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From black hole thermodynamics, the Bekenstein bound has been proposed as a universal thermal
entropy bound. It has been further generalized to an entanglement entropy bound which is valid even in a
quantum system. In a quantumly entangled system, the non-negativity of the relative entropy leads to the
entanglement entropy bound. When the entanglement entropy bound is saturated, a quantum system
satisfies the thermodynamicslike law with an appropriately defined entanglement temperature. We show
that the saturation of the entanglement entropy bound accounts for a universal feature of the entanglement
temperature proportional to the inverse of the system size. In addition, we show that the deformed modular
Hamiltonian under a global quench also satisfies the generalized entanglement entropy boundary after
introducing a new quantity called the entanglement chemical potential.
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I. INTRODUCTION

Recently, much attention has been paid to the entan-
glement entropy for studying various quantum properties
in string theory as well as condensed matter physics. To
describe the entanglement entropy of a strongly interact-
ing system, it has been proposed that its entanglement
entropy can be evaluated by calculating the minimal
surface area in the dual gravity theory according to the
AdS=CFT correspondence [1,2]. For a two-dimensional
conformal field theory (CFT) whose dual gravity is
represented as a three-dimensional AdS geometry, the
holographic entanglement entropy calculation has exactly
reproduced the two-dimensional CFT results [3–5]. This
work has been further generalized to higher dimensional
theories and nonconformal cases [6–39]. Intriguingly, it
has been shown that the entanglement entropy of excited
systems satisfies the first law of thermodynamics after
defining an entanglement temperature appropriately.
Moreover, the entanglement temperature shows a univer-
sal behavior proportional to the inverse of the system size
[13,26–30]. This universality has also been checked in
various hyperscaling violation geometries [31–33].
In black hole physics, the Bekenstein bound has been

proposed from a thought experiment [40–44]. When an
object is absorbed into a black hole, it describes that the
increased thermal entropy of a black hole should be
bounded from the absorbed energy. This Bekenstein bound
can be further generalized to an entanglement entropy
bound which is also valid in quantum systems. When a
ground state is excited, the entanglement entropy bound
implies that the increased entanglement entropy is bounded
by the excitation energy, similar to the Bekenstein bound.
This entanglement entropy bound has been derived from

the non-negativity of the relative entropy [45,46]. The non-
negativity of the relative entropy comes from the fact that
the vacuum or thermal state has a minimum entanglement
or thermal entropy respectively. In general, the entangle-
ment entropy bound is saturated only when two states are
equal. In the UV limit, however, the increased entangle-
ment entropy with only lower order corrections can saturate
the entanglement entropy bound. This is the dominant
contribution associated with the thermodynamicslike law.
Then the non-negativity of the relative entropy implies that
the ignored small higher order corrections should be
negative.
In this work, we will study the entanglement entropy of a

quantum system with excitations and/or a global quench
and then investigate the universality of its thermodynamics-
like law. To do so, we take into account a charged AdS
black brane geometry with peculiar properties [47–49].
This geometry allows for the dual field theory to have a
Fermi sea and massless fluctuations on the Fermi surface.
Unlike the RNAdS black brane having a nonzero
Bekenstein-Hawking entropy even at zero temperature, it
has zero Bekenstein-Hawking entropy at zero temperature.
Using the holographic renormalization technique, its
thermodynamic properties have been studied from the
boundary stress tensor [50]. Interestingly, it has been
shown that the trace of the boundary stress tensor does
not vanish even though it has an AdS asymptote. This fact
implies that matter of the dual field theory is nonconformal,
while matter in the dual quantum field theory (QFT) of the
RNAdS black brane is conformal. The geometry we
consider provides an interesting background to study a
strongly interacting fermionic system. On this interesting
background, we investigate the entanglement entropy
bound. We explicitly show that the lower order entangle-
ment entropies in strip- and ball-shaped regions saturate the
entanglement entropy bound as mentioned before.*chanyong.park@apctp.org
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When a thermal system is deformed by a chemical
potential or number of particles, its thermodynamic law is
generally modified due to an additional conserved quantity.
This also happens in the entanglement entropy bound [33].
Assume that a CFT theory is deformed by a certain global
quench. If a global quench is relevant, its effect becomes
small at least in the UV limit. In this case, we can study this
system by using the perturbation of the CFT. In general, a
global quench modifies the modular Hamiltonian whose
relative entropy leads to a generalized entanglement
entropy. In this case like the thermal system, one can
introduce a new parameter called the entanglement chemi-
cal potential in order to describe the entanglement entropy
change caused by the global quench. We show that the
generalized entanglement entropy bound after a global
quench still satisfies the generalized thermodynamicslike
law.
The rest of this paper is organized as follows. In Sec. II,

we discuss the general aspects of the entanglement entropy
bound and the universality of the entanglement temper-
ature. After reviewing thermodynamic properties of a
charged black brane in Sec. III, we explicitly show in
Sec. IV that the lower order entanglement entropies of an
excited state saturate the entanglement entropy bound, and
that their thermodynamic interpretation leads to a universal
entanglement temperature. We also discuss the effect of a
global quench which satisfies the generalized entanglement
entropy bound. We finish our work with some concluding
remarks in Sec. V.

