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Little string theories (LSTs) are UV complete nonlocal six-dimensional (6D) theories decoupled from
gravity in which there is an intrinsic string scale. In this paper, we present a systematic approach to the
construction of supersymmetric LSTs via the geometric phases of F-theory. Our central result is that all
LSTs with more than one tensor multiplet are obtained by a mild extension of 6D superconformal field
theories in which the theory is supplemented by an additional, nondynamical tensor multiplet,
analogous to adding an affine node to an ADE quiver, resulting in a negative semidefinite Dirac
pairing. We also show that all 6D superconformal field theories naturally embed in a LST. Motivated by
physical considerations, we show that in geometries where we can verify the presence of two elliptic
fibrations, exchanging the roles of these fibrations amounts to T-duality in the 6D theory compactified
on a circle.
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I. INTRODUCTION

One of the concrete outcomes from the postduality era
of string theory is the wealth of insights it provides into
strongly coupled quantum systems. In the context of
string compactification, this has been used to argue, for
example, for the existence of novel interacting conformal
field theories in spacetime dimensions D > 4. In a
suitable gravity-decoupling limit, the nonlocal ingredients
of a theory of extended objects such as strings are instead
captured by a quantum field theory with a local stress
energy tensor.
String theory also predicts the existence of novel

nonlocal theories. Our focus in this work will be on
six-dimensional (6D) theories known as little string
theories (LSTs).1 For a partial list of LST constructions,
see, e.g., Refs. [1–7]. In these systems, 6D gravity is
decoupled, but an intrinsic string scale Mstring remains. At
energies far belowMstring, we have an effective theory which
is well approximated by the standard rules of quantum field

theory with a high scale cutoff. However, this local char-
acterization breaks down as we reach the scale Mstring. The
UV completion, however, is not a quantum field theory.2

The mere existence of little string theories leads to a
tractable setting for studying many of the essential features
of string theory—-such as the presence of extended
objects—but with fewer complications (such as coupling
to quantum gravity). It also raises important conceptual
questions connected with the UV completion of low energy
quantum field theory. For example, in known constructions,
these theories exhibit T-duality upon toroidal compactifi-
cation [4,5,9] and a Hagedorn density of states [10],
properties which are typical of closed string theories with
tension set by M2

string.
Several families of LSTs have been engineered in the

context of superstring theory by using various combinations
of branes probing geometric singularities. The main idea in
many of these constructions is to take a gravity-decoupling
limit where the 6D Planck scale Mpl → ∞ and the string
coupling gs → 0, but with an effective string scale Mstring

held fixed. Even so, an overarching picture of how to
construct (and study) LSTs has remained somewhat elusive.
Our aim in this work is to give a systematic approach

for realizing LSTs via F-theory and to explore its
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little string theories exist.

2In fact, all known properties of LSTs are compatible with the
axioms for quasilocal quantum field theories [8].
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consequences.3 To do this, we will use both a bottom up
characterization of little string theories on the tensor branch
(i.e., where all effective strings have picked up a tension)
as well as a formulation in terms of compactifications
of F-theory. To demonstrate UV completeness of the
resulting models, we will indeed need to use the F-theory
characterization.
Recall that in F-theory, we have a noncompact base B of

complex dimension 2, which is supplemented by an elliptic
fibration to reach a noncompact Calabi-Yau threefold. In
the resolved phase, the intersection pairing of the base
coincides with the Dirac pairing for 2-form potentials of the
theory on its tensor branch. For an superconformal field
theory (SCFT), we demand that the Dirac pairing is
negative definite. For a LST, we instead require that this
pairing is negative semidefinite; i.e., we allow for a non-
trivial null space.
F-theory also imposes the condition that we can supple-

ment this base by an appropriate elliptic fibration to reach a
noncompact Calabi-Yau threefold. In field theory terms,
this is usually enforced by the condition that all gauge
theoretic anomalies are cancelled on the tensor branch of
the theory. For 6D gauge theories which complete to LSTs,
this condition was discussed in detail in Ref. [14]. Even
when no gauge theory interpretation is available, this means
that in the theory on the tensor branch, some linear
combination of tensor multiplets is nondynamical and
instead defines a dimensionful parameter (effectively a
UV cutoff) for the 6D effective field theory.
In F-theory terms, classifying LSTs thus amounts to

determining all possible elliptic Calabi-Yau threefolds
which support a base B with negative semidefinite inter-
section pairing. One of our results is that all LSTs are given
by a small extension of 6D SCFTs; i.e. they can always be
obtained by adding just one more curve to the base of an
SCFT so that the resulting base has an intersection pairing
with a null direction. Put in field theory terms, we find that
the string charge lattice of any LST with more than one
tensor multiplet is an affine extension of the string charge
lattice of an SCFT, with the minimal imaginary root of the
lattice corresponding to the little string charge. Hence,
much as in the case of Lie algebras, all LSTs arise from an
affine extension of SCFTs. See Fig. 1 for a depiction of this
process.
In fact, the related classification of 6D SCFTs has

already been successfully carried out. See, e.g., the partial
list of Refs. [15–21]. What this means is that we can freely
borrow this structure to establish a classification of LSTs.
Much as in Ref. [20], we establish a similar “atomic

classification” of how LSTs are built up from smaller
constituent elements. We find that the base of an F-theory
geometry is organized according to a single spine of
“nodes” which are decorated by possible radicals, i.e.,
links which attach to these nodes. As opposed to the case of
SCFTs, however, the topology of a LST can be either a tree
or a loop.
Using this characterization of LSTs, we also show that

all 6D SCFTs can be embedded in some LST by including
additional curves and 7-branes:

6DSCFTs → 6DLSTs: ð1:1Þ

Deformations in both Kähler and complex structure moduli
for the LST then take us back to the original SCFT. It is
curious to note that, although many 6D SCFTs cannot be
coupled to 6D supergravity, they can always be embedded
in another theory with an intrinsic length scale.
A hallmark of all known LSTs is T-duality; that is, by

compactifying on a small circle,4 we reach another 6D LST
compactified on a circle of large radius. This motivates a
physical conjecture that all LSTs exhibit such a T-duality.
In geometries where we can verify the presence of two
elliptic fibrations, we find that exchanging the roles of these
fibrations amounts to T-duality in the 6D theory compacti-
fied on a circle.5 In some cases, we find that T-duality takes
us to the same LST. For a recent application of this double
elliptic fibration structure in the study of the correspon-
dence between instantons and monopoles via compactifi-
cations of little string theory, see Ref. [23].
The rest of this paper is organized as follows. In Sec. II,

we state necessary bottom up conditions to realize a LST.
This includes the core condition that the Dirac pairing for a
LST is a negative semidefinite matrix. After establishing
some of the conditions this enforces, we then turn in Sec. III
to the rules for constructing LSTs in F-theory. We also
explain the (small) differences between the rules for
constructing LSTs vs SCFTs. Section IV gives some

FIG. 1. Depiction of how to construct the base of an F-theory
model for a LST. All LST bases are obtained by adding one
additional curve to the base for a 6D SCFT. This additional curve
can intersect either one or two curves of the SCFT base. Much as
in the study of Lie algebras, LSTs should be viewed as an “affine
extension” of SCFTs.

3More precisely, we focus on the case of geometric phases of
F-theory, ignoring the (small) list of possible models with
“frozen” singularities (see, e.g., Refs. [11–13]). We return to
this point later in Sec. X when we discuss the mismatches
between field theory motivated LST constructions and their
possible lifts to string constructions.

4That is, small when compared with the effective string scale.
5This has been independently observed by Daniel Park [22].
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examples of known constructions of LSTs and their
embedding in F-theory. In Sec. V, we show how decoupling
a tensor multiplet to reach an SCFT leads to strong
constraints on possible F-theory models. In Sec. VI, we
present an atomic classification of bases, and in Sec. VII,
we turn to the classification of possible elliptic fibrations
over a given base. In Sec. VIII, we demonstrate that every
6D SCFT constructed in F-theory can be embedded into at
least one 6D LST constructed in F-theory. In Sec. IX, we
show how T-duality of the LST shows up as the existence of
a double elliptic fibration structure and the exchange in the
roles of the elliptic fibers. As a consequence, we show that
LSTs can acquire discrete gauge symmetries for particular
values of their moduli. In Sec. X, we discuss the small
mismatch with possible LST constructions suggested by
field theory and their potential embedding in a nongeo-
metric phase of an F-theory model. Section XI contains our
conclusions, and some additional technical material is
deferred to a set of Appendixes.

II. LSTS FROM THE BOTTOM UP

In this section, we state some of the conditions necessary
to realize a supersymmetric little string theory.
We consider 6D supersymmetric theories which admit a

tensor branch (which can be zero dimensional, as will be the
case for many LSTs), that is, we will have a theory with
some dynamical tensor multiplets, and vacua parametrized
(at low energies) by vacuum expectation values (vevs) of
scalars in these tensor multiplets. Wewill tune the vevs of the
dynamical scalars to zero to reach a point of strong coupling.
Our aim will be to seek out theories in which this region of
strong coupling is not described by an SCFT but rather by a
LST. In addition to dynamical tensor multiplets, we will
allow the possibility of nondynamical tensor multiplets
which set mass scales for the 6D supersymmetric theory.
Recall that in a theory with T tensor multiplets, we have

scalars SI and their bosonic superpartners B−;I
μν , with anti-

self-dual field strengths. The vevs of the SI govern, for
example, the tension of the effective strings which couple to
these 2-form potentials. In a theory with gravity, one must
also include an additional 2-form potential Bþ

μν coming
from the graviton multiplet. Given this collection of 2-form
potentials, we get a lattice of string charges Λstring and a
Dirac pairing,6

Λstring × Λstring → Z; ð2:1Þ

in which we allow for the possibility that there may be a
mull space for this pairing. It is convenient to describe the
pairing in terms of a matrix A in which all signs have been
reversed. Thus, we can write the signature of A as ðp; q; rÞ

for q self-dual field strengths, p anti-self-dual field
strengths, and r the dimension of the null space.
Now, in a 6D theory with q self-dual field strengths and

p anti-self-dual field strengths, the signature of A is
ðp; q; 0Þ. For a 6D supergravity theory with T tensor
multiplets, the signature is ðT; 1; 0Þ. In fact, even more
is true in a 6D theory of gravity: diffeomorphism invariance
enforces the condition found in Ref. [24] that detA ¼ −1.
Now, since we are interested in supersymmetric theories

decoupled from gravity, we arrive at the necessary con-
dition that the signature of A is ðp; 0; rÞ. In this special case,
each of our 2-form potentials has a real scalar superpartner,
which we denote as SI . The kinetic term for these scalars is

Leff ⊃ AIJ∂SI∂SJ: ð2:2Þ
Observe that if A has a zero eigenvector, some linear
combinations of the scalars will have a trivial kinetic term.
When this occurs, these tensor multiplets define parameters
of the effective theory on the tensor branch (i.e., they are
nondynamical fields).
This leaves us with two general possibilities. Either A is

positive definite (i.e., A > 0) or it is positive semidefinite
(i.e., A ≥ 0). Recall, however, that to reach a 6D SCFT, a
necessary condition is A0 [14,15,20,21]. We summarize the
various possibilities for self-consistent 6D theories:

6DSUGRA 6DLST 6DSCFT

Signature ðT; 1; 0Þ ðp; 0; rÞ ðT; 0; 0Þ
detA∶ detA ¼ −1 detA ¼ 0 detA > 0

ð2:3Þ
For now, we have simply indicated a LST as any theory
where detA ¼ 0.
As already mentioned, when detA ¼ 0, some linear

combinations of the scalar fields for tensor multiplets will
have trivial kinetic term. This means that they are better
viewed as defining dimensionful parameters. For example,
in the case of a 6D theory with a single gauge group factor
and no dynamical tensor multiplets, this parameter is just
the overall value Snull ¼ 1=g2YM, with gYM the Yang-Mills
coupling of a gauge theory. Indeed, this Yang-Mills theory
contains solitonic solutions which we can identify with
strings,

F ¼ − �4 F; ð2:4Þ
that is, we dualize in the four directions transverse to an
effective string. More generally, we can expect A to contain
some general null space, and with each null direction, a
nondynamical tensor multiplet of parameters,

~vnull ≡ N1~v1 þ � � � þ NT~vTsuch thatA · ~vnull ¼ 0: ð2:5Þ
for the 2-form potential and

6Here, we ignore possible torsional contributions to the
pairing.
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Snull ¼ N1S1 þ � � � þ NTST ð2:6Þ

for the corresponding linear combination of scalars. Since
they specify dimensionful parameters, we get an associated
mass scale, which we refer to as Mstring:

Snull ¼ M2
string: ð2:7Þ

Returning to our example from 6D gauge theory, the
tension of the solitonic string in Eq. (2.4) is just
1=g2YM ¼ M2

string. At energies above Mstring, our effective
field theory is no longer valid, and we must provide a UV
completion.
On general grounds, A ≥ 0 could have many null

directions. However, in the case where we have a single
interacting theory, i.e., when A is simple, there are further
strong restrictions. As explained in Ref. [25], when A ≥ 0 is
simple, all of its minors are positive definite: Aminor > 0.
Consequently, there is precisely one zero eigenvalue, and
the eigenvector is a positive linear combination of basis
vectors. Consequently, there is only one dimensionful
parameter Mstring. This also means that if we delete any
tensor multiplet, we reach a positive definite intersection
pairing, and consequently a 6D SCFT. What we have just
learned is that if we work in the subspace orthogonal to the
ray swept out by Snull, then the remaining scalars can all be
collapsed to the origin of moduli space. When we do this,
we reach the LST limit.
We shall refer to this property of the matrix A as the

“tensor-decoupling criterion” for a LST. As we show in
subsequent sections, the fact that decoupling any tensor
multiplet takes us to an SCFT imposes sharp restrictions.
Even so, our discussion has up to now focussed on

some necessary conditions to reach a UV complete theory
different from a 6D SCFT. In Refs. [14,21], the specific
case of 6D supersymmetric gauge theories was considered,
and closely related consistency conditions for UV com-
pleting to a LST were presented. Here, we see the same
consistency condition A ≥ 0 appearing for any effective
theory with (possibly nondynamical) tensor multiplets.
Indeed, simply specifying the tensor multiplet content

provides an incomplete characterization of the tensor
branch. In addition to this, we will also have vector
multiplets and hypermultiplets. For theories with only
eight real supercharges, anomaly cancellation often
imposes tight consistency conditions.
There is, however, an important difference in the way

anomaly cancellation operates in a 6D SCFT compared
with a 6D LST. The crucial point is that because A has a
zero eigenvalue, there is a nondynamical tensor multiplet
which does not participate in the Green-Schwarz mecha-
nism. In other words, on the tensor branch of a LSTwith T
tensor multiplets, at most only T − 1 participate. This is not
particularly worrisome since, as explained in Ref. [24] and
further explored in Ref. [26], there is in general a difference

between the tensor multiplets which participate in anomaly
cancellation and those which appear on the tensor branch of
a general 6D theory.
Though we have given a number of necessary conditions

that any putative LST must satisfy, to truly demonstrate
their existence, we must pass beyond effective field theory,
embedding these theories in a UV complete framework
such as string theory. We therefore now turn to the F-theory
realization of little string theories.

III. LSTS FROM F-THEORY

In this section, we spell out the geometric conditions
necessary to realize LSTs in F-theory. Recall that in a little
string theory, we are dealing with a 6D theory which
contains strings with finite tension. As such, they are an
intermediate case between the case of a 6D superconformal
field theory (which only contains tensionless strings) and
the full string theory (i.e., one in which gravity is
dynamical).
Any supersymmetric F-theory compactification to six

dimensions is defined by an elliptically fibered Calabi-Yau
threefold X → B. Here, X is the total space, and B is the
base. The elliptic fibration can be described by a local
Weierstrass model,

y2 ¼ x3 þ fxþ g; ð3:1Þ

where f and g are local functions on B, that globally are
sections, respectively, of OBð−4KBÞ and OBð−6KBÞ, KB
being the canonical class of B. The discriminant of the
elliptic fibration is

Δ≡ 4f3 þ 27g2; ð3:2Þ

which globally is a section of OBð−12KBÞ. The discrimi-
nant locus Δ ¼ 0 is a divisor, and its irreducible compo-
nents tell us the locations of degenerations of elliptic fibers.
Such singularities determine monodromies for the complex
structure parameter τ of the elliptic fiber, which is inter-
preted in type IIB string theory as the axiodilaton field. In
type IIB language, the discriminant locus signals the
location of 7-branes in the F-theory model.
In F-theory, decoupling gravity means we will always be

dealing with a noncompact base B. When all curves of B
are of finite nonzero size, we get a 6D effective theory with
a lattice of string charges:

Λstring ¼ Hcpct
2 ðB;ZÞ: ð3:3Þ

The intersection form defines a canonical pairing,

Aintersect∶ Λstring × Λstring → Z; ð3:4Þ

which we identify with the Dirac pairing:
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ADirac ¼ Aintersect: ð3:5Þ

We also introduce the “adjacency matrix”

Aadjacency ¼ −ADirac: ð3:6Þ
To streamline the notation, we shall simply denote the
adjacency matrix as A. The 2-form potentials of the 6D
theory arise from reduction of the 4-form potential of type
IIB string theory. Additionally, the volumes of the various
compact two-cycles translate to the real scalars of tensor
multiplets:

SI ∝ VolðΣIÞ: ð3:7Þ
In the F-theory model, the appearance of a null vector for
Aintersect means that some of these moduli are not dynamical
in the 6D effective field theory. Rather, they define
dimensionful parameters/mass scales. This follows from
the Grauert-Artin contractibility criterion in algebraic

geometry [27,28], which states that any given curve in a
complex surface is contractible if and only if the inter-
section matrix of its irreducible components is negative
definite. This simple geometrical criterion gives a necessary
condition (A > 0) for engineering SCFTs and implies that
any null eigenvalues of A correspond to noncontractible
curves, which thus define intrinsic energy scales.
To define an F-theory model, we need to ensure that

there is an elliptic Calabi-Yau X in which B is the base. A
necessary condition for realizing the existence of an elliptic
model is that the collection of curves entering in a base B
are obtained by gluing together the “non-Higgsable clus-
ters” (NHCs) of Ref. [29] via P1’s of self-intersection −1.
Recall that the non-Higgsable clusters are given by

collections of up to three P1’s in which the minimal
singular fiber type is dictated by the self-intersection
number of the P1. The self-intersection number and
associated gauge symmetry and matter content are as
follows:

Self-intersection −3 −4 −5 −6 −7 −8
Gauge theory su3 so8 f4 e6 e7 ⊕ 1

2
56 e7

ð3:8Þ

Self-intersection −9 −10 −11 −12
Gauge theory e8 ⊕ 3inst e8 ⊕ 2inst e8 ⊕ 1inst e8

