of x and
hence can be approximated by a straight string falling
toward the black hole horizon. This means that r ¼ rðtÞ,
and the x dependence is negligible for the bulk part of the
string. This is a good approximation in the limit of large L.
In this simpler case, the Nambu-Goto action takes the

form SNG ¼ −Tf

R
dtdxe2As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf − _r2

f Þ
q

.

In the case of small distances L, the partial differential
equation (21) is more difficult to solve due to numerical
errors. This is because the used coordinate system is
singular at the horizon, and hence one has to use
Kruskal coordinates in order to solve the string equation
of motion close to the horizon. We leave this problem for a
future investigation.
Coming back to the case of large interquark distances,

the equation of motion of the string reads

∂t

0
B@ e2AsðrÞ _r

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _r2

fðrÞ
q

1
CA − ∂rðe2AsðrÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _r2

fðrÞ

s

−
e2AsðrÞ∂rfðrÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _r2

fðrÞ
q �

1þ _r2

fðrÞ2
�

¼ 0: ð22Þ

We will now study the straight string motion in the context
of the improved holographic QCD model. Since the
Lagrangian does not explicitly depend on time, the energy
is conserved,

E ¼ Tfe2Asfffiffiffiffiffiffiffiffiffiffiffi
f − _r2

f

q ; ð23Þ

and the velocity of the string is _r ¼ f
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − T2

fe
4Asf

q
. The

string starts falling from the boundary of the bulk space-
time with initial velocity _rðt ¼ 0Þ ¼ 0. We may fix E using
this initial condition. The boundary of space-time is set at
cutoff distance r ¼ ϵ which is determined by the initial
energy of the created quark pair. Then, we easily determine
the energy of the falling string as E ¼ Tfe2AsðϵÞ. Using the
near-horizon asymptotics of the background fields in
IHQCD model,

A ¼ Ah þ A1ðr − rHÞ þ � � � ;
λ ¼ λh þ λ1ðr − rhÞ þ � � � ;
f ¼ −4πTðr − rHÞ; ð24Þ

we find that the string approaches the horizon exponentially
fast,
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t 0.5 rH

Black Hole Horizon

FIG. 3. The string extending toward the horizon, for L ¼ 8rH,
in the case of the AdS-Schwarzschild black hole. We notice that
the bulk part of the string is actually a straight line, independent
on x.
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FIG. 4. The string motion from the boundary to the horizon in
the improved holographic QCD background. This is the case
of the large separation distance of the quark-antiquark pair.
The black hole temperature is T ¼ Tc.
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rðtÞ − rH ≃ e−4πTt: ð25Þ

Solving numerically the full string equation of motion, we
describe the entire motion from the boundary to the
horizon. In Fig. 4, we show the string position as a function
of time in units of Tc. When the string is close to the
boundary, it rapidly accelerates and then asymptotically
approaches the horizon.
We can now calculate the time needed for the dissoci-

ation of the quarkonium—-it corresponds to the time
needed for the string to approach the horizon from the
boundary. Since the string approaches the horizon asymp-
totically, this time is infinity. Hence, we have defined an IR
cutoff distance from the horizon, ϵIRTc ¼ 10−4, which we
consider as the point where the string thermalizes. Hence,
we solve the string equation of motion for different black
hole backgrounds, corresponding to states of different
temperature, and compute the dissociation time, tD. A
closed formula for tD is easily found from the equation of
motion of the string

tD ¼
Z

rh−ϵIR

ϵUV

dr

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T2
f

E2 e4Asf
q : ð26Þ

In Fig. 5, we plot the dissociation time of the quark-
antiquark pair in units of Tc as a function of temperature.
We see that the time is shorter for higher temperatures.
This is natural, since the black hole is larger, and the string
falls faster inside the horizon. Remarkably, the dissoci-
ation time of the heavy quarkonium around T ¼ Tc is less
than a fermi—therefore, it is a fast process.

V. SUMMARY AND DISCUSSION

The dissociation of quarkonium in the quark gluon
plasma (QGP) conveys important information about the
thermal quark-gluon medium and the onset of deconfine-
ment. The peak in the entropy of the heavy quark pair
observed on the lattice suggests an interesting picture of the
deconfinement transition—the destruction of the bound
hadron states at the onset of deconfinement may be driven
by the emergent entropic force [3,4]. Here, we have
confirmed that the peak of the quark pair entropy at
deconfinement is a generic feature of the Einstein-dilaton
holographic models. Indeed, in the confinement phase, the
entropy of the pair is zero since no temperature effects are
seen in the large Nc limit. This is not so in the deconfined
phase, and Eq. (16) indicates that the entropy has a
maximum at Tc for the general class of black holes for
which the position of the horizon is an increasingly rapid
function of temperature near Tc; see Fig. 1. In terms of the
boundary theory, the entropy peak may be related to the
condensation of QCD strings which leads to the formation
of the QGP; see Refs. [5–7]. It will be very interesting to
study this further using both holographic and lattice
methods. In the latter case, the presence of long strings
may be signaled by the unusual dependence of heavy quark
pair observables on the lattice size—naively, the color field
of the pair does not extend beyond the Debye screening
radius, but the long string spans the entire volume of the
lattice.
We have also presented the study of the real-time

dependence of quarkonum dissociation. Our picture of
dissociation corresponds to the string falling from the
boundary to the horizon. We have calculated the dissoci-
ation time for large (compared to 1=T) interquark distances
and found that the thermalization process in IHQCD is very
fast, with dissociation time less than a fermi at T ∼ Tc. To
study the case of finite quark-antiquark distance, one has to
do a more refined numerical computation. This is an
interesting problem, since solving it would provide infor-
mation about the dissociation of quarkonium states of
different size. We will present this analysis in a future work.
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