II. ENTANGLEMENT ENTROPY BOUND

The Bekenstein bound has been proposed as a universal
bound of the thermal entropy in flat space. It has been
originally conceived through a thought experiment for
black hole thermodynamics and classical physics [40–
42]. When an object is absorbed into a black hole, the
entropy of an object increases the black hole area due to the
generalized second law of thermodynamics. This is in turn
governed by the Einstein equations and implies that the
increased entropy is bounded by the absorbed energy

ΔS ≤ λlΔE; ð1Þ

where l and λ are a typical size of the system and a
nonuniversal numerical factor of order 1. The Bekenstein
bound is universal in that it is independent of microscopic
details up to λ. Recently, the entanglement entropy has been
proposed as the origin of black hole entropy [51–55]. In the
entanglement entropy context, it has been argued that a
generalized Bekenstein bound can be also applied to a
quantum system [45,46].
To understand such a generalized Bekenstein bound, we

need to define a relative entropy which is independent of
the renormalization scheme. When two states are in the
same Hilbert space, the relative entropy gives rise to a

fundamental statistical measure of their distance. If two
reduced density matrices are denoted by ρ1 and ρ0, the
relative entropy Sðρ1jρ0Þ is defined as

Sðρ1jρ0Þ≡ Trðρ1 log ρ1Þ − Trðρ1 log ρ0Þ: ð2Þ

Here we can identify ρ0 with the reduced density matrix of
a ground or thermal state, while ρ1 is one for a quantumly
or thermally excited state. If there exists a parameter
connecting two reduced density matrices such that ρ1 ¼
ρ1ðλÞ and ρ0 ¼ ρ1ð0Þ, the relative entropy usually has a
non-negativity value

Sðρ0jρ0Þ ¼ 0 and Sðρ1jρ0Þ > 0 for ρ0 ≠ ρ1: ð3Þ

Thus, ρ0 corresponds to a minimum point [46]. Using the
definition of the entanglement entropy, the relative entropy
can be reexpressed as

Sðρ1jρ0Þ ¼ ΔK − ΔS; ð4Þ

where variations of the modular Hamiltonian and entan-
glement entropy are given by

ΔK ¼ Trðρ1KÞ − Trðρ0KÞ and ΔS ¼ Sðρ1Þ − Sðρ0Þ:
ð5Þ

The non-negativity of the relative entropy leads to the
following relation,

ΔK ≥ ΔS; ð6Þ

which has been regarded as a generalized Bekenstein
bound holding for any region in QFT. From now on, we
call it an entanglement entropy bound. As will be demon-
strated, the entanglement entropy bound is equivalent to the
Bekenstein bound except that it is also working in a
quantum system. Note that the exact saturation of the
entanglement entropy bound occurs only when ρ0 ¼ ρ1. In
a UV limit, however, we can define an almost saturated
entanglement entropy bound, ΔhKi ≈ ΔS. To clarify the
meaning of almost, we first note that the increased
entanglement entropy in an UV limit can be divided into
two parts, a dominant part and higher order corrections,

ΔS ¼ ΔSdom þ ΔShigh: ð7Þ

Ignoring higher order corrections, the dominant part can
satisfy ΔK ¼ ΔSdom. Therefore, the almost saturated entan-
glement entropy bound implies that the entanglement
entropy bound is saturated up to higher order corrections.
For consistency, higher order corrections should be negative,
ΔShigh < 0. The almost saturated entanglement entropy
bound is important to understand universal features of an
entangled quantum system and its thermodynamicslike law.
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In addition, it has been used to reconstruct the linearized
Einstein equation for the AdS geometry [56–58].
In recent studies [13,26,27], it has been found that the

entanglement entropy of an excited state in a strip region
follows the thermodynamicslike law after defining an
appropriate entanglement temperature. Intriguingly, the
entanglement temperature shows a universal feature
inversely proportional to the strip width. Now we can
ask whether the similar universal feature also occurs in the
entanglement entropy involved in a different shaped region
and why such a universal feature occurs. The goal of this
work is to answer these questions by using the entangle-
ment entropy bound. Before describing the details, we give
a general argument on the universality of the entanglement
temperature. Following the simple dimension counting in a
relativistic QFT, we can guess that the increased modular
Hamiltonian is proportional to the increased energy