ð3:9Þ

Self-intersection −3;−2 −2;−3;−2 −3;−2;−2
Gauge theory g2 × su2⊕ 1

2
ð7þ 1;2Þ su2 × so7 × su2⊕ 1

2
ð2;8;1Þ⊕ 1

2
ð1;8;2Þ g2 × sp1⊕ 1

2
ð7;2Þ⊕ 1

2
ð1;2Þ
ð3:10Þ

In addition, we can also consider a single −1 curve and
configurations of −2 curves arranged either in an ADE
Dynkin diagram or its affine extension (in the case of little
string theories). The local rules for building up an F-theory
base compatible with these NHCs amount to a local
gauging condition on the flavor symmetries of a −1 curve:
We scan over product subalgebras of the e8 flavor sym-
metry which are also represented by the minimal fiber types
of the NHCs. When they exist, we get to “glue” these NHCs
together via a −1 curve.
For a general elliptic Calabi-Yau threefold, the curves

appearing in a given gluing configuration can lead to rather
intricate intersection patterns. For example, two curves may
intersect more than once and may therefore form either a
closed loop or an intersection with some tangency.
Additionally, we may have three curves all meeting at
the same point, as in the case of the type IV Kodaira fiber.
Finally, a single −1 curve may in general intersect more
then just two curves. The possible ways to locally glue
together such NHCs has also been worked out explicitly in
Ref. [29] (see also Ref. [30]). The main idea, however, is

that, since the −1 curve theory defines a 6D SCFT with
E8 flavor symmetry, we must perform a gluing compat-
ible with gauging some product subalgebra of the Lie
algebra e8.
What this means in general is that the adjacency matrix

provides only a partial characterization of intersecting
curves in the base of a geometry. To handle these different
possibilities, we therefore introduce the following notation:

Normal intersection∶ a; b or ab ð3:11Þ

Tangent intersection∶ a∥b ð3:12Þ

Triple intersection∶ a▽
b
c ð3:13Þ

Looplike configuration∶ ==a1 � � � ak==: ð3:14Þ

Now, decoupling gravity to reach an SCFT or a LST
leads to significant restrictions on the possible ways to glue
together NHCs. In the case of a 6D SCFT, contractibility of
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all curves in the base means first that all of the compact
curves are P1’s and further that a −1 curve can intersect at
most two other curves. Additionally, all off-diagonal entries
of the intersection pairing are either zero or 1. In the case of
LSTs, however, the curves of the base could include a T2,
and a −1 curve can potentially intersect more than two
curves. Additionally, there is also the possibility that the
off-diagonal entries of the adjacency matrix may be differ-
ent than just zero or 1.
Again, we stress that the intersection pairing provides

only partial information. For example, a curve of self-
intersection zero could refer either to a P1 or to a T2. In the
case of aT2 of self-intersection zero, the normal bundle need
not be trivial but could be a torsion line bundle instead.
Additionally, an off-diagonal entry in the adjacency matrix
which is 2may either refer to a pair of curves which intersect
twice or to a single intersection of higher tangency. The case
of tangent intersections violates the condition of normal
crossing (which is known to hold for SCFTs [15] but fails for
LSTs). An additional type of normal crossing violation
appears when we blow down a −1 curve meeting more than
two curves. InAppendixB,we determine the types ofmatter
localized when there are violations of normal crossing.

A. Geometry of the gravity-decoupling limit

We now discuss how to obtain limits of F-theory
compactifications in which gravity is decoupled, following
a program initiated in Ref. [31], worked out in detail in
Ref. [32] (see also Ref. [33]), and extended to the case of
6D SCFTs in Ref. [34]. For this purpose, we consider
F-theory from the perspective of the type IIB string, with
the volume of the base B of the F-theory compactification
providing a Planck scale for the compactified theory. We
will see that the quest for decoupled gravity leads to the
same condition on semidefiniteness of the intersection
matrix of the compact curves, and moreover we will see
how to ensure that the F-theory base B in such cases has a
metric of the appropriate kind.

1. Case of compact base

We begin with the case in which the F-theory base B is a
compact surface and suppose we have a sequence of
metrics (specified by their Kähler forms ωi) which decou-
ple gravity in the limit i → ∞. In particular, the volume
must go to infinity: limi→∞volðωiÞ ¼ ∞.
To investigate the geometry of this family of metrics, we

temporarily rescale them and consider the Kähler forms

~ωi ≔
ωiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

volðωiÞ
p : ð3:15Þ

The rescaled metrics all have volume 1, and since the
closure of the set of volume 1 Kähler classes on B is
compact, there must be a convergenct subsequence of
Kähler classes ½ ~ωij � of which the limit

½ ~ω∞� ¼ lim
j→∞

½ ~ωij � ð3:16Þ

lies in the closure of the Kähler cone. If the original
sequence was chosen generically, the limit of the rescaled
sequence will be an interior point of the Kähler cone, and in
this case, all areas and volumes grow uniformly as we take
the limit of the original sequence ωi. Gravity decouples,
but all other physical quantities measured by areas and
volumes approach either zero or infinity, leaving us with a
trivial theory.
However, if the rescaled limit (3.16) lies on the boundary

of the Kähler cone, more interesting things can happen. In
favorable circumstances, such as those present in Mori’s
cone theorem [35] and its generalizations [36], we can form
another complex space B̄ out of B by identifying pairs of
points p and q whenever they are both contained in a curve
C of which the area vanishes in the limit. There is a
holomorphic map π∶B → B̄ for which all such curves of
zero limiting area are contained in fibers π−1ðtÞ, t ∈ B̄.
As already pointed out in Ref. [32], there are two

qualitatively different cases: B̄ might be a surface or it
might be a curve. (It is not possible for B̄ to be a point since
there are some curves C ⊂ B of which the area does not
vanish in the limit.) If B̄ is a surface, then the map π∶B → B̄
contracts some curves to points and may create singularities
in B̄. It is widely believed, and has been mathematically
proven under certain hypotheses [37,38], that the limiting
metric ~ω∞ can be interpreted as a metric ωB̄ on the smooth
part of B̄.
On the other hand, if B̄ is a curve, so that π has curves Σt,

t ∈ B̄ as fibers, then we again expect the limiting metric ~ω∞
to be induced by a metric on B̄, although there are fewer
mathematical theorems covering this case. (See Ref. [39]
for one known theorem of this kind.)
In general, we do not expect the curves contracted by π

to necessarily have zero area in the gravity-decoupling
limit. This can be achieved by starting with a reference
Kähler form ω0 on B as well as a (possibly degenerate)
Kähler form ωB̄ on B̄ and constructing a limit of the form

lim
t→∞

ðω0 þ tπ�ðωB̄ÞÞ: ð3:17Þ

In the case of an SCFT, we wish all curves contracted by π
to be at zero area in the limit, so in that case we should omit
ω0 and simply scale up π�ðωB̄ÞÞ.

2. Case of noncompact base

Our discussion of the compact bases makes it clear that
the decoupling limit only depends on the metric in a (finite
volume) neighborhood of a collection of curves on the
original F-theory base B, together with a rescaling which
takes that neighborhood to infinite volume and smooths out
its features in the process. This analysis can be applied to an
arbitrary base, compact or noncompact.
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If the collection of curves is disconnected, the corre-
sponding points on B̄ to which the collection is mapped will
be moved infinitely far apart during the rescaling process,
thus leading to several decoupled quantum theories. So to
study a single theory, it suffices to consider a connected
configuration. To reiterate the two cases we have found:
(1) We may have a connected collection of curves Σj

which can be simultaneously contracted to a singular
point on a space B̄. (The contractibility implies that
the intersection matrix is negative definite.) When
the metric on B̄ is rescaled, gravity is decoupled,
giving a 6D SCFT (in which every curve in the
collection remains at zero area).
Alternatively, we can combine this rescaled metric

with another reference metric which provides finite
area to each Σj. This produces a quantum field
theory in the Coulomb branch of the SCFT.

(2) Or we may have a connected collection of curves Σj
which are all contained in a single fiber of a map
π∶B → B̄ and include all components of that fiber.
(This implies that the intersection matrix is negative
semidefinite, with a one-dimensional zero eigen-
space.) We combine a reference metric on B that sets
the areas of the individual Σj’s with a metric on B̄
which is rescaled to decouple gravity, yielding a
little string theory (with the string provided by a D3-
brane wrapping the entire fiber). The overall area of
the fibers of π sets the string scale, and the possible
areas of the Σj’s map out the moduli space of the
theory. Gravity is decoupled, and we find a LST.

Note that in the second case, there are two distinct
possibilities for the fibers of the map π: The general fiber
can be a curve of genus 0 or a curve of genus 1. In the case
of genus 1, it is possible for the central fiber to have a
nontrivial multiplicity; that is, the fiber can take the form
mΣ for some m > 1.

IV. EXAMPLES OF LSTS

In the previous section, we gave the general rules for
constructing LSTs. Our plan in this section will be to show
how the F-theory realization allows us to recover well-
known examples of LSTs previously encountered in the
literature.
To this end, we begin by first showing how LSTs with 16

supercharges arise in F-theory constructions. After this, we
turn to known constructions of LSTs with eight super-
charges (i.e., minimal supersymmetry). This will also serve
to illustrate how F-theory provides a single coherent
framework for realizing LSTs.

A. Theories with 16 Supercharges

To set the stage, we begin with little string theories with
16 supercharges. In this case, we have two possibilities
given by N ¼ ð2; 0Þ supersymmetry or N ¼ ð1; 1Þ

supersymmetry. Note that only the former is possible in
the context of 6D SCFTs.
One way to generate examples of N ¼ ð2; 0Þ LSTs is to

take k M5-branes filling R5;1 and probing the geometry
S1⊥ × C2 with S1⊥ a transverse circle of radius R. To reach
the gravity-decoupling limit for a LST, we simultaneously
send the radius R → 0 and Mpl → ∞ while holding fixed
the effective string scale. In this case, it is the effective
tension of an M2-brane wrapped over the circle which we
need to keep fixed. Performing a reduction along this circle,
we indeed reach type IIA string theory with k NS5-branes.
By a similar token, we can also consider IIB string theory
with k NS5-branes. This realizes LSTs with N ¼ ð1; 1Þ
supersymmetry.
T-dualizing the k NS5-branes of type IIA, we obtain type

IIB string theory on the local geometry given by a
configuration of −2 curves arranged in the affine Âk−1
Dynkin diagram. Similarly, we also get a LST by taking
type IIA string theory on the same geometry.
Consider next the F-theory realization of these little

string theories. First of all, we reach the aforementioned
theories by working with F-theory models of which the
associated Calabi-Yau threefold takes the form T2 × S, in
which S → C is an elliptically fibered (noncompact)
Calabi-Yau surface. If we treat the T2 factor as the elliptic
fiber of F-theory, we get IIB on S, and if we treat the elliptic
fiber of S as the elliptic fiber of F-theory, we get (after
shrinking the T2 factor to small size) F-theory with base
T2 × C, which is dual to IIA on S. To refer to both cases, it
will be helpful to label the auxiliary elliptic curve T2 as T2

F
(for fiber) and the other elliptic curve as T2

S (since it lies in
the surface S).
Now, by allowing S to develop a singular elliptic fiber,

we can realize the same local geometries obtained pertur-
batively. For example, the C2=Zk lifts to a Kodaira fiber of
type Ik. Resolving this local singularity, we find k compact
cycles ΣI ≃ P1’s which intersect according to the affine
Âk−1 Dynkin diagram. In this case, the null divisor class is

½Σnull� ¼ ½Σ1� þ � � � þ ½Σk�; ð4:1Þ

that is, it is the ordinary minimal imaginary root of Âk−1. By
shrinking T2

F to small size, this engineers in F-theory the
N ¼ ð2; 0Þ LSTof kM5-branes or of k NS5-branes in type
IIA. [See Fig. 2 for a depiction of the A-type N ¼ ð2; 0Þ
LSTs.] In the other case, one obtains F-theory on T2 × C of
which the fibers have an Ik singularity along T2 × f0g.
Then, ½Σnull� is precisely the class of the F-theory fiber T2

S,
and supersymmetry enhances to N ¼ ð1; 1Þ.
More generally, we can consider any of the degener-

ations of the elliptic fibration classified by Kodaira, i.e., the
type In, II, III, IV, I�n, II�, III�, IV� fibers, and produce a
N ¼ ð2; 0Þ model with that degeneration occurring as a
curve configuration on the F-theory base, as well as a
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N ¼ ð1; 1Þ model with that same degeneration occurring
as the F-theory fiber over some T2 in the base.
As a brief aside, a convenient way to realize examples of

both the N ¼ ð1; 1Þ and N ¼ ð2; 0Þ theories is to consider
F-theory on the Schoen Calabi-Yau threefold dP9 ×P1 dP9

[40]. Then, we can keep the elliptic fiber on one dP9 factor
generic and allow the other to degenerate. Switching the
roles of the two fibers then moves us from the IIA to IIB
case. Note that, although this strictly speaking only
yields eight real supercharges (as we are on a Calabi-
Yau threefold), in the rigid limit used to reach the little
string theory, we expect a further enhancement to either
N ¼ ð2; 0Þ or N ¼ ð1; 1Þ supersymmetry. The specific
chirality of the supersymmetries depends on which elliptic
curve we take to be in the base and which to be in the fiber
of the corresponding F-theory compactification.
Let us also address whether each of the different Kodaira

fiber types leads us to a different little string theory. Indeed,
some pairs of Kodaira fiber types lead to identical gauge
symmetries in the effective field theory. To illustrate,
consider the type IV Kodaira fiber, and compare it with
the type I3 fiber. There is a complex structure deformation
which moves the triple intersection appearing in the type
IV case out to the more generic-type I3 case. This modulus,
however, is decoupled from the 6D little string theory. The
reason is that if we consider a further compactification on a
circle, we reach a five-dimensional (5D) gauge theory
which is the same for both fiber types. The additional
complex structure modulus from deforming IV to I3 does
not couple to any of the modes of the 5D theory. So, there
does not appear to be any difference between these theories.
In other words, we should classify all of the N ¼ ð2; 0Þ

little string theories in terms of affine ADE Dynkin
diagrams rather than in terms of Kodaira fiber types.
For the N ¼ ð1; 1Þ little string theories, the absence of a

chiral structure actually leads to more possibilities. For
example, if we consider M-theory on an ADE singularity
compactified on a further circle, we have the option of
twisting by an outer automorphism of the simply laced
ADE Lie algebra [41]. In other words, for the N ¼ ð1; 1Þ
theories, we have an ABCDEFG classification according to
all of the simple Lie algebras.
To realize these LSTs in F-theory, we make an orbifold

of the previous construction. Suppose that S → C is an
elliptically fibered (noncompact) Calabi-Yau surface which
has compatible actions of Zm on the base and on the total
space, such that the action on the total space preserves
the holomorphic 2-form. Then, Zm acts on T2

F × S with the
action on T2 being translation by a point of order m. The
quotient X ≔ ðT2

F × SÞ=Zm is then an elliptically fibered
Calabi-Yau threefold (with two genus 1 fibrations as
before).
The elliptic fibration X → ðT2

F × CÞ=Zm leads to an
F-theory model with N ¼ ð1; 1Þ supersymmetry. Note that
the base ðT2

F × CÞ=Zm of the F-theory fibration contains a
curve Σ of genus 1 and self-intersection 0 such that mΣ can
be deformed into a one-parameter family although no
smaller multiple can be deformed. Note also that if the
action of Zm on S preserves the section of the fibration
S → C, then X → ðT2

F × CÞ=Zm also has a section, and as
we will explain in Sec. VII A 1, m ∈ f2; 3; 4; 6g since
every elliptic fibration with a section has a Weierstrass
model [42].
There is a second fibration X → ðS=ZmÞ which is a

genus 1 fibration without a section and leads to theories
with N ¼ ð2; 0Þ supersymmetry. We discuss additional
details about this second fibration, as well as T-duality for
these theories, in Sec. IX.
It is instructive to study the structure of the moduli space

of the LSTs with maximal supersymmetry. Recall that the
tensor branch for a N ¼ ð2; 0Þ SCFT of ADE type g is
given by

Mð2;0Þ½g� ¼ RT
≥0=Wg; ð4:2Þ

where, in the above, T is the number of tensor multiplets
and Wg is the Weyl group of the ADE Lie algebra g. That
is, the moduli space is given by aWeyl chamber of the ADE
Lie algebra and is therefore noncompact. In the present case
of LSTs, we see that the condition that we have a string
scale leads to one further constraint on this moduli space,
effectively “compactifying” it to the compact Coxeter box
for an affine root lattice [5].
Finally, one of the prominent features of these examples

is the manifest appearance of two elliptic fibrations in the
geometry. Indeed, in passing from the N ¼ ð2; 0Þ theories
to theN ¼ ð1; 1Þ theories, we observe that we have simply

FIG. 2. Depiction of the tensor branch of the N ¼ ð2; 0Þ Â3

LST. In the top figure, we engineer this example using spacetime
filling M5-branes probing the geometry S1⊥ × C2. In the dual F-
theory realization, we have four −2 curves in the base, which are
arranged as the affine Â3 Dynkin diagram. The Kähler class of
each −2 curve in the F-theory realization corresponds in the
M-theory realization to the relative separation between
the M5-branes.
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switched the role of the two fibrations. In Sec. IX, we return
to this general phenomenon for how T-duality of LSTs is
realized in F-theory.

B. Theories with eight supercharges

Several examples of LSTs with minimal, i.e., (1,0)
supersymmetry are realized by mild generalizations of
the examples reviewed above.
To begin, let us consider again the case of k coincident

M5-branes filling R5;1 and probing the geometry S1⊥ × C2.
We arrive at a (1,0) LST by instead taking a quotient of the
C2 factor by a nontrivial discrete subgroup ΓG ⊂ SUð2Þ so
that the geometry probed by the M5-brane is C2=ΓG. The
discrete subgroups admit an ADE classification, and the
corresponding simple Lie group GADE specifies the gauge
group factors on the tensor branch. We reach a 6D SCFT by
decompactifying the S1⊥. In this limit, we have an emergent
GL ×GR flavor symmetry. From this perspective, the little
string theory arises from gauging a diagonal G subgroup of
the flavor symmetry. In the IIB realization of NS5-branes
probing the affine geometry, applying S-duality takes us to
a stack of D5-branes probing an ADE singularity. On its
tensor branch, this leads to an affine quiver gauge
theory [43].
The F-theory realization of these LSTs is simply an

affine A-type Dynkin diagram of k curves of self-inter-
section −2 decorated with In, I�n, IV�, III�, II� fibers,
respectively, for G ¼ An−1, Dnþ4, E6;7;8. We reach a 6D
SCFT by decompactifying any of the −2 curves in the loop,
and we recover a 6D SCFT with an emergent GL ×GR
flavor symmetry. From this perspective, the little string
theory arises from gauging a diagonal G subgroup of the
flavor symmetry. Note that for G ≠ An, all these systems
involve conformal matter in the sense of Ref. [17].
Another class of LSTs is given by taking kM5-branes in

heterotic M-theory, i.e., M-theory on S1=Z2 × C2. In this
case, we have two E8 flavor symmetry factors. one for each
endpoint of the interval S1=Z2. In this case, the gravity-
decoupling limit requires us to collapse the size of the
interval to zero size (i.e., to reach perturbative heterotic
strings), while still holding the effective string scale finite.
(The ratios of the lengths of subintervals between the
endpoints and the various M5-branes to the length of the
total interval will remain finite in the gravity-decoupling
limit and provide parameters for the tensor branch.) In
perturbative heterotic string theory, we have k NS5-branes
probing C2. A related example is provided by instead
working with the Spinð32Þ=Z2 heterotic string in the
presence of k NS5-branes. Indeed, once suitable Wilson
line data have been specified, these two examples are
T-dual to one another.
The F-theory realization of the theory of k M5-branes

is given by a noncompact base with a configuration of
curves,

½E8�1; 2;…; 2; 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

½E8�; ð4:3Þ

where we have indicated the flavor symmetry factors in
square brackets. In this configuration, we reach the LST
limit by holding fixed the volume of the null divisor (given
by a sum over each divisor with multiplicity 1) and collapse
all other Kähler moduli to zero size. The construction of the
T-dual characterization is somewhat more involved, and so
we defer a full discussion to Sec. IX and Appendix F. See
Fig. 3 for a depiction of the M-theory and F-theory
realizations of this LST.
We can also combine the effects of different orbifold

group actions. For example, we can consider k M5-branes
filling R5;1 and probing the geometry S1=Z2 × C2=ΓG. In
F-theory terms, this is given by the geometry

½E8�1
g
; 2
g
;…; 2

g
; 1
g

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

½E8�; ð4:4Þ

i.e., we decorate by a g-type ADE gauge symmetry over
each curve of self-intersection −1 or −2. This geometry
was studied in detail in Ref. [3]. Further blowups in the
base are needed for all fibers to remain in Kodaira-Tate
form. This leads to conformal matter between each simply
laced gauge group factor [17].
Summarizing, we have seen in the above that the various

LSTs which have been constructed via perturbative string
theory and M-theory all have a natural embedding in the
context of specific F-theory constructions. With this in
mind, we now turn to a systematic construction of all 6D
LSTs in F-theory.

V. CONSTRAINTS FROM TENSOR DECOUPLING

As a first step toward the classification of LSTs, we now
show how to classify possible bases using the tensor-
decoupling criterion, that is, the requirement that

FIG. 3. TOP: Depiction of the LST realized by k M5-branes in
between the two Horava-Witten nine-brane walls of heterotic
M-theory (k ¼ 3 above). This leads to a LST with an E8 × E8

flavor symmetry. BOTTOM: The corresponding F-theory base
given by the configuration of curves ½E8�; 1; 2;…; 2; 1; ½E8� for k
total compact curves. In this realization, the E8 flavor symmetry
is localized on two noncompact 7-branes, one intersecting each
−1 curve.
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decoupling any tensor multiplet from a LST must take us to
an SCFT. In geometric terms, deleting any curve of the base
(with possible fiber enhancements along this curve) must
take us back to an SCFT base (with possibly disconnected
components). Since all SCFTs have the structure of a
treelike graph of intersecting curves [20], our task reduces
to scanning over the list of connected SCFTs and asking
whether adding an additional curve (with possible fiber
enhancements on this curve) will produce a LST. This
inductive approach to classification will allow us to
effectively constrain the overall structure of bases for LSTs.
In this section, we show how the tensor-decoupling

criterion constrains many candidate bases for LSTs. We
first use this criterion to limit the possible graph topologies
of curves in the base. Next, we give a general inductive rule
for how to take an SCFTand verify whether it enhances to a
LST. We shall refer to this as an inductive classification,
since it implicitly accounts for all possible structures for
LSTs. In Sec. VI, we use these constraints to present a more
explicit construction of possible bases for LSTs.

A. Graph topologies for LSTs

For any compact curve Σ in the base which remains in
the gravity-decoupling limit, the self-intersection Σ2 must
be −n for 0 ≤ n ≤ 12. Moreover, since having an F-theory
model requires that −4K, −6K, and −12K be effective
divisors, if K · Σþ Σ2 > 0 (so that K · Σ > 0), then −4K
would have multiplicity at least 4 along Σ, −6K would have
multiplicity at least 6 along Σ, and −12K would have
multiplicity at least 12 along Σ. Since this is not allowed in
the Kodaira classification, we conclude that 2g − 2 ¼
K · Σþ Σ2 ≤ 0, in other words, that Σ is either P1 or T2.
We now use the tensor-decoupling criterion to argue
that the possible topologies of LST bases are limited to
treelike structures and appropriate degenerations of an
elliptic curve.
Let us first show that a curve Σ of self-intersection zero

(of topology P1 or T2) can only appear in isolation; i.e., it
cannot intersect any other curve. If it met another curve and
we decoupled everything that this curve touches, we would
be left with an SCFT base containing a curve of self-
intersection zero, a contradiction. If Σ has genus 0, then the
base takes the form C × Σ, while if Σ has genus 1, then the
base takes the form ðC × ΣÞ=Zm, with Zm acting on Σ by a
translation and on C by multiplication by a root of unity.
Note that if either g ¼ 0 orm ¼ 1, the base is just a product.
Hence, to get a six-dimensional theory, we must wrap
7-branes over Σ, i.e. we must include a nontrivial fiber
enhancement over this curve, unless g ¼ 1 and m1. (We
will see examples of this latter case in Sec. IX.)
Consider next adjacency matrices in which the off-

diagonal entries are different from 0 or 1. For example,
this can occur when a −4 and −1 curve form a closed loop
(i.e., intersect twice) or when the same curves intersect
along a higher order tangency. Again, this possibility is

severely limited because if this were to a occur in a
configuration with three or more curves, we would contra-
dict the tensor-decoupling criterion. By the same token, the
value of all off-diagonal entries are bounded below by 2,

−2 ≤ AIJ ≤ 0 for I ≠ J; ð5:1Þ

and in the case where −2 appears, we are limited to just two
curves. The only possibilities for a rank 1 LST base (i.e.,
with two curves) are therefore

1;1 or ==2;2== or ==4;1== or 2∥2 or 4∥1: ð5:2Þ

In Appendix B, we analyze the possible fiber enhancements
which can occur when the two curves meet along a
tangency (i.e., do not respect normal crossing), as is the
case in the last two configurations.
For all other LST bases, we see that all curves must be

constructed from P1’s of self-intersection −x for
1 ≤ x ≤ 12, which all intersect with normal crossings;
i.e., all off-diagonal entries of the adjacency matrix are
either 0 or 1.
To further constrain the structure, we next observe that

the base of any 6D SCFT is always treelike [15]. This
means that the graph associated to a LST adjacency matrix
can admit at most one loop, and when it contains a loop,
there can be no additional curves branching off. This is
because the tensor-decoupling criterion would be violated
by joining a loop of curves to anything else. We are
therefore left with two general types of configurations:

(i) Treelike LSTs
(ii) Looplike LSTs.
Note that some of the treelike structures we shall

encounter can also be viewed as loops, that is, as degen-
erations of an elliptic curve.

B. Inductive classification

To proceed further, we now present an inductive strategy
for constructing the base of any LST with three or more
curves. The main idea is that we simply need to sweep over
the list of SCFT bases and ask whether we can append an
additional curve of self-intersection −y to such a base. By
the remarks on decoupling already noted, we see that this
additional curve can intersect either one curve or two
curves of an SCFT base. In the latter case, we obtain a
looplike configuration of curves in the base. The latter
possibility can only occur for an SCFT base which consists
of a single line of curves (i.e., no branches emanating off of
the primary spine of the base). The main condition we need
to check is that after adding this curve, we obtain a positive
semidefinite adjacency matrix. In particular, the determi-
nant must vanish. Implicit in this construction is that we
only append an additional curve compatible with the gluing
rules for bases.
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Consider first the case of a LST with adjacency matrix
ALST which describes a treelike base given by adding a
single curve of self-intersection −y to some SCFT with
adjacency matrix ASCFT:

Atree
LST ¼

0
BBBBBBB@

y −1 0 0 � � � 0 0 0

−1
0 ASCFT

..

. ..
.

0

1
CCCCCCCA
: ð5:3Þ

Let ASCFT0 be the matrix obtained from ASCFT by removing
the first column and the first row. Evaluating the determi-
nant of Atree

LST, we obtain the condition

0 ¼ detðAtree
LSTÞ ¼ y detðASCFTÞ − detðASCFT0 Þ ð5:4Þ

or

y ¼ detðASCFT0 Þ= detðASCFTÞ: ð5:5Þ
Consider now the case of a looplike LST. In this case, the

only SCFTs we need consider are those constructed from a

single line of curves (i.e., no trivalent vertices at all), and we
can only add the additional curve to the leftmost and
rightmost ends of a candidate SCFT. The adjacency matrix
is then of the form

Aloop
LST ¼

0
BBBBBBBBB@

y −1 0 0 � � � 0 0 −1
−1
0

..

.
ASCFT

..

.

0

−1

1
CCCCCCCCCA
: ð5:6Þ

To have a LST, we must have

0 ¼ y detðASCFTÞ − ðASCFTÞð1;1Þ − ðASCFTÞðN−1;N−1Þ
þ 2ð−1ÞNþ1ðASCFTÞð1;N−1Þ; ð5:7Þ

where we have denoted the ði; jÞth minor of ASCFT by an
appropriate subscript. Solving for y, we obtain

y ¼ ðASCFTÞð1;1Þ þ ðASCFTÞðN−1;N−1Þ − 2ð−1ÞNþ1ðASCFTÞð1;N−1Þ
detASCFTÞ

: ð5:8Þ

The above algorithm allows us to systematically
classify LSTs; from this structure, we see that the locations
of where we can add an additional curve to an existing
SCFTare quite constrained. Indeed, in order to not produce
another SCFT, but instead a LST, we will typically only be
able to add our extra curve at the end of a configuration of
curves or at the second to last curve. Otherwise, we could
not reach an SCFT upon decoupling other curves in
the base.

C. Low rank examples

To illustrate how the algorithm works in practice, we
now give some low rank examples. In Table I, we list all of
the rank 2 SCFT bases which we attempt to enhance to
looplike LSTs. Of the cases where y is an integer, some are
further eliminated since the resulting base requires further
blowups.7 The full list of rank 2 LST bases is then

Three curve LST bases∶

2▽
2

2 and 121 and 212 and ==222==;
ð5:9Þ

where the first entry denotes a triple intersection of −2
curves (that is, a type IV Kodaira degeneration) and
==x1x2 � � � xnþ1== denotes a loop in which the two sides
are identified.

VI. ATOMIC CLASSIFICATION OF BASES

In principle, the remarks of the previous section provide
an implicit way to characterize all LSTs. Indeed, we simply
need to sweep over the list of bases for SCFTs obtained in
Ref. [20] and then determine whether there is any place to
add one additional curve to reach a LST. The self-
intersection of this new curve is constrained by the
condition that the determinant of the adjacency matrix
vanishes, and the location of where we add this curve is
likewise constrained by the tensor-decoupling criterion.
In this section, we use the atomic classification of 6D

SCFTs presented in Ref. [20] to perform a corresponding
atomic classification of bases for LSTs. We now use the
explicit structure of 6D SCFTs found in Ref. [20] to further
cut down the possibilities. It is helpful to view the bases as
built out of smaller “atoms” and “radicals.” In particular, we
introduce the convention of a node referring to a single
curve in which the minimal fiber type leads to a D- or E-
type gauge algebra. We refer to a “link” as any collection of
curves which does not contain any D- or E-type gauge

7For example, configurations such as ==512== and ==313==
require a further blowup. Doing this, we instead reach a four
curve LST base, respectively given by ==6131== and ==4141==.
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algebras for the minimal fiber type. The results of Ref. [20]
amount to a classification of all possible links as well as all
possible ways of attaching links to the nodes. Quite
remarkably, the general structure of the resulting bases is
quite constrained. For all 6D SCFTs, we can filter the
theories according to the number of nodes in the graph.
These nodes are always arranged along a single line joined
by links,

S0;1g1
S1L12g2

I⊕s

L2;3g3…gk−2Lk−2;k−1gk−1
I⊕t

Lk−1;k gk
I⊕u

Sk;kþ1;

ð6:1Þ

here, the gi’s denote the nodes, the Li;iþ1’s denote interior
links (since they join to two nodes), and the S’s are side
links as they can only join to one node. The notation I⊕m

refers to decorating bym small instantons; these are further
classified according to partitions of m (i.e., how many of
the small instantons are coincident with one another). One
of the key points is that for k ≥ 6, there is no decoration on
any of the interior nodes, i.e., for 3 ≤ i ≤ k − 2. This holds
both for the types of links which can attach to these nodes
(which are always the minimal ones forced by the reso-
lution algorithm of Ref. [15]), as well as the possible fiber
enhancements (there are none). When k ¼ 5, it is possible
to decorate the middle node g3 by a single −1 curve. In
Ref. [20], the explicit form of all such sequences of g’s, as
well as the possible side links and minimal links, was
classified. An additional important property is that all of the
interior links blow down to a trivial endpoint, the blow-
down of a single −1 curve.
Turning now to LSTs, we can ask whether we can add

one more curve to the base quiver, resulting in yet another
treelike graph or in a looplike graph. By inspection, we can
either add this additional curve to a side link, an interior
link, or a base node.

A. Restrictions on looplike graphs

In fact, a general looplike graph which is a LST is tightly
constrained by the tensor-decoupling criterion. The reason
is that if we consider the resulting sequence of nodes, we
must have a pattern of the form

==g1L12g2L2;3g3…gk−2Lk−2;k−1gk−1Lk−1;kgkLk;1==; ð6:2Þ

where the notation “==” indicates that the left and the right
of the base quiver are joined together to form a loop. Now,
another important constraint from Ref. [20] is that the
minimal fiber type on the nodes obeys a nested sequence of
containment relations. But in a loop, no such ordering is

possible. We therefore conclude that all of the nodes for a
looplike LST must be identical and, moreover, that the
interior links must all be minimal. We therefore can specify
all such loops simply by the type of node (i.e., a −4 curve, a
−6 curve, a −8 curve, or a −12 curve) and the number of
such nodes.
For this reason, we now confine our attention to treelike

graphs, i.e., where we add an additional curve which
intersects only one other curve in the base. The main
restriction we now derive is that the resulting configuration
of curves is basically the same as that of line (6.1). Indeed,
we will simply need to impose further restrictions on the
possible side links and sequences of nodes which can
appear in a LST base.

B. Restrictions on adding to interior links

Our first claim is that we can only possibly add an extra
curve to an interior link in a base with two or fewer nodes.
Indeed, suppose to the contrary. Then, we will encounter a
configuration such as

…giLi;iþ1

y
giþ1…; ð6:3Þ

where y denotes our additional curve attached in some way
to the link. The notation “…” denotes the fact that there is at
least one more curve in the base. Now, since the interior
link blows down to a single −1 curve, we will get a
violation of normal crossing. This is problematic if we have
one additional curve (as denoted by the “…”), since
deleting that curve would produce a putative SCFT with
a violation of normal crossing, a contradiction. By the same
token, in a two node base, if any side links are attached to
this node, then we cannot add anything to the interior link.
This leaves us with the case of just

g1L1;2

y
g2: ð6:4Þ

In this case, it is helpful to simply enumerate once again all
of the possible interior links and ask whether we can attach
an additional curve. This we do in Appendix D, finding that
the options are severely limited. Summarizing, then, we
find that we can attach an extra curve to an interior link only
in the case where there are two nodes, and then only if these
two nodes do not attach to any side links.

C. Restrictions on adding to nodes

Let us next turn to restrictions on adding an extra curve
to a node in a base. If we add a curve to a node, we observe

TABLE I. Candidate looplike rank 2 LSTs from adding an additional curve to a rank 2 SCFT.

SCFT 12 13 14 15 16 17 18 19 1(10) 1(11) 1(12) 22 23
detðAÞ 1 2 3 4 5 6 7 8 9 10 11 3 5
y 5 3 7=3 2 9=5 5=3 11=7 3=2 13=9 7=5 15=11 2 7=5
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that this extra curve must have self-intersection −1. Note
that the endpoint of the SCFT must therefore be trivial in
these cases. We now ask which of the nodes of the base can
support an additional −1 curve. Since we must be able to
delete a single curve and reach a collection of SCFTs, we
cannot place this −1 curve too far into the interior of the
configuration. More precisely, we see that for k ≥ 7 nodes,
we are limited to adding a −1 curve to the first three or last
three nodes. In the specific case where we attach a −1 curve
to the third interior node, we see that there cannot be any
side links whatsoever. Otherwise, we would find a sub-
configuration of curves which is not a 6D SCFT.

D. Restrictions on adding to side links

Consider next restrictions on adding an extra curve to a
side link. In the case of a small instanton link such as
1,2…,2, we can append an additional −1 curve to the
rightmost −2 curve, but then it can no longer function as a
side link (via the tensor-decoupling criterion). In
Appendixes D and E, we determine the full list of LSTs
comprised of just adding one more curve to a side link. If
we instead attempt to take an existing SCFT and add an
additional curve to a side link to reach a LST, then we either
produce a new side link (i.e., if the curve has self-
intersection −1, −2, −3 or −5) or we produce a base
quiver with one additional node (i.e., if the curve has self-
intersection −4, −6, −7, −8, −9, −10, −11, −12). Phrased
in this way, we see that the rules for which side links can
join to an SCFT are slightly different but cannot alter the
overall topology of a base quiver from the case of an SCFT.
Summarizing, we see that, unless we have precisely two

nodes, and no side links, we cannot decorate any interior
link. Moreover, we can only decorate the three leftmost and
rightmost nodes in special circumstances. So in other
words, the general structure of a treelike LST base is
essentially the same as that of a certain class of SCFTs. All
that remains is for us to determine the possible sequences of
nodes (with no decorations) which can generate an LSTand
to also determine which of our side links can be attached to
an SCFT such that the resulting configuration is a LST.