ΔK ¼ λlΔE ð8Þ

with a nonuniversal numerical factor λ. In general, the
modular Hamiltonian is not known except several simple
cases. One of them is the case with a spherical entangling
surface. In Sec. IV, we will show that the modular
Hamiltonian in a ball-shaped region really satisfies (8).
Substituting (8) into the entanglement entropy bound, we
finally arrive at the Bekenstein bound working in a QFT.
When the entanglement entropy bound is almost saturated,
ΔK ≈ ΔS, we can reinterpret it as the thermodynamicslike
law. In this case, the entanglement temperature has the
following form,

TE ≡ ΔE
ΔS

¼ 1

λl
; ð9Þ

where λ depends on the shape of the entangling surface but
not the system size. Focusing on the size dependence, the
entanglement temperature is proportional to the inverse of
the system size, TE ∼ 1=l, regardless of the shape of the
entangling surface and details of the underlying theory
[13,46]. This feature is similar to the universality of the
Bekenstein bound, so we can call it the universality of the
entanglement temperature. In the next sections, we will
study the entanglement entropy of a holographic fermion
system dual to an Einstein-Maxwell-scalar gravity and
explicitly show that the almost entanglement entropy
bound leads to the universal entanglement temperature.

III. CHARGED BLACK BRANE
WITH A SCALAR HAIR

Recently, numerous charged dilatonic black brane sol-
utions have been extensively studied for understanding the
Fermi surface [16–20,31–33]. In [47], it has been shown
that a Fermi surface and massless fluctuations on it can be
described by the following dual gravity,

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

4
e4ϕFμνFμν − 12∂μϕ∂μϕ

þ 1

R2
ð8e2ϕ þ 4e−4ϕÞ

�
; ð10Þ

where R ¼ 1 corresponds to an AdS radius. This action
shows that there is a local minimum at ϕ ¼ 0 where the
scalar potential reproduces the five-dimensional AdS cos-
mological constant. If there exists a nontrivial ϕ approach-
ing to zero at the asymptotic boundary, there exists an
asymptotic AdS solution. Solving equations of motion
gives rise to the following solution,

ds2 ¼ r2e2AðrÞð−fðrÞdt2 þ d~x2Þ þ e2BðrÞ

r2fðrÞ dr
2;

A ¼ Atdt; ð11Þ

with

ϕðrÞ ¼ 1

6
log

�
1þ Q2

8mr2

�
;

AðrÞ ¼ 1

3
log

�
1þ Q2

8mr2

�
;

BðrÞ ¼ −
2

3
log

�
1þ Q2

8mr2

�
;

fðrÞ ¼ 1 −
m

r4
�
1þ Q2

8mr2

�
2
;

At ¼ 2κ2μ −
Q

2r2
�
1þ Q2

8mr2

� ; ð12Þ

wherem, μ, andQ indicate the charged black brane’s mass,
chemical potential, and charge density, respectively. Using
the regularity of At at the event horizon, the charge density
and black brane mass can be rewritten in terms of temper-
ature and chemical potential

Q ¼ 4π2κ2T2
Hμþ 8κ6μ3;ffiffiffiffi

m
p ¼ π2T2

H þ 2κ4μ2: ð13Þ

Let us first summarize thermodynamic properties of the

charged dilatonic black brane. For m ¼ Q4=3

4
, the above

charged dilatonic black brane has an extremal limit in which
the horizon resides at rh ¼ 0. Absence of a conical singu-
larity at the event horizon yields the Hawking temperature

TH ¼ rh
π
: ð14Þ

This result shows that the Bekenstein-Hawking entropy
automatically vanishes at zero temperature. It is worth noting
that, since the curvature scalar in the extremal limit diverges
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at the center, the charged dilatonic black brane geometry is
incomplete at zero temperature. Nevertheless, the thermo-
dynamic quantities arewell defined even at zero temperature
because the divergences of the Einstein-Hilbert and scalar
kinetic terms are exactly canceled. In the grand canonical
ensemble described by the following grand potential,

Ω ¼ −
π4V3

2κ2
T4
H − 2π2κ2V3T2

Hμ
2 −

10

3
κ6V3μ

4; ð15Þ

other thermodynamic quantities satisfying the first law of
thermodynamics are given by [50]