E. Overview of Appendixes

This final point is addressed in a set of Appendixes. In the
Appendixes, we collect a full list of the building blocks for
constructing LSTs. The tensor-decoupling criterion pre-
vents a direct gluing of smaller LSTs to reach another LST.
Rather, we are always supplementing an SCFT to reach a
LST. Along these lines, in Appendix C, we collect the list of
baseswhich are comprised of a single spine of nodeswith no
further decoration from side links. In Appendix D, we
collect the full list of bases in which no nodes appear.
Borrowing from the terminology used for 6D SCFTs, these
links are “noble” in the sense that they cannot attach to
anything else in the base. Finally, in Appendix E, we give a
list of LSTs given by attaching a single side link to a single

node. Much as in the classification of 6D SCFTs, the further
task of sweeping over all possible ways to decorate a base
quiver by side links is left implicit (as dictated by the number
of blowdowns induced by a given side link). All of these
rules follow directly from Ref. [20].
This completes the classification of bases for LSTs. We

now turn to the classification of elliptic fibrations over a
given base.

VII. CLASSIFYING FIBERS

Holding fixed the choice of base, we now ask whether we
can enhance the singularities over curves of the base while
keeping all fibers in Kodaira-Tate form. As this is a purely
local question (i.e., compatible with the matter enhance-
ments over the neighboring curves), most of the rules for
adding extra gauge groups/matter are fully specified by the
rules spelled out in Ref. [20]. Rather than repeat this
discussion, we refer the interested reader to these cases
for further discussion of the “standard” fiber enhancement
rules for curves which intersect with normal crossings.
There are, however, a few cases which cannot be

understood using just the SCFT considerations of
Ref. [20]. Indeed, we have already seen that a curve of
self-intersection zero, an elliptic curve, tangent intersec-
tions, and triple intersections of curves can all occur in the
base of a LST. We have also seen, however, that all of these
cases are comparatively “rare” in the sense that they do not
attach to larger structures. Our plan in this section will
therefore be to deal with all of these low rank examples. In
Appendix A, we give general constraints from anomaly
cancellation in F-theory models, and in Appendix B, we
present some additional technical material on the locali-
zation of matter in the case of tangent intersections such as
the 4∥1 and 2∥2 configurations. Finally, compared with the
case of 6D SCFTs, the available fiber enhancements over a
given base are also comparatively rare. To illustrate this
point, we give some examples in which the base is an affine
Dynkin diagram of −2 curves. In these cases, the presence
of the additional imaginary root (and the constraints from
anomaly cancellation) typically dictate a small class of
possible fiber enhancements.

A. Low rank LSTs

In this subsection, we give a complete characterization of
fiber enhancements for low rank LSTs. To begin, we
consider the case of the rank zero LSTs, i.e., those where
the F-theory base consists of a single compact curve. In
these cases, we only get a 6D theory once we wrap some
7-branes over the curve unless the normal bundle of the
curve is a torsion line bundle. An interesting feature of this
and related examples is that, because the corresponding
tensor multiplet is nondynamical, it cannot participate in
the Green-Schwarz mechanism, and we must cancel the
anomaly using just the content of the gauge theory sector.
We then turn to the other low rank examples where other
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violations of normal crossing appear. In all of these cases,
the F-theory geometry provides a systematic tool for
determining which of these structures can embed in a
UV complete LST.

1. Rank zero LSTs

In a rank zero LST, we have a single compact curve,
which must necessarily have self-intersection zero. There
are only a few inequivalent configurations consisting of a
single curve with self-intersection zero:

Σnull ¼ P; I0; I1; II; mI0; mI1: ð7:1Þ

Here, I0 (respectively,P) is shorthand for a baseB consisting
of a smooth torus (respectively, 2-sphere)with trivial normal
bundle T2 × C (respectively, P1 × C), while I1 (respec-
tively, II) is a curve with a node (respectively, a cusp)
singularity and trivial normal bundle. These configurations
can give rise to LSTs only if 7-branes wrap Σnull. Otherwise,
we do not have a genuine 6D model. The variants mI0 and
mI1 describe curves of which the normal bundle is torsion of
order m > 1; these can also support 6D theories for m ∈
f2; 3; 4; 6g as discussed below. Observe also that if we apply
the tensor-decoupling criterion in these cases, we find that
the resulting 6D SCFT is empty, i.e., trivial.
As curves of self-intersection 0 do not show up in 6D

SCFTs, it is important to explicitly list the possible singular
fiber types which can arise on each curve of line (7.1).8

We begin with the “multiple fiber phenomenon”—a
genus 1 curve Σ of which the normal bundle is torsion
of order m1. The F-theory base B is a (rescaled) small
neighborhood of Σ, and its canonical bundle OBðKBÞ must
also be torsion of the same order by the adjunction formula.
Now, to construct a Weierstrass model, we need sections f
and g of OBð−4KBÞ and OBð−6KBÞ, respectively, but
nontrivial torsion, bundles do not have nonzero sections.
Thus, in order to have a nonzero f, the order m of the
torsion must divide 4, while to have a nonzero g, the order
m must divide 6. There are thus three cases:
(1) If m ¼ 2, then both f and g may be nonzero.
(2) If m ¼ 3 or 6, then f must be zero, but g may be

nonzero.
(3) Ifm ¼ 4, then gmust be zero, but f may be nonzero.

For any other value ofm > 1,Weierstrassmodels do not exist
(since f and g are not both allowed to vanish identically).

Note that the fact that some quantities obtained from
coefficients in a Weierstrass model are sections of torsion
bundles also provides the possibility that those sections do
not exist (if they are known to be nonzero). As described in
Table 4 of Ref. [45], the criterion for deciding whether a
given Kodaira type leads to a gauge algebra of which the
Dynkin diagram is simply laced or not simply laced reduces
in almost every case to a question of whether a certain
quantity has a square root.9 If the desired square root is in
fact a section of a 2-torsion bundle, then it cannot exist.
We can give explicit examples of this phenomenon which

do not involve enhanced gauge symmetry, using the frame-
work outlined in Sec. IVA.We startwithS ¼ T2

S × C, where
T2
S admits an automorphism of ordermwhich acts faithfully

on the holomorphic 1-form. If we extend the action to
include multiplication by an appropriate root of unity on C,
then the holomorphic 2-form on S is preserved. As is
well known, such automorphisms exist exactly for
m ∈ f2; 3; 4; 6g. As explained in Sec. IVA, the quotient
ðT2

F × SÞ=Zm has an elliptic fibration ðT2
F × SÞ=Zm →

ðT2
F × CÞ=Zm of which the fibers over T2

F × f0g are all
nonsingular elliptic curves, but withZm acting upon them as
loops are traversed on T2

F. This same geometry has a second
fibration ðT2

F × SÞ=Zm → S=Zm with no section and some
multiple fibers in codimension 2, which will be further
discussed in Sec. IX.
Turning now to enhancements of fibers, from the relation

between anomaly cancellation and enhanced singular fibers
[45–48], we find all possible gauge theories compatible
with a given choice of base curve. This is summarized in
Table II. We find that in general, such theories can support
hypermultiplets in the adjoint representation (denoted Adj),
the two-index symmetric representation (denoted sym), and
the n-index antisymmetric representation (denoted Λn).
The greatest novelty here relative to the case of 6DSCFTs

is the theories with nAdj ¼ 1 or suðNÞ gauge algebra,
nsym ¼ 1, nΛ2 ¼ 1, or, in the special case of suð6Þ,
nf ¼ 1, nsym ¼ 1, nΛ3 ¼ 1=2. The first of these cases, with
nAdj ¼ 1, corresponds simply to a smooth curve of genus 1
in the base. The cases with symmetric representations of
suðNÞ, on the other hand, arise when the base curve is of
Kodaira type I1 (i.e., has a nodal singularity). As reviewed in
Appendix B, the notion of genus is ambiguous for singular
curves. A type I1 curve has topological genus 0 but
arithmetic genus 1, and as a result, it must support a
hypermultiplet in the two-index symmetric representation,
rather than one in the adjoint representation.
For LSTs, these are the only examples in which a curve

of (arithmetic) genus 1 shows up, and a curve of genus

8In what follows, we focus on those cases where the fiber
enhancement leads to a non-Abelian gauge symmetry, i.e., a
gauge theory description. In the cases where we have a type I1 or
type II fiber enhancement, the resulting 6D theory will consist of
some number of weakly coupled free hypermultiplets, where the
precise number depends on whether the base curve has nontrivial
arithmetic and/or geometric genus. Much as in the case of 6D
SCFTs, these cases can be covered through a mild extension of
the analysis presented in Ref. [20]. See also Ref. [44] for
additional information about these theories.

9In the remaining case, one must consider a more complicated
cubic equation, but in the situation being described here, the
question in that case boils down to the existence or non-existence
of a cube root. If the bundle of which the desired cube root is a
section is a 3-torsion bundle, the cube root cannot exist.
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g ≥ 2 is never allowed. Note also that a curve of genus 0
and self-intersection 0 cannot itself support an e8 gauge
algebra; it must be blown up at 12 points, resulting in an e8
theory with 12 small instantons:

ð12Þ; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2: ð7:2Þ

2. Rank 1 LSTs

'Consider next the case of rank 1 LSTs, i.e., those inwhich
there are two compact curves in the base. Aswe have already
remarked, in this and all higher rank LSTs, all the curves of
the base will be P1’s, and moreover, they will have self-
intersection −x for 1 ≤ x ≤ 12. Now, in the case of two
curves, we can have various violations of normal crossing.
For example, we can have curves which intersect along a
tangency. This occurs in both the 4∥1 and 2∥2 configura-
tions, the latter describing a type III Kodaira fiber. Observe
that in both cases, there is a smoothing deformation which
takes us from an order 2 tangency to a loop; i.e., we can
deform to ==4; 1== and ==2; 2==. In addition to these rank 1
LSTs, there is just one more configuration given by 1,1,
which in some sense is the most “conventional” possibility
(as all intersections respect normal crossing).
To this end, let us first discuss fiber enhancements for the

1,1 configuration. We shall then turn to the cases where
there is either a violation of normal crossing or a loop
configuration. Whenever curves with gauge algebras inter-
sect, matter charged under each gauge algebra will pair up
into a mixed representation of the gauge algebras. The
mixed anomaly condition places strong constraints on
which representations are allowed to pair up. The allowed
set of mixed representations for two curves intersecting at a
single point is given in Sec. VI. 2 of Ref. [20]. Consider, for
example, the 1,1 base. We have

1
gL
1
gR ð7:3Þ

with the following list of allowed gauge algebras:
(i) gL ¼ soðMÞ, gR ¼ spðNÞ, M ¼ 7;…; 12,

M − 5 ≥ N, 4N þ 16 ≥ M.
(ii) gL ¼ soðMÞ, gR ¼ spðNÞ, M ¼ 7, N ≤ 6.
(iii) gL ¼ g2, gR ¼ spðNÞ, N ≤ 7.
(iv) gL¼spðMÞ, gR¼spðNÞ, 2Mþ8≥2N, 2Nþ8≥2M.
(v) gL ¼ spðMÞ, gR ¼ suðNÞ, 2M þ 8 ≥ N, N þ 8þ

δN;3 þ δN;6 ≥ 2M.
(vi) gL ¼ suðMÞ, gR ¼ suðNÞ, Mþ8þδM;3þδM;6≥N,

N þ 8þ δN;3 þ δN;6 ≥ M.
(vii) gL ¼ f4, e6, e7 or e8, gR ¼ ∅.
Here, it is understood that spð0Þ is the same as an empty −1
curve, and e8 on a −1 curve implies that 11 points on the −1
curve have been blown up.
Consider next the configuration ==2; 2==, i.e., a loop of

two −2 curves. In this case, the only gauge algebra
enhancement is given by

== 2
suðNÞ

2
suðNÞ

== ð7:4Þ

with a bifundamental localized at each intersection point.
When the −2 curves intersect tangentially, i.e., in the 2∥2

configuration, more options are available, as suggested by
the effective field theory on the tensor branch. We find the
following general possibilities for enhancements of the
gauge algebra and matter:

(i) ga ¼ suðNaÞ, gb ¼ soðNbÞ, Ra ¼ Na, Rb ¼ Nb.
The only allowed possibilities are Na ¼ 6,
Nb ¼ 12, and Na ¼ 7, Nb ¼ 13.

(ii) ga ¼ suð4Þ, gb ¼ soð7Þ, soð8Þ, Ra ¼ 4, Rb ¼ 8.
(iii) ga ¼ suð4Þ, gb ¼ g2, Ra ¼ 4, Rb ¼ 7.

Just as it was necessary to deform the singular Kodaira I1
curve to get hypermultiplets in the symmetric representa-
tion of suðNÞ, so it is necessary to deform the I2 base to the
tangentially intersecting Kodaira type III curve configu-
ration to get these matter pairings. In conclusion, for the
Kodaira type III configuration 2∥2, we may enhance the
gauge algebras as

2
soð7Þ

½Spð1Þ�
∥ 2
suð4Þ

2
soð8Þ

½Spð2Þ�
∥ 2
suð4Þ

2
g2
∥ 2
suð4Þ

2
soð12Þ

½Ns¼1�
∥ 2
suð6Þ

2
soð13Þ

½Ns¼1=2�
∥ 2
suð7Þ

:

TABLE II. Rank zeroLSTs. In the above,Adj refers to the adjoint
representation, sym refers to a two-index symmetric representation,
and Λn refers to an n-index antisymmetric representation.

Base curve Matter content

I0 Any simple Lie algebra, nAdj ¼ 1
I1, II suðNÞ, nsym ¼ 1, nΛ2 ¼ 1

suð6Þ, nf ¼ 1, nsym ¼ 1, nΛ3 ¼ 1
2

P suðNÞ, N ≥ 2, nf ¼ 16, nΛ2 ¼ 2

| suð6Þ, nf ¼ 17, nΛ2 ¼ 1, nΛ3 ¼ 1
2

suð6Þ, nf ¼ 18, nΛ3 ¼ 1

spðNÞ, N ≥ 1, nf ¼ 16, nΛ2 ¼ 1

spð3Þ, nf ¼ 17 1
2
, nΛ3 ¼ 1

2

soðNÞ, N ¼ 6;…; 14, nf ¼ N − 4, ns ¼ 64
ds

g2, nf ¼ 10

f4, nf ¼ 5

e6, nf ¼ 6

e7, nf ¼ 4

e8, ninst ¼ 12

F-THEORY AND THE CLASSIFICATION OF LITTLE STRINGS PHYSICAL REVIEW D 93, 086002 (2016)

086002-15



Here, there is a mixed representation in the bifundamental
of the two gauge algebras in the last three cases. These
representations can only show up when the curves are
tangent to each other.
Finally, we turn to the case of the bases ==4; 1== and

4∥1. In both cases, the only enhancement possible is an
SO-type algebra over the −4 curve and an Sp-type or
SU-type algebra over the −1 curve. The matter content of
the theory, however, depends on the type of intersection.
Consider first the case of

== 4
soð2Nþ8Þ

1
spðNÞ

== ð7:5Þ
with a half hypermultiplet localized at each intersection
point. Indeed, we can reach this theory by starting from the
6D SCFT,

½soð2N þ 8Þ� 1
spðNÞ

½soð2N þ 8Þ�; ð7:6Þ
and gauging the diagonal subalgebra of the flavor symmetry.
In the case of the tangential intersection 4∥1, we again

find novel configurations of matter which are missing from
the case of normal crossing. First, we can consider a
configuration in which the gauge algebras are the same as
those of (7.5):

4
soð2Nþ8Þ

∥ 1
spðNÞ

: ð7:7Þ
However, there is now a single full hypermultiplet in the
bifundamental of the two gauge algebras rather than two
half hypermultiplets. This configuration cannot be realized
in F-theory, since the tangential intersection removes the
monodromy from the I2N locus leading to gauge algebra
suð2NÞ instead. It would be interesting to find a field-
theoretic reason for excluding this case.
Second, there is a similar configuration with a unitary

rather than symplectic gauge algebra,

4
soð2Nþ8Þ

∥ 1
suð2NÞ

; ð7:8Þ

with a hypermultiplet in the bifundamental of the two
gauge algebras, as well as a hypermultiplet in the two-index
antisymmetric representation of the suðnÞ factor, all of
which are located at the collision point between the two
branes. This configuration can be realized in F-theory.

3. Rank 2 LSTs

We now turn to the case of rank 2 LSTs, i.e., those with
three curves. Here, we can have no tangential intersections.
In this case, the adjacency matrix again provides only
partial information about the geometry of intersecting
curves. In the case where we have normal crossings for
all pairwise intersections, the rules of enhancing fiber
enhancements follow from Ref. [20] and are also reviewed

in Appendix A. There is, however, also the possibility of a

Kodaira type IV configuration of −2 curves, i.e., 2▽
2

2. We
shall therefore confine our attention to fiber decorations
with this base.
To illustrate, suppose the gauge algebra localized on

each of the three −2 curves is suð2Þi; i ¼ 1, 2, 3. Anomaly
cancellation dictates that in such a case, there must be a
single half-trifundamental 1

2
ð2; 2; 2Þ plus two fundamentals

charged under each suð2Þ. We note in passing that the
looplike configuration ==222== also admits a similar
enhancement in the gauge algebras, i.e., with suð2Þi,
i ¼ 1, 2, 3 gauge groups, but that the corresponding matter
content is given by three bifundamentals ð2; 2; 1Þ, ð2; 1; 2Þ,
ð1; 2; 2Þ. These two configurations have the same anomaly
polynomials.
But in contrast to the ==222== configuration, for 2▽

2

2, no
other gauge algebra enhancements are possible. To see this,
suppose we have suðNÞ factors on each −2 curve. We
would then need N2 fundamentals of each suðNÞ to get a
ðN;N;NÞ representation. However, anomaly cancellation
considerations constrain us to 2N such fundamentals. In
other words, we are limited to N ≤ 2.

B. Higher rank LSTs

Turning next to the case of LSTs with at least four curves
in the base, all of these local violations of normal crossing
do not appear. Nevertheless, we encounter such violations
when we attempt to blow down −1 curves which touch
more than two curves. Even so, the local rules for fiber
enhancements follow the same algorithm already spelled
out in detail in Ref. [20]. In some cases, however, there can
be additional restrictions compared with the fiber enhance-
ments which are possible for 6D SCFTs. To illustrate, we
primarily focus on some simple examples, i.e., the affine
ADE bases; fiber decorations for the base 1,2,…,2,1; and
fiber decorations for the looplike bases.

1. Affine ADE bases

Let us next consider the case of fiber enhancements in
which the base is given by an affine Dynkin diagram of −2
curves. If we assume that no further blowups are introduced
in the base, we will be limited to just suðNÞ gauge algebras
over each curve. In the case of 6D SCFTs, it is typically
possible to obtain a rich class of possible sequences of
gauge group factors, because 6D anomaly cancellation can
be satisfied by introducing an appropriate number of
additional flavor symmetry factors. This in turn leads to
a notion of a “ramp” in the increase in the ranks [17] (see
also Ref. [6]). For an affine quiver, this is much more
delicate, since all of these cases can be viewed as a
degeneration of an elliptic curve. For example, in the case
of an affine Âk base (i.e., the Ik Kodaira type), anomaly
cancellation tells us that all of the gauge algebra factors are
the same suðNÞ. By a similar token, 6D anomaly
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cancellation tells us that the gauge algebra of any of these
cases is suðNdiÞ, where di is the Dynkin label of the node
in the affine graph and N ≥ 1 is an overall integer.10 In
F-theory language, we have fiber enhancements INdi over
each node. Indeed, at a formal level we can think of
anomaly cancellation being satisfied by introducing suð1Þ
gauge algebras.

2. 1,2,...,2,1 base

Compared with the case of affine ADE bases, there are
comparatively more options available for fiber enhance-
ments of the base 1,2,…,2,1. In some sense, this is because
these bases do not directly arise from the degeneration of a
compact elliptic curve but are better viewed as the
degeneration of a cylinder.
With this in mind, we now explain how fiber enhance-

ments work for this choice of base. For a large number of
−2 curves, the allowed enhancements take a rather simple
form, whereas there are outlier LSTs for smaller numbers of
−2 curves. In particular, when there are more than five −2
curves, the −2 curves necessarily hold suðNiÞ gauge
algebras:

1
gL

2
suðN1Þ

2
suðN2Þ

… 2
suðNk−1Þ

2
suðNkÞ

1
gR
:

The Ni are subject to the convexity conditions
2Ni ≥ Ni−1 þ Niþ1, with the understanding that Ni ¼ 1
for a curve without a gauge algebra.
The −1 curves in this configuration may hold either

spðMÞ or suðMÞ gauge algebra. If the leftmost −1 curve
holds spðMÞ, anomaly cancellation imposes the additional
conditions 2N1 ≥ 2MþN2, 2Mþ8≥N1. If the leftmost−1
curve holds suðMÞ, anomaly cancellation imposes
2N1 ≥MþN2, Mþ8þδM;3þδM;6 ≥N1. Finally, the −1
curve may be empty providedN1 ≤ 9. The story is mirrored
for the rightmost −1 curve at the other end of the chain.
When there are exactly five −2 curves, we have two

additional configurations:

1 2 2
suð2Þ

2
soð7Þ

2
suð2Þ

2 1

and

1 2 2
suð2Þ

2
g2

2
suð2Þ

2 1:

When there are four −2 curves, we similarly have

1 2
suð2Þ

2
soð7Þ

2
suð2Þ

2 1

and

1 2
suð2Þ

2
g2

2
suð2Þ

2 1:

When there are three −2 curves, we have several new
configurations:

1 2
suð2Þ

2
soð7Þ

2
suð2Þ

1

1 2
suð2Þ

2
g2

2
suð2Þ

1

1
gL

2
soð7Þ

2
suð2Þ

2 1

and

1
gL
2
g2

2
suð2Þ

2 1;

with gL ¼ spðMÞ, M ≤ 3, in each of the last two cases.
When there are two −2 curves, we have

1
gL

2
soð7Þ

2
suð2Þ

1

and

1
gL
2
g2

2
suð2Þ

1;

with gL ¼ spðMÞ, M ≤ 3, in each of the last two cases.
When there is only a single −2 curve, there are even

more possibilities:

1
gL

2
soð8Þ

1
gR

with gL ¼ spðMLÞ, ML ≤ 2, gR ¼ spðMRÞ, MR ≤ 2;

1
gL

2
soð7Þ

1
gR

with gL ¼ spðMLÞ, gR ¼ spðMRÞ, ML þMR ≤ 4, or
ML ¼ 4, MR ¼ 1;

1
gL
2
g2
1
gR

with gL ¼ spðMLÞ, gR ¼ spðMRÞ, ML þMR ≤ 4; and

1
gL

2
suð2Þ

1

with gL ¼ g2 or soð7Þ.

C. Looplike bases

Finally, let us turn to the case of fiber enhancements for
the looplike bases. We have already discussed the case of

10This same observation has already been made in the context
of four-dimensional superconformal N ¼ 2 quiver gauge theo-
ries [49]. Indeed, in this special case, the condition of vanishing
beta functions is identical to the condition that 6D anomalies
cancel.
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an affine Âk base of −2 curves in which we the allowed
fiber enhancements are just a uniform IN fiber. Otherwise,
we induce some blowups. Now, if we allow for blowups,
we can reach more general looplike configurations.
However, as we have already discussed near line (6.2),
all of these cases consist of a single type of base node
suspended between minimal links. This is a consequence of
the fact that in a general 6D SCFT, there are nested
containment relations on the minimal fiber types [20]:

gmin
1 ⊆ … ⊆ gmin

m ⊇…⊇gmin
k : ð7:9Þ

However, in a 6D LST, we must also demand periodicity of
the full configuration. This forces a uniform fiber enhance-
ment on each such node.
As a consequence, we can summarize all of these cases

by keeping implicit the blowups associated with conformal
matter. We have

==2
g
;…; 2

g
==; ð7:10Þ

where we allow for a general fiber enhancement to an ADE-
type simple Lie algebra g over each of the −2 curves. For
all cases other than the suðNÞ gauge algebras, this in turn
requires further blowups in the base; i.e., we have a
configuration with conformal matter in the sense of
Refs. [17,18]. So in other words, all of these looplike
configurations are summarized by stating the number of −2
curves and the choice of fiber type over any of the −2
curves.

VIII. EMBEDDINGS AND ENDPOINTS

In the previous sections, we presented a general classi-
fication of LSTs in F-theory. One of the crucial ingredients
we have used is that decompactifying any curve must return
us to a collection of (possibly disconnected) SCFTs.
Turning the question around, it is natural to ask whether
all SCFTs embed in LSTs.
In this section, we show that this is indeed the case.

Moreover, there can often be more than one way to
complete an SCFT to a LST. To demonstrate such an
embedding, we will need to show that there exists a
deformation of a given LST F-theory background which
takes us to the requisite SCFT. This can involve both Kähler
deformations, i.e., motion onto a partial tensor branch, and
may also include complex structure deformations, i.e., a
Higgsing operation.
With this in mind, we first demonstrate that all of the

bases for 6D SCFTs embed in a LST base. A suitable tensor
branch flow then takes us from the LST base back to the 6D
SCFT base. Then, we proceed to show that the available
fiber decorations for LSTs can be Higgsed down to the fiber
decorations for an SCFT. The latter issue is somewhat
nontrivial since the fiber decorations of an ADE-type base

are comparatively less constrained when compared with
their affine counterparts.

A. Embedding the bases

We now show that all bases for 6D SCFTs embed in LST
bases. To demonstrate that such an embedding is possible,
it is convenient to use the terminology of “endpoints” for
SCFTs introduced in Ref. [15], which we can also extend to
the case of LSTs. Given a collection of curves for an SCFT
base, we can consider blowdowns of all of the −1 curves of
the configuration. Doing so, we shift the self-intersection of
all curves touching this −1 curve according to the rule x →
ðx − 1Þ for a curve of self-intersection−x. In the case where
a −1 curve is interposed in between two curves, we have
x; 1; y → ðx − 1Þ; ðy − 1Þ. After this first stage of blow-
downs, we can then sometimes generate new −1 curves.
Iteratively blowing down all such −1 curves, we eventually
reach a configuration of curves which we shall refer to as an
endpoint. The set of all endpoints has been classified in
Ref. [15], and they split up according to four general types:

Trivial endpoint∶ 1 → C2 ð8:1Þ

A-type endpoint∶ x1…xk ð8:2Þ

D-type endpoint∶ 2x1
2
…xk ð8:3Þ

E-type endpoint∶ 222
2

22; 222
2

222; 222
2

2222:

ð8:4Þ

In fact, starting from such an endpoint, we can generate
all possible bases of 6D SCFTs by further blowups.
Sometimes such blowups are required to define an elliptic
Calabi-Yau, while some can be added even when an elliptic
fibration already exists. By a similar token, we can also take
a fixed base and then decorate by appropriate fibers.
Now, a central feature of this procedure is that the

resulting adjacency matrix retains the important property
that it is positive definite. Similarly, if we instead have a
positive semidefinite adjacency matrix, the resulting matrix
will retain this property under further blowups (or blow-
downs) of the base.
To demonstrate that we can always embed an SCFT in a

LST, it will therefore suffice to show that there is someway
to add additional curves to an SCFT endpoint such that the
resulting LST defines a base. To illustrate the idea, suppose
we have a 6D SCFT with a trivial endpoint. Then, before
the very last stage of blowdowns, we have a single −1
curve, which we shall call Σ. If we return to the original
SCFT, this curve will also be present, but its self-inter-
section will be different. Hence, to get a LST, we can
simply attach one more −1 curve to Σ. For example, the
configuration 1,1 defines the base of a LST. Supplementing
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the fibers can always be done to realize the case of fiber
decorations.
Consider next the case of A-type endpoints. Here, we can

always attach a suitable number of “tails” of the form
1,2…,2 to each curve such that blowing down these
instanton links leads us to k curves of self-intersection
−2, i.e., 2,…,2. Attaching an additional −1 curve to the left
and to the right, we get a base of the form 1,2,…,2,1. We
therefore conclude that adding such tails again allows an
embedding in a LST.
By a similar token, we can append such tails to a D-type

endpoint until we reach the Dynkin diagram with just −2
curves. Adding one more −1 curve to this configuration,

D-type endpoint ¼ 22
2

…2; 1; ð8:5Þ

leads to a blowdown eventually to the configuration 2,1,2,
which in turn blows down to 1,1. So again, we conclude
that the adjacency matrix is positive semidefinite, and we
have arrived at a LST.
This leaves us with the E-type endpoints. In these cases,

we just have a configuration of −2 curves, and the possible
blowups are severely limited [15]. For example, there are
no blowups of the E8 Dynkin diagram. It therefore suffices
to add one additional −2 curve to this configuration to
reach its affine extension. Similar considerations also apply
for the E6 and E7 configurations when no additional
blowups are present; i.e., we simply proceed from the
Dynkin diagram to its affine extension.
To round out the analysis, we need to demonstrate that if

we perform any blowups of an E6 or E7 endpoint, we can
again attach a −2 curve at the same location, without
inducing any further blowups.11 That this is indeed the case
is conveniently summarized by simply writing down the
possible blowups. For E6, there are two other consistent
bases, and for E7, there is one. In both cases, we can indeed
still add our−2 curvewithout inducing extraneous blowups:

23218
1
2
3
2

1232 → 2315
1
3
2

132 → 222
2
2

22 ð8:6Þ

22313
1
5

1322 → 2222
2

222: ð8:7Þ

Summarizing, we have just demonstrated that all bases
for 6D SCFTs embed in a LST base.

1. LST endpoints

As a brief aside, one of the interesting features of this
argument is that we have implicitly relied on the notion of a

LST endpoint. Given that we have already classified
all such bases, we can also ask about the possible endpoints
for LSTs. Compared with the case of 6D SCFTs, the
number of distinct endpoints is comparatively small.
Roughly speaking, this is because of the positive semi-
definite condition for our adjacency matrix, which in turn
means that many configurations will blow down to a
single curve of self-intersection zero (as in the 1,2,…,2,1
configurations).
Combining the tensor-decoupling criterion with the

demand that we have a positive semidefinite adjacency
matrix means that the total number of endpoints is given by
the Kodaira-type intersections of −2 curves, an elliptic
curve, as well as a single P1 of self-intersection zero, which
we denote by P. In the latter two cases, we note that we
only obtain a 6D LST by having a nontrivial elliptic
fibration. Thus, we find the following list of LST end-
points,12

LST endpoints∶ P; In; II; III; IV; I�n; II�; III�; IV�; ð8:8Þ
for n ≥ 0.

B. Embedding the fibers

Suppose next that we have supplemented a base by an
additional curve. When we do this, additional nontrivial
fibers are sometimes inevitable and can in turn force addi-
tional structure on the elliptic fibers. To give a concrete
example, consider the case of a 6D SCFTwith base given by
the E6 Dynkin diagram of −2 curves. Fiber decorations for
this model were studied in Ref. [20] where it was found that,
typically, additional flavors can be added so that an
appropriate convexity condition on the ranks is obeyed.
To extend this to a LST base, we cannot add a −1 curve (as
the blowdown is inconsistent). Rather, we must add an
additional−2 curve to reach the affine Ê6Dynkin diagramof
−2 curves. When we do this, we must remember that the
elliptic fibration of the resulting F-theory model also
becomes rigid. So in other words, the available elliptic
fibrations are further constrained. It is at this stage that we
must include the effects of Higgsing as well as tensor branch
deformations to reach the original 6D SCFT. That this is
always possible follows from the fact that all representations
of the Lie algebra e6 embed in representations of its affine
extension ê6. Similar considerations apply for the fiber
decorations of all of the E-type bases.
In the case of the A- and D-type bases, the analysis is

comparatively simpler. The reason is that we can just add
additional tails of the form 1,2,…,2 with trivial fibers and
leave the fibers above the curves in the SCFT base as they
were. One might worry here about the fact that curves of
self-intersection −1 and −2 are not always allowed to have

11Note that attaching a −1 curve will not work since we would
then blowdown to a configuration where the adjacency matrix is
not positive semidefinite—a contradiction.

12Here we neglect the possibility of torsion in the normal
direction to the compact curves of the base.
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trivial fibers. For instance, the −1 curve in the sequence
2,2,3,1,5 necessarily has a type II fiber. However, such
subtleties do not arise in this case; one can always add small
instanton links of the form 1,2,…,2 with trivial fibers to an
A- or D-type base to get a LST.
Putting together our analysis of tensor branch flows and

Higgs branch flows, we conclude that all 6D SCFTs embed
in some LST. Indeed, it is also clear that there can
sometimes be more than one such embedding.

IX. T-DUALITY

In the previous sections, we used the geometry of F-
theory compactifications to tightly constrain the structure
of LSTs. In this section, we turn the analysis around and
show how the physics of little string theories suggests
nontrivial geometric structures for elliptic Calabi-Yau
threefolds in which the noncompact base has a negative
semidefinite intersection form.
In physical terms, one of the key features of LSTs is that

the description as a local quantum field theory must break
down near the string scale. A sharp way to probe this
structure is by compactifying on a circle. Recall that in
T-duality, the theory compactified on a small S1 of radius R
is dual to another string theory compactified on an S1 of

radius ~R ∼ α0eff=R. Based on this, it is natural to expect that
all LSTs have a similar T-duality.
This expectation suggests a nontrivial constraint on the

geometry of an F-theory realization of a LST. Recall that
F-theory compactified on an elliptically fibered Calabi-Yau
threefold X → B leads, upon further compactification on an
S1, to M-theory compactified on the same Calabi-Yau
threefold. In the M-theory description, the Kähler class
becomes a dynamical modulus (which is taken to zero size
to reach the F-theory limit). On the other hand, T-duality
tells us that if we take this circle to be very small, we should
expect to obtain another LST, this time compactified on a
large radius circle. For this to be so, we must have available
to us more than one way to reach an F-theory background
from a given compactification of M-theory on X. In other
words, physical considerations suggest the existence of
another elliptic fibration for our Calabi-Yau threefold

X → ~B, and the lift from M-theory to F-theory involves
collapsing the Kähler class of this other elliptic fiber to
zero size.
Our plan in this section will be to give further evidence

that T-duality is realized in F-theory constructions of LSTs
through the presence of a double elliptic fibration. We shall,
however, mainly focus on particular examples of how T-
duality is realized geometrically. After this, we give a
sketch for how we expect this correspondence to work in
general, leaving a complete proof to future work.

A. Examples

As a first example, consider the T-duality between the
LST of k ≥ 2 NS5-branes in IIA [the N ¼ ð2; 0Þ A-type
LSTs] and that of k NS5-branes in IIB string theory [the
N ¼ ð1; 1Þ A-type LSTs]. The IIA realization just follows
from a base with −2 curves arranged in a loop, i.e., as the
type Ik−1 degeneration of an elliptic curve. The F-theory
elliptic curve is then a smooth T2, i.e., an I0 fiber.
Switching the roles of these two curves, we get the type
IIB N ¼ ð1; 1Þ LST; i.e., we have (k − 1) D7-branes
wrapped over a T2. There is a clear extension of this case
to all of the ADE N ¼ ð2; 0Þ LSTs in terms of the
corresponding ADE 7-branes wrapped over a T2.
Another class of examples we have already encountered

several times involves the LSTs realized byM5-branes filling
R5;1 and probing the geometry S1⊥ × C2=Γ for Γ an ADE
subgroup of SUð2Þ. Compactifying on a further circle, we
can shrink theS1⊥ factor to reach IIA string theory. T-duality is
then inherited from that of the physical superstring theory.
In the F-theory realization of these systems, we have a

base quiver with conformal matter suspended in between
the nodes:

==g ⊕ g ⊕ � � � ⊕ g ⊕ g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k

==: ð9:1Þ

As we have already remarked in the classification of such
structures, all fiber types and conformal matter are neces-
sarily minimal; no deviations from this rigid structure are
possible. This actually means that we can readily identify
the other elliptic fiber of this model; it is given by a suitable
multiple of an Ikdi fiber, where the di denote the Dynkin
labels of the affine extension of the g-type Lie algebra.
Another consequence of this analysis is that sometimes the
absence of other fiber decorations for say the E-type affine
bases means we cannot arbitrarily combine these two
structures. Rather, since the only fiber enhancements over
the E-type bases are Ik-type fibers (i.e., without inducing
further blowups), there is again a clear exchange between
the roles of the two (singular) elliptic curves.
Quite strikingly, this also entails the existence of several

infinite classes of models which are self-T-dual upon
toroidal reduction. These are models which have a double
elliptic structure consisting of two copies of the same
Kodaira fiber, for example, models which have an IN
Kodaira base, with gauge groups suðNÞ on each −2 curve
and bifundamentals at the intersections. As a more exotic

example, consider the blown up type IV degeneration: 33
3

3.
On each −3 curve in this configuration, there is an suð3Þ
gauge sector which arises precisely from a type IV fiber.
Clearly, contracting the −1 curve, switching the fiber and
base, and then blowing up,we obtain back the samemodel.13

13See Ref. [44] for a further analysis of this case.
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As a final class of examples, consider the F-theory
models with a base:

½E8�1; 2;…; 2; 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

½E8�: ð9:2Þ

This is realized in heterotic M-theory by a collection
of k M5-branes in between the two heterotic walls.
Compactifying on a further circle and activating
appropriate Wilson lines for the background E8 × E8 flavor
symmetry, we reach—via T-duality of the physical super-
string—the case of k NS5-branes of the Spinð32Þ=Z2

heterotic string theory. This system can be analyzed in
perturbative string theory, and the T-dual LST is therefore
realized by an spðkÞ gauge theory with 32 half-
hypermultiplets in the fundamental representation and a
single hypermultiplet in the two-index antisymmetric
representation.
Demonstrating the presence of the extra elliptic fibration

for the F-theory model is somewhat more subtle in this
case, but we can see it as descending from a Z2 quotient of
the I2k-type Kodaira configuration of −2 curves:

==2; 2;…; 2; 2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2k

==→
Z2

1; 2;…; 2; 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

: ð9:3Þ

In Appendix F, we present an explicit analysis of this case
of the base 1,1 and also explain its extension to the
configuration 1; 2;…; 2; 1. The corresponding F-theory
model is realized by a base given by P, a single P1 with
self-intersection zero, with a fiber enhancement Ins2k; i.e.,
we get an spðkÞ 7-brane wrapped over P. We have
already classified the matter enhancements for this case
in Sec. VII, and indeed we find agreement with the purely
heterotic analysis. Note that the sp-type algebra originates
from the Z2 quotient of an A2k algebra via its outer
automorphism.
In fact, a similar observation allows us to extend this to

some of the models in which we have a P1 of self-
intersection zero. For example, under a further Z2 quotient,
we can reach some of the gauge theories already encoun-
tered via more direct methods,

½su8� 1
suN

; 1
suN½su8�→

Z2 ½su16� 0
suN½su2�; ð9:4Þ

where the su16 flavor symmetry acts on the 16 hyper-
multiplets in the fundamental representation and the su2

flavor symmetry acts on the hypermultiplets in the two-
index antisymmetric representation. From this perspective,
we can still recognize the quotient of an additional elliptic
fiber. Schematically, we have

==2; 2==→
Z2

1; 1→
Z2

0: ð9:5Þ

B. Examples involving curves
with torsion normal bundle

Recall that in Sec. IV, we found that the N ¼ ð1; 1Þ
LSTs admitted an ABCDEFG classification according to
their corresponding affine Lie algebras. In the F-theory
realization of these models, we also saw that the base
contained a genus 1 curve with a torsion normal bundle. We
encountered torsion normal bundles again in Sec. VII A 1
in our discussion of rank zero LSTs. We will now explain
these examples in more detail.
By construction, examples in this class admit two

genus 1 fibrations: ðT2
F × SÞ=Zm → ðT2

F × CÞ=Zm and
ðT2

F × SÞ=Zm → S=Zm. The first fibration has a section
with monodromy over the central fiber of
π∶ðT2

F × CÞ=Zm → C. The second fibration does not have
a section (i.e., it is not an elliptic fibration, in the
terminology of Ref. [50]), and we discuss its structure here.
Recall that for a genus 1 fibration X → B without a

section, there is an associated “Jacobian fibration”
JðX=BÞ → B which has a section and which has precisely
the same τ function describing the fibers.14 As explained in
Refs. [12,50,51], the set of X’s which share a common
Jacobian fibration (and are equipped with an action by the
Jacobian fibration, as stressed in Ref. [52]) forms a group15

which should be identified with the group of connected
components of the gauge group in F-theory. That is,
compactifying the F-theory model on a circle, there is a
discrete choice of one of these X’s to serve as the
compactification space for M-theory, which is the hallmark
of a discrete gauge choice.
In our examples, the action of Zm on S has fixed points,

leading to Am−1 singularities on the quotient S=Zm. (More
generally, there can be Al−1 singularities for any l dividing
m, due to fixed points of subgroups.) Over an Al−1 point,
we have taken the quotient of the fiber by a translation of
order l, so that fiber has multiplicity l. Notice that, even
though the fiber is multiple, the total space is smooth.
This is precisely the situation analyzed by Mark Gross in

Ref. [54], who showed that the Jacobian fibration is fibered
over the same base, still with Al−1 singularities. But once
the Jacobian fibration has been taken, it is possible to
resolve those singularities of the base (which corresponds

14A more common notation is JðXÞ, but since we are studying
Calabi-Yau threefolds with more than one genus 1 fibration, we
indicate the fibration for emphasis.

15This group has been incorrectly called the Tate-Shafarevich
group in the literature [50,51], for which the fourth author
apologizes. The group contains the Tate-Shafarevich group
[53], but it can also contain fibrations with isolated multiple
fibers [54], a fact which arose in the proof of the finiteness
theorem for elliptic Calabi-Yau threefolds [55,56]. The examples
presented here have such isolated multiple fibers and so do not
belong to the Tate-Shafarevich group but rather to the larger
group of Calabi-Yau threefolds sharing a common Jacobian
fibration.
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physically to giving an expectation value to scalars in the
corresponding tensor multiplets). We thus find that these
theories are part of a larger family of LSTs, but at special
values of the tensor moduli in the larger family, a finite
gauge group appears, leading to additional 5D vacua (i.e.,
the fibrations without a section) corresponding to distinct
sectors of Wilson line expectation values.
Let us illustrate this with two concrete examples drawn

from Appendix G, where we work out the N ¼ ð1; 1Þ
theories of BCFG type in detail. As a first example,
consider a partially blown down graph of type Ê8,
illustrated here (and in Fig. 4),

where we blow down each solid circle to an A1 singularity.
As shown in Appendix G, there is a genus 1 fibration X
over this base B with a fiber of multiplicity 2 at each A1

singularity. The fiber never degenerates over this locus.
The Jacobian fibration JðX=BÞ is simply a Weierstrass

fibration over B of which the fibers do not degenerate.
There is no obstruction to resolving the singularities of B,
moving out into the rest of the moduli space. In fact, this is
part of the moduli space of the N ¼ ð2; 0Þ theory of type
E8, and we claim that when the tensors are tuned to blow
down precisely the curves corresponding to solid nodes, a
Z2 gauge symmetry appears in the theory. That gauge
symmetry is necessary to explain the additional 5D models
which appear when the A1’s are blown down and a twist of
the Jacobian fibration is possible. Presumably, moving
away from this locus amounts to Higgsing the Z2 gauge
symmetry. Incidentally, this example is the T-dual of the
N ¼ ð1; 1Þ model with group F4.
As a second example [which is the T-dual of the N ¼

ð1; 1Þ model with group G2], consider another partially
blown down graph of type Ê8, illustrated here (and in
Fig. 5),

where this time, we blow down each lined pair of solid
circles to an A2 singularity. There is a fibration with
multiple fibers of multiplicity 3 over each of those points.
The Jacobian fibration is again part of the N ¼ ð2; 0Þ
theory, with a different tuning of the moduli. With this
tuning, we find a Z3 gauge symmetry.
A related example was given in Sec. VII A 1 using the

action of Z6 on a nonsingular elliptic curve with j ¼ 0. The
quotient S=Z6 has central fiber which is a rational curve
passing through surface singularities of types A1, A2, and
A5 with fibers of multiplicity 2, 3, and 6 over those points.
Resolving the singularities leads to another affine Ê8

diagram,

where again the solid circles represent the curves being
blown down. Tuning the moduli of the N ¼ ð2; 0Þ E8

theory to blow down those curves leads to a locus in moduli
with a Z6 gauge symmetry. Notice that this is the
intersection of the previous two loci with Z2 and Z3 gauge
symmetry.

C. Toward T-duality in the more general case

In the examples from the previous two subsections,
we saw that the expected appearance of T-duality for a
LST motivates the search for a double elliptic fibration
structure in such F-theory models. When the base has a
fibration by curves of genus 1, the origin of this second
fibration is clear. When the fibration on the base is by
curves of genus 0, however, the T-duality is not as readily
manifest.
Example (9.2) does have manifest T-duality, as further

analyzed in Appendix F. In this case, the Weierstrass model
y2 − Fðx;ψ ; ½s; t�Þ can be regarded as a double cover of a
P1-bundle over the base B, where x denotes the coordinate
on the P1. Since the double cover is branched at four points

FIG. 5. G2.

FIG. 4. F4.
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along each fiber P1
F of this fibration, the total space gets a

fibration by curves of genus 1.
Now, the base B of that F-theory model has a fibration

π∶B → C of its own of which the general fiber is another
P1 which we shall call P1

B. In Appendix F, after making a
birational modification of the base (i.e., blowing it up and
down), we find that the double cover is branched along four
points of each fiber P1

B as well, and this implies that there is
a second genus 1 fibration on the total space. Note that this
echoes the discovery made in Ref. [3] that heterotic
T-duality, when viewed from the perspective of F-theory,
exchanges the roles of a base and fiber in the heterotic weak
coupling limit.
It is therefore natural to seek out a more general geo-

metric exchange symmetry in LSTs with T-duality. We
leave a more complete investigation of this possibility to
future work.

X. OUTLIERS AND NONGEOMETRIC PHASES

Much as in the case of the classification of SCFTs
achieved in Ref. [20], we view the F-theory realization of
LSTs as providing a systematic approach to the construc-
tion of such models. In some cases, however, we indeed
find a few small gaps between what is expected based on
field theory considerations and what can be obtained in
geometric phases of F-theory.
Our plan in this short section will be to proceed mainly

by effective field theory considerations to give a list of such
outlying behavior, both for 6D SCFTs and LSTs. We hasten
to add that some of these putative theories may end up
being inconsistent due to the lack of an embedding in an
F-theory (or other string) construction.16 In some cases,
however, this also points to a few additional novel possibly
nongeometric structures. Though we shall comment on
possible ways to realize these models in F-theory, we leave
a more complete analysis to future work.

A. Candidate LSTs and SCFTs

From a bottom up perspective, the primary constraints on
the construction of consistent LSTs are the existence of a
lattice of string charges with a negative semidefinite Dirac
pairing and possible gauge groups “decorating” the asso-
ciated tensor multiplets.
In some cases, there is a clear indication from F-theory

that certain bottom up considerations are too weak; for
example, the phenomenon of a −n curve for n ≥ 3 always
implies the existence of a nontrivial gauge group factor, a
condition which is not obvious from any anomaly cancel-
lation condition.
There are, however, two intermediate cases suggested by

field theory which also have a potential realization in string

theory. The first case deals with the gauge-gravitational
anomaly cancellation condition [see (A7)] imposed in
all geometrically realized 6D SCFTs and LSTs. This
condition has no field-theoretic analog in flat space as
there are no a priori restrictions on one-loop contribution to
the mixed gauge-gravitational anomaly. The nonvanishing
of the total mixed gauge-gravitational anomaly implies that
the theory is inconsistent when put on a fixed curved
spacetime background. It would clearly be troublesome if
6D SCFTs were anomalous in this way. Fortunately, it is
always possible to cancel the one-loop contribution to this
anomaly against a Green-Schwarz contribution, as was
demonstrated in Ref. [58]. This argument does not apply to
6D LSTs, and indeed it can be checked explicitly in
many examples of 6D LSTs that there is no way to
cancel the one-loop mixed gauge-gravitational anomaly
using the Green-Schwarz mechanism. This means
that 6D LSTs cannot always be put on a fixed curved
spacetime.
One class of such models would arise on

12…21; ð10:1Þ

where we decorate all the tensors with su-type gauge
groups along with antisymmetric matter for the last su
gauge group and symmetric matter for the first su gauge
group. With the presence of this symmetric representation,
Eq. (A7) is violated. Nonetheless, this model can be
constructed by putting type IIA on an interval S1=Z2 with
anO8−-orientifold plane on each fixed point, D6s stretched
along the interval, NS5s embedded in the D6s at various
points along the interval, and two of the NS5s stuck,
respectively, at the two fixed points.
More generally, to construct new examples of 6D SCFTs

and LSTs which violate the one-loop mixed gauge-
gravitational anomaly condition (A7), we can do the
following: take any F-theory model having a −1 curve
or P base curve associated with su-type gauge group and at
least one antisymmetric hyper and 16 fundamental hypers
not transforming under any other gauge group. Then, we
can replace this set of hypermultiplets with a single
hypermultiplet in the symmetric representation. The result-
ing theory will satisfy gauge anomaly cancellation, but it
will have a nonvanishing one-loop gauge-gravitational
anomaly.
The second case has to do with the condition of “normal

crossing” which is present in all geometrically realized 6D
SCFTs and is only mildly violated in LSTs. For example,
we have seen that an intersection with an order 2 tangency
4∥1 leads to a consistent LST base. In the bottom up
perspective, we have a negative semidefinite Dirac pairing
which has 2 on the off-diagonal entries and −4 and −1 on
the diagonals. Generalizing, we can consider constructions
such as

16For a recent example of a seemingly consistent 6D SCFT
which is actually inconsistent, see, e.g., Appendix A of Ref. [57].

F-THEORY AND THE CLASSIFICATION OF LITTLE STRINGS PHYSICAL REVIEW D 93, 086002 (2016)

086002-23



4∥2…2 1 ð10:2Þ

4∥2…2∥4; ð10:3Þ

all of which have a negative definite Dirac pairing. Though
we have not encountered these possibilities in our dis-
cussion of geometric phases of F-theory, the first two have
been realized in IIA string theory via appropriate suspended
brane configurations (see, e.g., Ref. [6]), at least when there
are nontrivial gauge group factors over the associated
tensor multiplets. For example, we can have su type on
the −2 charge tensors and so-type gauge groups on the −4
tensors, with sp-type gauge groups on the −1 tensors. The
crucial ingredient appearing in these suspended brane
models is an O8þ orientifold, rather than an O8− orienti-
fold. The T-dual description in IIB string theory involves
O7þ-orientifold planes, a case which leads to some
nongeometric behavior, a point we shall return to later.
The last example 4∥2…2∥4 resists an embedding in IIA
string theory, since it would appear to involve two
O8þ-orientifold planes. Indeed, if we attempt to decorate
these tensor multiplets by so-type algebras on the −4
tensors and su-type algebras on the −2 tensors, we cannot
cancel gauge theoretic anomalies.
Assuming that configurations such as 4∥2 can indeed

occur in the construction of LSTs, it is natural to ask how
many additional models can be obtained, at least from a
bottom up perspective. Pairing each tensor multiplet with a
simple gauge algebra, these are as follows:

4
soðMÞ

∥ 2
suðN1Þ

2
suðN2Þ

… 2
suðNkÞ

1
spðNRÞ ð10:4Þ

1
spðN1Þ

4
soðM1Þ

1
spðNT Þ

… 1
spðNkÞ

4
soðMkÞ

∥ 2
suðNRÞ ð10:5Þ

2
suðN0Þ

1
spðN1Þ

4
soðM1Þ

… 4
soðMkÞ

∥ 2
suðNRÞ

: ð10:6Þ

It should be noted that gauge and mixed anomalies strongly
constrain the allowed gauge algebras in the above list. In

particular, the configuration 4
soðMÞ

∥ 2
suðNÞ

is constrained by
mixed anomalies to have a bifundamental ðM;NÞ, requir-
ing N ≤ M − 8, 2N ≥ M. These conditions lead to strong
constraints on the rest of the gauge algebras in the
aforementioned theories, as discussed in Ref. [21].
If one also relaxes the condition that there is a gauge

group paired with each tensor, even more constructions are
possible. In most of these cases, no known embedding in a
string construction is available, so we suspect that at least
some of these theories are actually inconsistent.
Nevertheless, for the sake of completeness, we list them
here:

2 ∥4 ∥2 ð10:7Þ

4 1 4∥2 2 ð10:8Þ

4∥2 2…2∥4 ð10:9Þ

4∥2 2:::2 1 ð10:10Þ

4∥2 2:::2
2

2 ð10:11Þ

1 4
1

1…4 1 4∥2 ð10:12Þ

1 3 1…4 1 4∥2 ð10:13Þ

1 2 3 1 4…4 1 4∥2 ð10:14Þ

1 2 2 3 1 4…4 1 4∥2 ð10:15Þ

2 1 4…4 1 4∥2: ð10:16Þ

It is worth mentioning that a violation of normal crossing
and a violation of gauge-gravitational anomaly cancellation
do not appear simultaneously in any of these examples.
The lists of LSTs and putative LSTs arising from these
violations are small and tightly constrained.
This perspective on LSTs also points to the existence of

some additional novel structures for 6D SCFTs. Indeed,
starting from a LST, we can consider a combination of
tensor decoupling and Higgsing to reach some additional
candidate SCFTs.
The theories of this type, which are consistent with

anomaly cancellation and with no unpaired tensors, take the
form

4
soðMÞ

∥ 2
suðN1Þ

2
suðN2Þ

… 2
suðNkÞ ð10:17Þ

1
spðN0Þ

4
soðMÞ

∥ 2
suðN1Þ

2
suðN2Þ ð10:18Þ

4
soðM1Þ

1
spðN1Þ

… 4
soðMkÞ

∥ 2
suðNRÞ ð10:19Þ

1
spðN1Þ

4
soðM1Þ

… 4
soðMkÞ

∥ 2
suðNRÞ

; ð10:20Þ

Notice that (10.18) does not admit a known type IIA
construction, whereas the other three do. Another curious
thing to notice is that this model does not admit an
embedding in a putative LST. The obvious examples of
attaching an so group to the left or attaching an su group to
the right are pathological because they necessarily have
nonvanishing quartic part of gauge anomaly. Although we
have only proved that every 6D SCFT can be embedded in
a 6D LST for models arising geometrically within F-theory,
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we expect this statement to be true in general. Hence, we
suspect that the putative SCFT (10.18) is inconsistent.
Finally, concentrating only on positive definiteness, we
have the 4∥2 configurations:

1 4∥2 2 ð10:21Þ

4∥2 2…2 ð10:22Þ

1 4 1…4 1 4∥2 ð10:23Þ

4 1 4…4 1 4∥2 ð10:24Þ

3 1…4 1 4∥2 ð10:25Þ

2 3 1 4…4 1 4∥2 ð10:26Þ

2 2 3 1 4…4 1 4∥2: ð10:27Þ

B. Toward an embedding in F-theory

In the above, we encountered some additional candidate
SCFTs and LSTs which appear to be consistent with
effective field theory considerations. Additionally, some
of these models admit an embedding in type IIA suspended
brane constructions.
It is therefore important to ask to what extent we should

expect F-theory to cover this and related examples. Though
we leave a complete characterization to future work, there
are some general ingredients we can already identify which
point the way to incorporating these additional nongeo-
metric structures.
As we have already mentioned, one crucial ingredient in

the IIA realization of the 4∥2 configuration is the appear-
ance of an O8þ-plane, which T-dualizes to a pair of
O7þ-planes in type IIB string theory. Such orientifolds lead
to the phenomena of “frozen singularities” in F-theory
[11–13]. These are models in which the monodromy of the
axiodilaton around the brane is consistent with that of an
appropriate I�n singularity, but in which the corresponding
gauge algebra is not soð2nþ 8Þ.
Another not entirely unrelated phenomenon we have

encountered in the construction of theN ¼ ð1; 1Þ LSTs, as
well as in some of the low rank LSTs, are models in which
the normal bundle of a curve on the base is torsion of finite
order. To produce a Weierstrass model, we have found it
necessary to impose specific restrictions on the order of
these torsion bundles, though the M-theory realization of
these A-type N ¼ ð1; 1Þ theories suggests a whole family
of models parametrized by rational theta angles [41].
In fact, it is relatively straightforward to engineer

all of the A-type N ¼ ð1; 1Þ LSTs in type IIB and to lift
this back to F-theory. For example, in type IIB language,
we have a stack of N D7-branes wrapped on a T2.
Switching on a background value for a flat Ramond

Ramond (RR); Neveu-Schwarz (NS) 2-form potential,
we get additional theories parametrized by the ratio of
these two periods. In F-theory language, we see this by a
choice of how we resolve the affine node of the ÂNþ1

Dynkin diagram. In physical terms, this resolution comes
from compactifying an eight-dimensional model on an
additional S1. Going down on a T2, we have Wilson lines
for this affine node along the A- and B-cycles of the T2.
The presence of such background B-fields also suggests

that similar effects from discrete group actions may also
make an appearance in the construction of the 4∥2-type
configurations. For example, at the level of the effective
field theory, we can consider a base,

22
2

2…2; ð10:28Þ

with IN-type fiber decorations on each −2 curve. Now, this
field theory admits a Z2 automorphism in which we
combine the outer automorphism of the D-type base with
an outer automorphism on the suN factors on the leftmost
−2 curve and the top −2 curve. At the level of gauge theory,
the outer automorphisms of suN can take us to either an so-
or sp-type algebra. Combining these two operations, we
see that we get an effective field theory where there is one
less tensor multiplet, in which the Bogomol'nyi–Prasad–
Sommerfield (BPS) charge has doubled, and in which the
Dirac pairing between this Z2 invariant combination and its
neighbor is 2, leaving us with a configuration of tensor
multiplets 4∥2…2. Taking into account the algebra assign-
ment (i.e., the would-be fibers), we can in principle have
either so- or sp-type algebras, of which only the former is
compatible with anomaly cancellation.17 Similar consid-
erations also apply for the LST tensor multiplet configu-
rations such as 4∥2…21.
Let us stress that effective field theory considerations do

not directly inform us of the actual nongeometric realization
of these models in F-theory. Indeed, what is particularly
remarkable is that, even if we allow these additional
structures, the total number of additional candidate SCFTs
andLSTs is quite small, with thevastmajority being covered
by geometric phases of F-theory. This suggests that, what-
ever the mild deformation of known F-theory backgrounds
are that produce these models, the structures encountered in
this paper and in earlier work remain quite robust.