E ¼ 3π4V3

2κ2
T4
H þ 6π2κ2V3T2

Hμ
2 þ 14

3
κ6V3μ

4; ð16Þ

P ¼ π4

2κ2
T4
H þ 2π2κ2T2

Hμ
2 þ 10

3
κ6μ4; ð17Þ

SBH ¼ 2π4V3

κ2
T3
H þ 4π2κ2V3THμ

2; ð18Þ

N
V3

¼ 4π2κ2T2
Hμþ

40

3
κ6μ3; ð19Þ

where E, P, SBH, and N=V3 indicate the energy, pressure,
entropy and charge density, respectively.
In the AdS=CFT context, they can be reinterpreted as

those of the dual field theory. At low temperature, the
thermal entropy is linearly proportional to temperature.
Furthermore, the extremal limit supports normal modes of
massless charged fermions so that the geometry we con-
sider is regarded as the dual of a Fermi liquid [47]. The
internal energy and pressure correspond to the energy-
momentum tensor of the dual theory. Taking the trace, we
finally arrive at

Tμ
μ ¼ E − 3PV3 ¼

16

3
κ6V3μ

4: ð20Þ

This result shows that the trace of the stress tensor does not
vanish even though the asymptotic geometry is given by the
AdS space. This is because the dual matter we consider is
nonconformal. The bulk gauge field is dual to a fermionic
number operator [59,60] and the scalar field plays the role
of a dilaton because it controls the physical gauge coupling
[47]. This fact implies that dual matter interacts with gauge
bosons nontrivially and that its coupling constant non-
trivially runs along the RG flow.

IV. THERMODYNAMICSLIKE LAW OF THE
ENTANGLEMENT ENTROPY

A. Entanglement entropy bound in a strip region

Let us first take into account an entanglement entropy in
a strip-shaped region, Assuming that the total system
resides in a regularized volume

L
2
≤ x1; x2; x3 ≤

L
2
; ð21Þ

and that it is divided into two subsystems, A and A, then the
entanglement entropy of the subsystem A is given by the
trace of a reduced density matrix. Parametrizing A as

l
2
≤ x1 ≤

l
2

and
L
2
≤ x2; x3 ≤

L
2
; ð22Þ

the entanglement entropy can be alternatively evaluated by
using the AdS=CFT correspondence. The entanglement
entropy is proportional to the area of the minimal surface
whose end coincides with the entangling surface we chose.
Using the previous metric solution, the minimal surface is
given by

A ¼ L2

Z
dx1

e2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Af þ e2Bz02

p
z3

ffiffiffi
f

p ; ð23Þ

where z ¼ 1=r and the prime indicates a derivative with
respect to x1. Since the above action does not depend on x1
explicitly, there exists a conserved quantity

H ¼ −
e4A

ffiffiffi
f

p

z3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Af þ e2Bz02

p : ð24Þ

Moreover, the minimal surface is invariant under x1 → −x1
so that it should have an extremum point at x1 ¼ 0 which
we call a turning point denoted by z�. At the turning point,
the conserved quantity reduces to

H ¼ −
e3A�

z3�
; ð25Þ

where the subscript � means the value at the turning point.
Comparing these two conserved quantities in the UV
region, we can expand l up to z5� order:

l ¼ Γð2
3
ÞΓð5

6
Þffiffiffi

π
p z� −

4

3
κ4μ2z3� þ

4Γð1
3
ÞΓð1

6
Þ

15
ffiffiffi
π

p κ8μ4z5�

þ Γð1
3
ÞΓð1

6
Þ

30
ffiffiffi
π

p ðπ2T2
H þ 2κ4μ2Þ2z5� þ � � � : ð26Þ

Here, the leading term comes from the pure AdS geometry
and the second and third terms correspond to the first and
second order corrections originated from e2A and e2B. The
last term is another second order correction originated from
the black brane metric factor. Rewriting the turning point in
terms of l, we arrive at
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z� ¼
ffiffiffi
π