17Let us recall that in F-theory, conjugation by an outer
automorphism apparently leads to a geometrically ambiguous
assignment for the quotient algebra. This ambiguity has been
resolved by appealing to anomaly cancellation considerations, in
which the opposite conclusion is reached, i.e. a non-split IN fiber
realizes an sp-type algebra [59]. However, effective field theory
considerations suggest that when combined with a quotient on the
tensor multiplets, there may be a generalization of this con-
struction available in which we instead reach an so-type algebra.
Incorporation of an O7þ plane or of discrete B-fields might
provide a route to such a generalization.

F-THEORY AND THE CLASSIFICATION OF LITTLE STRINGS PHYSICAL REVIEW D 93, 086002 (2016)

086002-25



XI. CONCLUSIONS

In this paper, we have given a systematic approach to
realizing supersymmetric little string theories via compac-
tifications of F-theory. Much as in the case of 6D SCFTs,
these theories arise from working with F-theory on a
noncompact base, in which some collection of curves
are simultaneously collapsed to small size. The key differ-
ence with a 6D SCFT is that the intersection pairing for
these curves defines a negative semidefinite quadratic form
on the lattice of string charges. So, in contrast to the case of
SCFTs, the associated theories contain a dimensionful
parameter which is naturally promoted to a non-ynamical
tensor multiplet. After spelling out all necessary conditions
to geometrically realize LSTs in F-theory, we have given a
classification of all such theories. On the one hand, these
theories can all be viewed as arising from extending 6D
SCFTs by one or more additional curves. As such, they also
admit an atomic classification, much as in Ref. [20]. We
have also seen that the general expectation that all 6D
SCFTs embed in a LST is indeed realized via the explicit
embedding in an F-theory compactification. Finally, we
have seen that T-duality of a LST is realized via a double
elliptic fibration in the corresponding F-theory model. In
the remainder of this section, we discuss some avenues for
future investigation.
Perhaps the most important issue left open by our

analysis is the small gap between theories realized by
geometric phases of F-theory and the list of effective field
theories which can potentially complete to a LST (or
SCFT). It would be interesting to establish to what extent
nongeometric deformations can enter in such F-theory
models and, conversely, how many of these putatively
consistent LSTs (and SCFTs) are actually excluded by
further nontrivial consistency conditions.
One of the key simplifications in our analysis of LSTs is

that decoupling any curve in the base takes us back to a
collection of (possibly decoupled) 6D SCFTs and scale
invariant theories (i.e., when we have free vector multip-
lets). This strongly suggests that the common notions of
renormalization group flows for local quantum field the-
ories extend to nonlocal LSTs. Developing the details of
such a structure would provide a rather striking vantage
point on what it means to “UV complete” a quantum field
theory in the first place.
As a preliminary step in this direction, it is also natural to

ask whether there is a notion of monotonic loss in the
degrees of freedom in such conjectural flows from LSTs to
SCFTs. For example, in many of the cases studied in this
paper, we can weakly gauge both diffeomorphisms as well
as an SUð2Þ field strength, which in the context of a 6D
SCFT would be identified with the R-symmetry of the
theory. It is tempting to conjecture that there is a formal
extension of conformal anomalies to these cases as well. It
would be interesting to study whether an extension of the
methods presented in Refs. [60,61] (see also Ref. [62])

would provide insight into such generalizations of renorm-
alization group flows.
Finally, one of the hallmarks of the systems we have

encountered is the appearance of an effective T-duality
upon compactification on a further circle. Given that there
are now concrete methods for extracting the partition
functions for some 6D SCFTs (see, e.g., Ref. [63]), it
would be quite natural to study this and related structures
for LSTs.
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APPENDIX A: BRIEF REVIEW OF ANOMALY
CANCELLATION IN F-THEORY

The allowed gauge algebras and matter content for a
given tensor branch structure is heavily constrained by
anomaly cancellation. In six dimensions, anomalies are
related to four-point amplitudes of external currents Ja
associated with continuous symmetry group Ga. In such a
four-point amplitude, insertions of external currents Ja for a
given gauge group Ga must come in pairs, so we need only
consider the anomalies related to the four-point functions
hJaJaJaJai (gauge anomaly cancellation) and hJaJaJbJbi
(mixed gauge anomaly cancellation).
For a representation R of some gauge group G, we

introduce constants IndR, xR, and yR relating the quadratic
and quartic Casimirs of G as follows:

TrRF2 ¼ IndRtrF2;

TrRF4 ¼ xRtrF4 þ yRðtrF2Þ2: ðA1Þ
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Here, tr indicates the trace in a defining representation of
the group.18

The constraints on gauge and mixed anomalies take the
form [45–47,64]

IndAdja −
X
R

IndRa
nRa

¼ 6ð10 − nÞΩIJaIbJa
ΩIJaIaJ

ðA2Þ

yAdja −
X
R

yRa
nRa

¼ −3ð10 − nÞΩIJbIabJa
ΩIJaIaJ

ðA3Þ

xAdja −
X
R

xRa
nRa

¼ 0 ðA4Þ

X
R;R0

IndRa
IndR0

b
nRaR0

b
¼ ð10 − nÞΩIJbIabJb

ΩIJaIaJ
: ðA5Þ

Here, ΩIJ is the natural metric on the space of antisym-
metric tensors, and aI, bJa are related to the anomaly 8-form
I8 via

I8 ¼
1

2
ΩIJXIXJ; XI ¼ 1

2
aItrR2 þ 2bIatrF2

a: ðA6Þ

These field-theoretic conditions can be translated into
F-theory language as restrictions on the allowed gauge
algebras and matter for a given base. Any gauge algebra
summand ga in the theory is paired with a tensor multiplet,
which is in turn associated with a curve Σa in the base. In
these terms, the anomaly cancellation conditions become

IndAdja −
X
R

IndRa
nRa

¼ 6ðK · ΣaÞ

¼ 6ð2ga − 2 − Σa · ΣaÞ ðA7Þ

yAdja −
X
R

yRa
nRa

¼ −3ðΣa · ΣaÞ ðA8Þ

xAdja −
X
R

xRa
nRa

¼ 0 ðA9Þ

X
R;R0

IndRa
IndR0

b
nRaR0

b
¼ Σa · Σb: ðA10Þ

Here, K is the canonical divisor of the base, and ga is the
genus of Σa. The adjunction formula K · Σa ¼ 2ðga − 1Þ −
Σa · Σa has been used in the second equality of (A7).

Gauge anomaly cancellation may be used to constrain
the gauge groups paired with a given tensor node, and
mixed anomaly cancellation constrains the gauge groups
allowed on neighboring tensor nodes. However, tensors
need not be paired with gauge groups. In particular, curves
of self-intersection 0, −1, or −2 can be devoid of a gauge
group entirely. Curves of self-intersection zero cannot
touch any other curves, so this case is relatively uninter-
esting. Curves of self-intersection −1 and −2, on the other
hand, can touch other curves.

APPENDIX B: MATTER FOR SINGULAR BASES
AND TANGENTIAL INTERSECTIONS

In this Appendix, we review the relationship between
matter, singularities, and tangential intersections. Further
information can be found in Ref. [48].
Consider some curve Σ. When this curve becomes

singular, there are two distinct notions of genus.
Geometric genus, denoted pg, is the topological genus
of the curve after all singularities have been resolved.
Arithmetic genus, denoted g, is the quantity related to the
intersection theory of the curve by

2g − 2 ¼ K · Σþ Σ2: ðB1Þ

The arithmetic genus is the one that shows up in the
adjunction formula and hence enters the anomaly cancel-
lation equation (A7). These two notions of the genus are
related via

g ¼ pg þ
X
P

mPðmP − 1Þ
2

: ðB2Þ

Here, the sum runs over all singular points P of the curve,
and mP is the multiplicity of the singularity at P. For a
curve with a nodal singularity (of Kodaira type I1) or a cusp
singularity (of Kodaira type II), there is a single singular
point of multiplicitymP ¼ 2. Hence, in each of these cases,
we have g ¼ pg þ 1. The only values of g and pg that can
actually arise in our classification are g ¼ 1 and pg ¼ 0.
Although pg does not show up directly in the anomaly

cancellation conditions, it still determines the F-theory
matter content. Namely, pg is precisely the number of
adjoint hypermultiplets charged under the gauge algebra
paired with this curve. For smooth LST bases, we see that
there is one adjoint whenever the genus g ¼ pg of the curve
is 1. For singular curves, on the other hand, the arithmetic
genus g can be 1 even without any adjoint hypermultiplets.
For curves with gauge algebra suðNÞ, one instead finds
symmetric and antisymmetric representations, as noted
in Ref. [46].
We now consider the Kodaira type III base configura-

tion, which consists of two −2 curves intersecting tangen-
tially. First, we show that two curves meeting tangentially

18For SUðNÞ and SpðNÞ, the defining representation is simply
the fundamental representation. For SOð5Þ and SOð6Þ, it is the
spinor representation. For SOðNÞ; N ≥ 7, it is the fundamental
representation, though normalized with an additional factor of 2
so that TrfF2 ¼ 2trF2, TrfF4 ¼ 2trF4. A complete list including
exceptional gauge groups can be found in Table 2 of Ref. [45].
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can indeed carry fiber types I�0 and I4, which correspond to
gauge algebras g2=soð7Þ=soð8Þ and suð4Þ, respectively.
For this, we consider the Weierstrass model:

y2 ¼ x3 þ ðzuþ σ2Þx2 þ ðzuþ σ2Þ2z2vx
þ ðzuþ σ2Þ3z4w: ðB3Þ

Here, z and σ are local coordinates on the base, and u, v,
and w are functions that do not vanish at ðz; σÞ ¼ ð0; 0Þ.
From this, we compute f, g, and Δ to be

f ¼ ðzuþ σ2Þ2ð−1=3þ z2vÞ
g ¼ ðzuþ σ2Þ3ð2=27 − ð1=3Þz2vþ z4wÞ
Δ ¼ z4ðzuþ σ2Þ6ð−v2 − 18z2wvþ 4z2v3

þ 27z4w2 þ 4wÞ: ðB4Þ

From this, we see that the curve z ¼ 0 has Kodaira type I4,
whereas the curve zuþ σ2 has Kodaira type I�0. These
curves meet at ðz; σÞ ¼ ð0; 0Þ, where they are tangent to
each other. The multiplicities of f, g, andΔ at (0,0) are 2, 3,
and 10, respectively. On the other hand, had we attempted
to intersect transversely curves with fibers of singularity
types I�0 and I4, we would have found that the multiplicities
of f, g, and Δ would have been 4, 6, and 12, respectively.
Hence, curves with these fiber types cannot meet trans-
versely, only tangentially.
We can enhance the gauge algebras on these tangent

curves to soð12Þ and suð6Þ, corresponding to Kodaira fiber
types I�2 and I6, respectively. Here, the Weierstrass model is

y2 ¼ x3 þ ðzuþ σ2Þx2 þ ðzuþ σ2Þ3z3vx: ðB5Þ

This yields

f ¼ −
1

3
ðzuþ σ2Þ2 þ vz3ðzuþ σ2Þ3

g ¼ 2

27
ðzuþ σ2Þ3 − 1

3
vz3ðzuþ σ2Þ4

Δ ¼ −v2z6ðzuþ σ2Þ8 þ 4v3z9ðzuþ σ2Þ9: ðB6Þ

Thus, from the degrees of vanishing of f, g, and Δ, we see
the curve z ¼ 0 has Kodaira type I6, whereas the curve
zuþ σ2 has Kodaira type I�2.
We also get soð13Þ and suð7Þ from Kodaira fiber types

I�3 and I7, respectively, using the Weierstrass model,

y2 ¼ x3 þ ðzuþ σ2Þx2 þ wðzuþ σ2Þ6z7: ðB7Þ

This model has

f ¼ −
1

3
ðzuþ σ2Þ2

g ¼ 2

27
ðzuþ σ2Þ3 þ wz7ðzuþ σ2Þ6

Δ ¼ 4wz7ðzuþ σ2Þ9 þ 27w2z12ðzuþ σ2Þ16: ðB8Þ

The fact that we got soð13Þ in this case and soð12Þ in the
previous case follows from Table 7 of Ref. [45].
Using these Weierstrass models, we are able to realize

the gauge algebra enhancements on two tangent −2 curves
discussed in Sec. VII.

APPENDIX C: NOVEL DE-TYPE BASES

Appendixes B and C [20] provided a complete list of
DE-type bases that can be used to construct 6D SCFTs. All
of these bases can show up in LSTs as well when certain
non-DE-type links are suitably attached. However, there are
also some novel DE-type bases, which blow down to 0.
We use an abbreviated notation to describe these bases.

Namely, we specify curves of self-intersection −4, −6, −8,
and −12 according to

D≃ 4 ðC1Þ

E6 ≃ 6 ðC2Þ

E7 ≃ 8 ðC3Þ

E8 ≃ 12: ðC4Þ
The allowed types of conformal matter between DE-type

nodes are represented as follows:

D1D≃D⊕
1;1

D ðC5Þ

E6131E6 ≃ E6 ⊕
2;2

E6 ðC6Þ

E712321E6 ≃ E7 ⊕
3;3

E6 ðC7Þ

E712321E7 ≃ E7 ⊕
3;3

E7 ðC8Þ

E71231D≃ E7 ⊕
3;2

D ðC9Þ

E812231D≃ E8 ⊕
4;2

D ðC10Þ

E61315131E6 ≃ E6 ○

3;3
E6 ðC11Þ

E613151321E7 ≃ E6 ⊕
3;4

E7 ðC12Þ

E6131513221E8 ≃ E6 ⊕
3;5

E8 ðC13Þ
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E7123151321E7 ≃ E7 ⊕
4;4

E7 ðC14Þ

E71231513221E8 ≃ E7 ⊕
4;5

E8 ðC15Þ

E812231513221E8 ≃ E8 ⊕
5;5

E8: ðC16Þ

We omit the subscripts above the ⊕ when dealing with
the minimal type of conformal matter:

D ⊕ D≃D⊕
1;1

D ðC17Þ

D ⊕ E6 ≃D⊕
2;2

E6 ðC18Þ

D ⊕ E7 ≃D⊕
2;3

E7 ðC19Þ

D ⊕ E8 ≃D⊕
2;4

E8 ðC20Þ

E6 ⊕ E6 ≃ E6 ⊕
2;2

E6 ðC21Þ

E6 ⊕ E7 ≃ E6 ⊕
3;3

E7 ðC22Þ

E6 ⊕ E8 ≃ E6 ⊕
3;5

E8 ðC23Þ

E7 ⊕ E7 ≃ E7 ⊕
3;3

E7 ðC24Þ

E7 ⊕ E8 ≃ E7 ⊕
4;5

E8 ðC25Þ

E8 ⊕ E8 ≃ E8 ⊕
5;5

E8: ðC26Þ

Using this notation, we now list the novel DE-type bases
for LSTs. All of these bases are positive semidefinite with a
single zero eigenvalue. We begin with configurations with
only D nodes:

D⊕
3;3

D ðC27Þ

D○

3;3
D: ðC28Þ

The configurations with only E6 nodes are

E6 ⊕
5;5

E6: ðC29Þ

The configurations with D and E6 are

D⊕
3;5

E6 ðC30Þ

D ⊕ E⊕2
6 ⊕

3;3
E6 ðC31Þ

D ⊕ E⊕2
6 ○

3;3
E6 ðC32Þ

D ⊕ E6 ⊕
3;4

E6 ðC33Þ

D ⊕ E6 ⊕
3;2

D ðC34Þ

D⊕2 ⊕ E6 ⊕ D: ðC35Þ

The configurations with D and E7 are

D⊕
3;3

E⊕n
7 ⊕

3;3
D; n ¼ 1; 2;… ðC36Þ

D ⊕ E⊕3
7 ⊕

4;4
E7 ðC37Þ

D ⊕ E⊕2
7 ⊕

4;5
E7 ðC38Þ

D⊕2 ⊕ E7 ⊕ D ðC39Þ

D⊕
2;4

E7 ⊕ D ðC40Þ

D ⊕ 13
2

21 ⊕ E7: ðC41Þ

The configurations with D and E8 are

D⊕
3;5

E⊕n
8 ⊕

5;3
D; n ¼ 1; 2;… ðC42Þ

D⊕3 ⊕ E8 ⊕ D⊕2 ðC43Þ

D⊕4 ⊕ E8 ⊕ D: ðC44Þ

The configurations with E6 and E8 are

E6 ⊕
5;5

E⊕n
8 ⊕

5;5
E6; n ¼ 1; 2;… ðC45Þ

E6 ⊕
4;5

E⊕2
8 ⊕ E⊕2

6 : ðC46Þ

The configurations with D, E6, and E7 are

D ⊕ E7 ⊕
4;4

E6 ðC47Þ

D ⊕ E⊕2
7 ⊕

4;3
E6 ðC48Þ

D ⊕ E⊕2
6 ⊕

3;5
E7 ðC49Þ

D ⊕ E⊕3
6 ⊕

3;4
E7 ðC50Þ

D ⊕ E⊕4
6 ⊕ E7 ðC51Þ
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D ⊕ E⊕2
7 ⊕ E⊕2