p
Γð2

3
ÞΓð5

6
Þ lþ

4π2

3Γð2
3
Þ4Γð5

6
Þ4 κ

4μ2l3

þ 4π5=2f60π − Γð1
3
ÞΓð1

6
ÞΓð2

3
ÞΓð5

6
Þg

45Γð2
3
Þ7Γð5

6
Þ7 κ8μ4l5

−
π5=2Γð1

3
ÞΓð1

6
Þ

30Γð2
3
Þ6Γð5

6
Þ6 ðπ

2T2
H þ 2κ4μ2Þ2l5 þ � � � : ð27Þ

Using these results, the entanglement entropy defined by
S≡ 2πA

κ2
becomes in terms of l

SðTH; μÞ ¼
2π

κ2
L2

ϵ2
−
Γð2

3
Þ3Γð5

6
Þ3ffiffiffi

π
p

κ2
L2

l2
þ 8π

3κ2
L2κ4μ2

þ 16π5=2ð15 − 2
ffiffiffi
3

p
πÞ

45κ2Γð2
3
Þ3Γð5

6
Þ3 L2κ8μ4l2

þ 2π7=2ðπ2T2
H þ 2κ4μ2Þ2L2l2

5
ffiffiffi
3

p
κ2Γð2

3
Þ3Γð5

6
Þ3 þ � � � ; ð28Þ

where the ellipsis means higher order corrections. Above
the first line is the entanglement entropy of the pure AdS
space, while the rest denote contributions from the metric
components and the black brane factor. At zero temperature
with a nonzero chemical potential, the ground state has the
following entanglement entropy,

Sð0; μÞ ¼ 2π

κ2
L2

ϵ2
−
Γð2

3
Þ3Γð5

6
Þ3ffiffiffi

π
p

κ2
L2

l2
þ 8π

3κ2
L2κ4μ2

þ 8π5=2ð30 − ffiffiffi
3

p
πÞ

45Γð2
3
Þ3Γð5

6
Þ3 L2κ6μ4l2 þ � � � ; ð29Þ

which differs from that of the vacuum because the ground
state is already occupied by matter. When the ground state
is excited without the change of μ, the increased entangle-
ment entropy is given by

ΔSjμ ≡ SðTH; μÞ − Sð0; μÞ

¼ 2π11=2L2l2T2
H

5
ffiffiffi
3

p
κ2Γð2

3
Þ3Γð5

6
Þ3 ðπ

2T2
H þ 4κ4μ2Þ þ � � � : ð30Þ

According to the entanglement entropy bound, the increase
of the entanglement entropy should be bounded by the
increased energy. Especially when only low order correc-
tions are taken into account, the entanglement entropy
bound is saturated. In order to check this point, let us
calculate the increased energy when the ground state is
excited. At a given chemical potential, the energy used to
excite the ground state is evaluated from (16), which can be
reinterpreted as the energy density of excited states in a
small subsystem [13],

ΔEjμ ≡ EðTH; μÞ − Eð0; μÞ ¼ 3π2lL2T2
H

2κ2
ðπ2T2

H þ 4κ4μ2Þ;
ð31Þ

where lL2 corresponds to the volume of the subsystem.
Note that this increased energy is exact because there are no
more higher order corrections.
If we consider only the l2 order correction in the above

entanglement entropy, the increased energy and entangle-
ment entropy satisfy the following relation,

ΔSjμ ¼
4π7=2

15
ffiffiffi
3

p
Γð2

3
Þ3Γð5

6
Þ3 lΔEjμ; ð32Þ

which is the form when the Bekenstein bound is saturated.
Unfortunately, since it has not been known how to calculate
the modular Hamiltonian in a strip-shaped region we
cannot directly compare this result with the entanglement
entropy bound. In spite of this fact, we can guess from (8)
that the modular Hamiltonian in the strip region should be
given by the right-hand side of (32). Intriguingly, the above
result can be reinterpreted as the thermodynamicslike law,
ΔEjμ ¼ TEΔSjμ. To do so, we should define an entangle-
ment temperature inversely proportional to the strip width

TE ¼ 15
ffiffiffi
3

p
Γð2

3
Þ3Γð5

6
Þ3

4π7=2
1

l
: ð33Þ

The thermodynamic interpretation and definition of the
entanglement temperature are meaningful only when the
Bekenstein bound is saturated. If we consider higher order
corrections, the Bekenstein bound implies that the
increased entanglement entropy should be smaller than
the increased energy

ΔSjμ <
4π7=2

15
ffiffiffi
3

p
Γð2

3
Þ3Γð5

6
Þ3 lΔEjμ: ð34Þ

B. Entanglement entropy bound in a
ball-shaped region

In general, the modular Hamiltonian is a complicated
object which cannot be expressed as an integral of local
operator except several simple cases. One of the exceptions
appears when one considers a spherical entangling surface.
If the quantum state is excited without the change of the
chemical potential, the modular Hamiltonian is associated
with the stress tensor [9,58]

Kjμ ¼ 2πΩ2

Z
ρ≤l

dρρ2
l2 − ρ2

2l
T00jμ ð35Þ

where T00jμ indicates the energy density at a given μ
and Ω2 is the solid angle of the spherical entangling
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surface. Since T00 is uniform, the modular Hamiltonian can
be rewritten as

Kjμ ¼
2π

5
lEjμ; ð36Þ

where the energy contained in the ball-shaped region is
given by Ejμ ¼ Ω2

R
ρ≤l dρρ

2T00jμ. This relation shows how
the modular Hamiltonian is related to the energy over the
interior of the sphere. This is the form expected in (8) and
shows that the entanglement entropy bound is equivalent
to the Bekenstein bound except that the former is also
working in a quantum system. Substituting the energy
obtained from the black brane thermodynamics, the explicit
modular Hamiltonian reads

Kjμ ¼
πl4Ω2

5κ2
ðπ2T2

H þ 2κ4μ2Þ2 − 8πl4Ω2

45κ2
κ8μ4: ð37Þ

When μ is fixed, the increased modular Hamiltonian
becomes

ΔKjμ ≡ KðTH; μÞ − Kð0; μÞ

¼ π5l4Ω2

5κ2
T4
H þ 4π3κ4l4Ω2

5κ2
μ2T2

H: ð38Þ

When μ ¼ 0, it reduces to that of the Schwarzschild AdS
black brane. As mentioned before, the non-negativity of the
relative entropy implies that the increase of the entangle-
ment entropy is bounded by the increased modular
Hamiltonian, ΔSjμ ≤ ΔKjμ.
Now, let us consider the entanglement entropy contained

in a ball-shaped region. Parametrizing a disk with a radius
l as

0 ≤ ρ ≤ l; ð39Þ

and considering z as a function of ρ, the action for the
minimal surface is reduced to

A ¼ Ω2

Z
l−l�

0

dρ
e2Aρ2

z3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2A þ e2B

f
z02

s
; ð40Þ

where l� in the upper limit is introduced to denote a UV
cutoff and the prime means a derivative with respect to ρ.
The equation of motion for z reads

0¼ ρzfz00 þ2zz03e2B−2A−4ρzfz02A0 þρzfz02B0−
1

2
ρzz02f0

−3ρzf2e2A−2BA0 þ3ρf2e2A−2Bþ3ρfz02þ2zfz0: ð41Þ

Since μl and THl have small values in a UV region, one can
expand z as follows:

zðρÞ ¼ z0ðρÞ þ κ4μ2l2z1ðρÞ þ κ8μ4l4z2ðρÞ
þ T4

Hl
4z3ðρÞ þ κ4μ2T2

Hl
4z4ðρÞ þ � � � ; ð42Þ

where the ellipsis indicates higher order corrections.
Related to TH, note that the lowest corrections appear as
the forms T4

Hl
4 and T2

Hμ
2l4, because there is no T2

Hl
2 term

in (41). This is the reason why our ansatz does not include a
T2
Hl

2 term. However, since e2A and e2B contain terms
proportional to μ2l2, the ansatz we have taken should have a
μ2l2 term in order to satisfy the equation of motion.
At leading order, the action is exactly reduced to that

obtained from a pure AdS space and its solution has already
been known as [1,2]

z0ðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

q
: ð43Þ

Around this known solution, the first correction caused
by the deformation is governed by z1. At l2 order, z1 is
given by

z1 ¼ −
2ρ2ð2l2 − ρ2Þ
3l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p þ ðl − ρÞ2c1
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p þ c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p : ð44Þ

Since the subsystem we consider is located at z ¼ 0, all
higher order functions should vanish at ρ ¼ l. This con-
straint fixes c2 to be c2 ¼ 2l2

3
. In addition, the smoothness of

the minimal surface at the turning point, z01 ¼ 0 at ρ ¼ 0,
determines the remaining integral constant to be c1 ¼ 0.
Substituting this solution back into the action in (40), one
can obtain two different corrections caused by the metric
and minimal surface deformations at l2 order.
At l4 order, z2, z3, and z4 satisfying equations of motion

are given by

z2 ¼
2ð5l4ρ2 þ 2l2ρ4 − 3ρ6Þ

45l4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p þ ðl − ρÞ2c3
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p þ c4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p ;

z3 ¼
π4ð5l4ρ2 − 4l2ρ4 þ ρ6Þ

10l4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p þ ðl − ρÞ2c5
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p þ c6ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p ;

z4 ¼
2π2ð5l4ρ2 − 4l2ρ4 þ ρ6Þ

5l4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p þ ðl − ρÞ2c7
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p þ c8ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p :

ð45Þ

Imposing again that all higher order functions should be
zero at ρ ¼ l, half of the unknown integral constants are
determined to be

c2 ¼
2l2

3
; c4 ¼ −

8l2

45
; c6 ¼ −

π4l2

5
and

c8 ¼ −
4π2l2

45
: ð46Þ
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In addition, the smoothness of the minimal surface at the
turning point, z01 ¼ z02 ¼ z03 ¼ z04 ¼ 0 at ρ ¼ 0, yields
c1 ¼ c3 ¼ c5 ¼ c7 ¼ 0. Substituting the above solutions
into the action, the minimal area up to l4 order gives rise to