6 ðC52Þ

D ⊕ E6 ⊕ E7 ⊕ E⊕2
6 : ðC53Þ

The configurations with D, E6, and E8 are

D⊕
4;5

E⊕n
8 ⊕

5;5
E6; n ¼ 1; 2;… ðC54Þ

D ⊕ E⊕6
6 ⊕ E8 ðC55Þ

D⊕2 ⊕ E⊕2
8 ⊕ E⊕2

6 ðC56Þ

D⊕3 ⊕ E8⊕
5;4
E6: ðC57Þ

The configurations with D, E7, and E8 are

D ⊕ E⊕6
7 ⊕

4;5
E8 ðC58Þ

D⊕2 ⊕ E⊕3
8 ⊕ E⊕2

7 : ðC59Þ

The configurations with E6, E7, and E8 are

E6 ⊕
4;5

E8 ⊕ E7 ⊕ E6 ðC60Þ

E6 ⊕
4;5

E⊕3
8 ⊕ E⊕2

7 : ðC61Þ

The configurations with D, E6, E7, and E8 are

D ⊕ E8 ⊕ E⊕2
7 ⊕ E6 ðC62Þ

D⊕2 ⊕ E8 ⊕ E7 ⊕ E6: ðC63Þ

APPENDIX D: NOVEL NON-DE-TYPE BASES

The following is the list of novel bases constructed solely
from curves of self-intersection −1, −2, −3, and −5:

12…:21 ðD1Þ

5 ⊕ 1⊕5 ðD2Þ

15
1

1
12 ðD3Þ

215
1

12 ðD4Þ

1312 ðD5Þ

13
1

1 ðD6Þ

1315
1

12 ðD7Þ

1315
1

1
12 ðD8Þ

12315
1

12 ðD9Þ

12315
1

1
12 ðD10Þ

122315
1

12 ðD11Þ

122315
1

1
12 ðD12Þ

23
1

1512 ðD13Þ

23
1

15
1

1 ðD14Þ

3131512 ðD15Þ

31315
1

1 ðD16Þ

215131512 ðD17Þ

2151315
1

1 ðD18Þ

15
1

1315
1

1 ðD19Þ

15
1

131512 ðD20Þ

15
1

1315
1

1 ðD21Þ

1315131512 ðD22Þ

13151315
1

1 ðD23Þ
12315131512 ðD24Þ

123151315
1

1 ðD25Þ

122315131512 ðD26Þ

1223151315
1

1 ðD27Þ
151231512 ðD28Þ

1512315
1

1 ðD29Þ
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512231512 ðD30Þ

5122315
1

1 ðD31Þ

12321512 ðD32Þ

123215
1

1 ðD33Þ

1321512 ðD34Þ

13215
1

1 ðD35Þ

132
1

2 ðD36Þ

22
2

…21 ðD37Þ

1513
1

22 ðD38Þ

15123
1

2 ðD39Þ

512222 ðD40Þ

151222 ðD41Þ

3122 ðD42Þ

1315122 ðD43Þ

12315122 ðD44Þ

122315122 ðD45Þ

215122 ðD46Þ

15
1

122 ðD47Þ

131513
1

2 ðD48Þ

1231513
1

2 ðD49Þ

12231513
1

2 ðD50Þ

21513
1

2 ðD51Þ

15
1

13
1

2 ðD52Þ

32132 ðD53Þ

12231321 ðD54Þ

23123 ðD55Þ

12313221 ðD56Þ

1313221 ðD57Þ

1512231 ðD58Þ

13213 ðD59Þ

123131 ðD60Þ

13131 ðD61Þ

312321 ðD62Þ

3132151 ðD63Þ

2313151 ðD64Þ

151232151 ðD65Þ

1232151321 ðD66Þ

5123132 ðD67Þ

3215123 ðD68Þ

123151231 ðD69Þ

13151231 ðD70Þ

1321513221 ðD71Þ

5131322 ðD72Þ

13215131 ðD73Þ

3221513 ðD74Þ

1512313 ðD75Þ

5122313 ðD76Þ

1231512321 ðD77Þ

12231512321 ðD78Þ

131512321 ðD79Þ

12315132151 ðD80Þ
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1315132151 ðD81Þ

315123151 ðD82Þ

122315132215 ðD83Þ

321513151 ðD84Þ

315123215 ðD85Þ

513215132 ðD86Þ

51223151321 ðD87Þ

512315123 ðD88Þ

151231513221 ðD89Þ

3131513221 ðD90Þ

1512315131 ðD91Þ

5122315131 ðD92Þ

512321513 ðD93Þ

123151313 ðD94Þ

13151313 ðD95Þ

513151232 ðD96Þ

15131513215 ðD97Þ

15131513151 ðD98Þ

12231513151321 ðD99Þ

12315131513221 ðD100Þ

1315131513221 ðD101Þ

123151315131 ðD102Þ

13151315131 ðD103Þ

51315131513: ðD104Þ

APPENDIX E: NOVEL GLUINGS

At times, non-DE-type side links or noble atoms can
attach to DE-type nodes in ways they could not for 6D

SCFTs. For instance, the side link 2151321 could never
attach to a D node in a 6D SCFT, since it induces four
blowdowns on the −4 curve. However, this is allowed for
LSTs. The full list of these novel gluings of one side link to
a single node is as follows:
For gluing to a D-type node (i.e., a −4 curve), we have

2221 ⊕ D ðE1Þ

2151321 ⊕ D ðE2Þ

3215131 ⊕ D ðE3Þ

1512321 ⊕ D ðE4Þ

3151231 ⊕ D ðE5Þ

315
1

131 ⊕ D ðE6Þ

223
1

1 ⊕ D ðE7Þ

15
1

1321 ⊕ D ðE8Þ

151315131 ⊕ D ðE9Þ

512315131 ⊕ D: ðE10Þ

For gluing to an E6-type node (i.e., a −6 curve), we have

222221 ⊕ E6 ðE11Þ

22315
1

131 ⊕ E6 ðE12Þ

231512321 ⊕ E6 ðE13Þ

232151321 ⊕ E6 ðE14Þ

321513221 ⊕ E6 ðE15Þ

315
1

13221 ⊕ E6 ðE16Þ

2315
1

1321 ⊕ E6 ðE17Þ

15131513221 ⊕ E6 ðE18Þ

51231513221 ⊕ E6 ðE19Þ

3151315121 ⊕ E6 ðE20Þ

23151315131 ⊕ E6: ðE21Þ
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For gluing to an E7-type node (i.e., a −8 curve), we
have

22222221|fflfflfflfflfflffl{zfflfflfflfflfflffl}
8

⊕ E7 ðE22Þ

2231513151321 ⊕ E7 ðE23Þ

22315
1

13221 ⊕ E7 ðE24Þ

22315
1

13221 ⊕ E7; ðE25Þ

while for an E8-type node (i.e., a −12 curve), we have

222222222221|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
12

⊕ E8: ðE26Þ

We remark that in the case of the E7 and E8 nodes, we can
also delete some of the aforementioned curves, using
instead a “primed” node (i.e., by adding a small instanton
link elsewhere).

APPENDIX F: T-DUALITY
IN THE 1;2;…;2;1 MODEL

Let us consider the LST of which the F-theory base B
has a chain of rational curves consisting of two curves of
self-intersection −1 at the ends of the chain and k ≥ 0
curves of self-intersection −2 in between meet each other.
The union of those kþ 2 curves on the base deforms to a
nonsingular rational curve of self-intersection 0 and
provides a fibration π∶B → C on the base of which the
general fiber is P1. The total space of the elliptic fibration
looks like a one parameter family of elliptic K3 surfaces
(over general fibers of π) degenerating to a pair of dP9 ’s
with k intermediate elliptic ruled surfaces [over π−1ð0Þ],
which (when k ¼ 0) is precisely the degeneration which
appears in the analysis of heterotic/F-theory duality
in Ref. [65].
Remarkably, the total space of this elliptic fibration

admits a second elliptic fibration, at least birationally. The
computation which shows this was written out in Ref. [66],
although it has some earlier antecedents in the math
literature [67–70].19
Consider a base of the form P1 × C where the

homogeneous coordinates on P1 are ½σ; τ� on the coor-
dinate on C is ψ . We write a Weierstrass equation of the
form

Y2¼X3þaσ4τ4Xþðψkþ1σ5τ7þcσ6τ6þσ7τ5Þ; ðF1Þ

where a and c are constants. (In Ref. [66], only the τ ¼ 1
affine chart appears.) Notice that we get a small instanton
with instanton number kþ 1when ψ ¼ σ ¼ 0, so to get the
1; 2;…; 2; 1 model, we should blow up the point
ψ ¼ σ ¼ 0 kþ 1 times. We keep this implicit in what
follows.
Note that we have Kodaira type II� at both σ ¼ 0 and

τ ¼ 0, and since those represent noncompact curves, we see
E8 × E8 global symmetry.
Now, there is a remarkable coordinate change:

X ¼ st−5x2 ðF2Þ

Y ¼ t−8x2y ðF3Þ

σ ¼ t−3x ðF4Þ

τ ¼ t: ðF5Þ

(This is only a “rational map” because of the division by
powers of t.) The result of the substitution is

t−16x4y2 ¼ s3t−15x6 þ ast−13x6

þ ðψkþ1t−8x5 þ ct−12x6 þ t−16x7Þ: ðF6Þ

If we multiply the resulting equation by t16=x4, we
obtain

y2 ¼ s3tx2 þ ast3x2 þ ðψkþ1t8xþ ct4x2 þ x3Þ ðF7Þ

¼ x3 þ ðs3tþ ast3 þ ct4Þx2 þ ψkþ1t8x: ðF8Þ
We interpret this as a family elliptic curves over P1

½s;t� × C.

(Note that this is a very different base, with coordinates
½s; t� which mix the former base and fiber coordinates.)
Remarkably, this is the equation for the F-theory dual of the
Spinð32Þ=Z2 heterotic string with a small instanton at t ¼
ψ ¼ 0 (as derived in Ref. [3,65]). We have a global
symmetry algebra soð32Þ along t ¼ 0. Note that we should
also blow up t ¼ ψ ¼ 0.
Thus, in a quite subtle way, there is T-duality for this pair

of models, in which the two different elliptic fibrations on
the semilocal total space are exchanged, after a birational
change. Note that the coordinate change given above is
(rationally) invertible. The inverse is

x ¼ στ3 ðF9Þ

y ¼ σ−2τY ðF10Þ

s ¼ σ−2τ−1X ðF11Þ

t ¼ τ: ðF12Þ
19There was a subsequent extension of this computation to a

more general case [70–72], which will undoubtedly be useful for
understanding additional T-dualities of LSTs.
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APPENDIX G: F-THEORY CONSTRUCTION
OF N ¼ ð1;1Þ LSTs

The M-theory construction for little string theories with
N ¼ ð1; 1Þ supersymmetry is described in Ref. [41]. Such
a theory can be seen as M-theory compactified on a
spacetime of the form ðC2 × S1Þ=Γ for Γ ⊂ SUð2Þ a finite
subgroup. The action on S1 is by rotations, and there is a
subgroup Γ0 of Γ which acts trivially on S1, leading to a
short exact sequence of groups,

0 → Γ0 → Γ → Zr → 0: ðG1Þ

Geometrically, there is an action of Zr on the asymptoti-
cally locally Euclidean (ALE) space C2=Γ0 corresponding
to an automorphism of the corresponding Lie group; the
gauge group of the little string theory is the subgroup
commuting with the outer automorphism.
The mathematical description of these groups has been

known for a long time and is nicely summarized in a table
on p. 376 of Ref. [73] which we reproduce as Table III. We
have made a minor correction to the table (already noted in
footnote 15 of Ref. [41]), and we have added the informa-
tion about the gauge group and theta angle as discussed in
Ref. [41]. In the table, the cyclic group action on C3 with
coordinates ðx; y; zÞ is described in terms of exponents
ðar ; br ; crÞ of the generators; the notation also indicates how
the equation transforms under the action.
To construct these theories using F-theory, we use a base

B which is a neighborhood of an elliptic curve Σ of which
the normal bundle is a torsion line bundle of order r. The
base has a finite unramified cover of degree r which is a

product Σ×C, and the cyclic group Zr will act on the
elliptic fibration over Σ×C (which we take to be in
Weierstrass form). Thus, the classification is analogous—
we must find cyclic group actions on Weierstrass elliptic
fibrations which induce the corresponding actions on the
ADE singularities.
Note that, as observed in Sec. VII A 1, this construction

requires r ∈ f2; 3; 4; 6g, so that most of the instances of
case (1) are ruled out. In fact, we have been unable to find
a conventional F-theory construction of any instance of
case (1) (which would correspond, in the interpretation of
Ref. [41], to an SUðnÞ theory with a rational theta angle).
Instead, as mentioned in Sec. X B, we anticipate an
F-theory construction for these models involving B-field
expectation values.
In Table IV, we present explicit forms of these group

actions in cases 3, 4, and 6, using a Weierstrass equation φ
with variables ðx; y; tÞ. The quotient can be described in
terms of a Weierstrass equation Φ of which the variables
ðX; Y; TÞ are expressed in terms of ðx; y; tÞ in the table.
We now explain the geometry of the group actions by

means of figures illustrating cases 2, 3, 4, and 6. We will
explain the cases in the reverse order from the one given in
Table III.
We begin with case 6 leading to gauge symmetry F4,

illustrated in Fig. 4. The M-theory construction only
involved the Dynkin diagram of the singularities, but here
we must consider the entire Kodaira fiber as represented by
the affine Dynkin diagram. Thus, in the bottom half of
Fig. 4, we see Ê6, with the affine node represented by a
square rather than a circle. This diagram has been obtained
as a double cover of the affine E8 diagram shown in the top

TABLE III. Cyclic actions on ALE spaces.

r Type φ Description Gauge group θ

(1) Any 1
r ð1;−1; 0; 0Þ xyþ zn An−1→

r-to-1
Arn−1

SUðnÞ ∈ πQ

(2) 4 1
4
ð1; 3; 2; 2Þ x2 þ y2 þ z2n−1 A2n→

4-to-1
D2nþ3

SpðnÞ π

(3) 2 1
2
ð0; 1; 1; 0Þ x2 þ y2 þ z2n A2n−1→

2-to-1
Dnþ2

SpðnÞ 0

(4) 3 1
3
ð0; 1; 2; 0Þ x2 þ y3 þ z3 D4→

3-to-1
E6

G2 0

(5) 2 1
2
ð1; 1; 0; 0Þ x2 þ y2zþ zn Dnþ1→

2-to-1
D2n

SOð2nþ 1Þ 0

(6) 2 1
2
ð1; 0; 1; 0Þ x2 þ y3 þ z4 E6→

2-to-1
E7

F4 0

TABLE IV. Group actions on Weierstrass models. Here, u and w represent invariant functions of t which do not vanish at t ¼ 0.

Type φ ðX; Y; TÞ Φ

(3) 1
2
ð0; 1; 1Þ −y2 þ x3 þ ux2 þ wt2n ðt2x; t3y; t2Þ −Y2 þ X3 þ uTX2 þ wTnþ3

(4) 1
3
ð1; 0; 2Þ −y2 þ x3 þ wt3 ðt4x; t6y; t3Þ −Y2 þ X3 þ wT5

(6) 1
2
ð0; 1; 1Þ −y2 þ x3 þ wt4 ðt2x; t3y; t2Þ −Y2 þ X3 þ wT5
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half of Fig. 4, in which the solid circles represent
curves along which we branch as we construct a double
cover. The two curves on the left are duplicated in the
bottom half because they do not meet the trivalent vertex at
a branch point of the double cover. After taking the double
cover, the solid curves have become −1 curves and are
to be blown down. (Alternatively, the solid curves can be
contracted to A1 singularities prior to taking the double
cover).
Note that the quotient involves an affine E8 diagram

rather than an affine E7 diagram. This is because the Z2

action on the “extra” curve in the Kodaira fiber (corre-
sponding to the image of the affine node) has two fixed
points, one giving an E7 singularity and the other giving an
A1 singularity. The two together fit into an affine E8

diagram.
We next treat case 4 leading to gauge symmetry G2,

depicted in Fig. 5. The bottom half of the figure this time is
D̂4 with the affine node again represented by a square. This
diagram has been obtained as a triple cover of the affine E8

diagram shown in the top half of Fig. 5, in which the solid
circles represent curves along which we branch as we
construct a triple cover. (For an adjacent pair of solid
curves, the branching is via 1=3 on one curve and 2=3 on
the other). The lowest curve in the top half of the diagram is
triplicated in the bottom half because it does not meet the
trivalent vertex at a branch point of the triple cover. After
taking the triple cover, the solid curves have become −1,
−2 pairs and are to be blown down. (Alternatively, the solid
curves can be contracted to A2 singularities prior to taking
the triple cover.) Note that theZ3 action on the image of the
affine node has two fixed points, one giving an E6

singularity and the other giving an A2 singularity; the
two together fit into an affine E8 diagram.
Now, we consider case 3, depicted in Fig. 6. The bottom

half is Â2n−1, obtained as a branched double cover of the top
half, which is D̂nþ4. The square denotes the affine node (or
its image), and the solid circles in the top half denote curves
along which the double cover is branched. This time, theZ2

action on the affine node has two fixed points unrelated to
the singularity we are studying, creating the two extra solid
curves at the left of the diagram.
Finally, we treat case 2, depicted in Fig. 7, which is the

most complicated case. Here, we have a Z4 action on Â2n at
the bottom of the figure, and we describe the quotient in
two stages: the quotient by the Z2 subgroup (shown in the
middle of the figure as an Â4nþ1 diagram) and the quotient
by the full Z4 (shown at the top of the figure as a D̂2nþ5

diagram). The diagram at the top includes a resolved A3

singularity (three connected solid dots), two resolved A1

singularities (at the far left) which are to be branched along
during the first double cover, and points marked by ×
which are A1 singularities not branched during the first
double cover (from top to middle) but branched during the
second double cover (from middle to bottom).

FIG. 6. SpðnÞ, θ ¼ 0.

× ×

FIG. 7. SpðnÞ, θ ¼ π.
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