A ¼ Ω2

Z
l−l�

0

dρ

�
lρ2

ðl2 − ρ2Þ2 −
8

15
κ8lμ4ρ2

þ 3

5
lρ2ðπ2T2

H þ 2κ4μ2Þ2
�
: ð47Þ

Here l� is associated with the UV cutoff of the z coordinate
denoted by ϵ. The perturbative solution we found deter-
mines their relation up to higher order corrections:

l� ¼
ϵ2

2l

�
1þ

	
1

4l2
−
4κ4

3
μ2 −

8l2

45
κ8μ4

þ l2

5
ðπ2T2

H þ 2κ4μ2Þ2


ϵ2 þ � � �

�
: ð48Þ

Using this relation, the entanglement entropy finally
becomes

SðTH; μÞ ¼
πl2Ω2

κ2ϵ2
þ πΩ2

κ2
log

�
ϵ

l

�
−
πΩ2

2κ2
ð1þ 2 log 2Þ

þ 4πl2Ω2

3κ2
κ4μ2 −

8πl4Ω2

45κ2
κ8μ4

þ πl4Ω2

5κ2
ðπ2T2

H þ 2κ4μ2Þ2: ð49Þ

This is the entanglement entropy of the excited state with
the chemical potential.
At a given chemical potential, the increased entangle-

ment entropy up to l4 order is given by

ΔSjμ≡SðTH;μÞ−Sð0;μÞ¼ π5l4Ω2

5κ2
T4
Hþ4π3κ4l4Ω2

5κ2
μ2T2

H;

ð50Þ

which is the exact same as the increased modular
Hamiltonian in (38). When higher order corrections are
ignored, the almost saturated entanglement entropy bound
leads to the thermodynamicslike law

ΔKjμ ¼ ΔSjμ ¼
1

TE
ΔEjμ; ð51Þ

with

TE ¼ 5

2πl
: ð52Þ

As mentioned before, the entanglement temperature shows
a universal feature proportional to the inverse of the system
size. In order to understand this result, let us first consider
black hole thermodynamics. In general, a charged black
hole has an additional conserved charge and its thermo-
dynamics,

dE ¼ THdSBH þ μdN; ð53Þ

can be identified with that of the dual field theory in the
AdS=CFT contexts. When an additional neutral particle is
absorbed into the charged black hole, the energy and
entropy usually increase. However, the charge does not
because a neutral particle has no charge. This means
dN ¼ 0, so the corresponding thermodynamic law is
reduced to

dE ¼ THdSBH: ð54Þ

Comparing it with the above entanglement entropy bound
in (51), it is similar to the entanglement entropy bound.
Since the entanglement entropy bound is regarded as
the quantum generalization of the Bekenstein bound, the
entanglement entropy bound, (51), reduces to the
Bekenstein bound, (54), in the IR limit where the entan-
glement entropy yields the Bekenstein-Hawking entropy.
On the other hand, finite thermal fluctuations can be
ignored in the UV limit, so that ΔEjμ can be regarded
as the quantum excitation energy. This quantum excitation
energy increases the entanglement entropy and their ratio
plays the role of temperature according to the analogy to the
first law of thermodynamics, which was called the entan-
glement temperature to distinguish it from the normal
temperature.
Now, let us consider a global quench corresponding to a

sudden chemical potential change at a given TH. To do so,
it is more convenient to consider N as a fundamental
variable instead of the chemical potential. This is associated
with the Legendre transformation and the change of the
chemical potential is due to the change of the particle
number. From (19), the chemical potential can be written as
a function of N,

μ ¼
21=3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160π6V4

3T
6
H þ 225N2

q
þ 15N

�
2=3

− 451=3π2V4=3
3 T2

H

2102=3κ2V2=3
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160π6V4

3T
6
H þ 225N2

q
þ 15N

�
1=3 ; ð55Þ

where V3 indicates the volume of the ball, V3 ¼ l3
3
Ω2. When the particle number is slightly changed (ΔN ≪ N), the change

of the chemical potential is given by
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ΔμjTH
¼ ∂μ

∂N
����
TH

ΔN; ð56Þ

with

∂μ
∂N

����
TH

¼
51=3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π6V4

3T
6
H þ 45N2

q
þ 3

ffiffiffi
5

p
N
�

2κ2V2=3
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π6V4

3T
6
H þ 45N2

q ×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160π6V4

3T
6
H þ 225N2

q
þ 30N

�
2=3 þ 2101=3π2V4=3

3 T2
H� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

160π6V4
3T

6
H þ 225N2

q
þ 15N

�
4=3 : ð57Þ

In addition, this global quench also leads to the change of the energy at a given TH,

ΔEjTH

TE
¼ 8π3κ4l4Ω2

5κ2
π2μT2

HΔμjTH
þ 112πl4Ω2

45κ2
κ8μ3ΔμjTH

; ð58Þ

and the increased entanglement entropy up to l4 order reads

ΔSjTH
¼ 8πl2Ω2

3κ2
κ4μΔμjTH

þ 4π3κ4l4Ω2

5κ2
π2μT2

HΔμjTH
þ 112πl4Ω2

45κ2
κ8μ3ΔμjTH

: ð59Þ

Comparing these two results, the thermodynamicslike
law in (51) is violated under a global quench. To understand
why this happens, let us first consider the thermodynamic
law of a charged black hole. When a charged particle
instead of a neutral one is absorbed, the energy and entropy,
as well as the charge of the black hole, are changed. These
quantities satisfy the generalized first law of thermody-
namics in (53). This relation implies that adding more
particles modifies the thermodynamic law. Relying on the
charge of the absorbed particle, the chemical potential can
have a positive or negative value. Similarly, we also expect
that the entanglement entropy bound is modified under a
global quench. Suppose thatK0 is the modular Hamiltonian
of the undeformed theory. Then, the reduced density matrix
is given by

ρ0 ¼
e−K0

Tre−K0
: ð60Þ

In a ball-shaped region, the modular Hamiltonian is related
to the energy, K0 ¼ E

TE
from (35). Now, let us deform this

theory by a relevant number operator, N,

K ¼ K0 −
μE
TE

N; ð61Þ

where the entanglement chemical potential, μE, accounts
for how a global quench modifies the modular Hamiltonian
and entanglement entropy [33]. The reduced density matrix
of the deformed theory becomes

ρ ¼ e−K

Tre−K
; ð62Þ

and the non-negativity of the relative entropy gives rise to a
generalized entanglement entropy bound

ΔK ¼ ΔE
TE

−
μE
TE

ΔN ≥ ΔS: ð63Þ

Note that the previous result in (51) is a special case
with ΔN ¼ 0.
When the generalized entanglement entropy bound is

saturated, its form is the same as the generalized first law of
thermodynamics in (53). From (58) and (59), the entangle-
ment chemical potential is given by

μE ¼ −
51=6lΩ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π6V4

3T
6
H þ 45N2

q h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160π6V4

3T
6
H þ 225N2

q
þ 15N

�
4=3

− 821=352=3π4V8=3
3 T4

H

i
3κ2V1=3

3 ð32π6V4
3T

6
H þ 45N2Þ

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160π6V4

3T
6
H þ 225N2

q
þ 30N

�
2=3 ; ð64Þ

where μE ≤ 0. Unlike the entanglement temperature, the entanglement chemical potential usually has a nontrivial size
dependence [33]. Assuming that one can substitute more particles without changing the energy, then the entanglement
entropy change from the generalized entanglement entropy bound becomes

ΔS ¼ −
μE
TE

ΔN: ð65Þ
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Since μE is negative, adding more particles increases the
entanglement entropy as expected. As a consequence, the
generalized entanglement entropy bound is still satisfied
under a global quench.

V. DISCUSSION

When an object is absorbed into a black hole, the
Bekenstein bound has been proposed to explain the
increase of the thermal entropy. In this paper, we have
investigated the generalized entanglement entropy bound
for a holographic fermion system with a Fermi surface.
Intriguingly, the entanglement entropy bound is originated
from the non-negativity of the relative entropy and can be
applied to a quantum system unlike the Bekenstein bound.
Rewriting the entanglement entropy bound in terms of the
system energy instead of the modular Hamiltonian, it is
equivalent to the Bekenstein bound except that it is working
even in a quantum system. Recently, it has been shown that
the entanglement temperature satisfying the thermodyna-
micslike law has a universal feature inversely proportional

to the system size [13]. We showed that the almost saturated
entanglement entropy bound can account for the univer-
sality of the entanglement temperature.
We have also studied how the entanglement entropy

bound is modified under a global quench. In general, a
global quench changes the modular Hamiltonian and
entanglement entropy which lead to the generalized entan-
glement entropy bound. When the generalized entangle-
ment entropy bound is saturated, we showed that it also
satisfies the generalized thermodynamic law. Unlike the
entanglement temperature, the entanglement chemical
potential nontrivially depends on the system size.
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