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In this paper we explore contributions to nonperturbative superpotentials arising from instantons
wrapping effective divisors in smooth Calabi-Yau fourfolds. We concentrate on the case of manifolds
constructed as complete intersections in products of projective spaces or generalizations thereof. We
systematically investigate the structure of the cone of effective (algebraic) divisors in the fourfold
geometries and employ the same tools recently developed by Anderson et al. [arXiv:1507.03235] to
construct more general instanton geometries than have previously been considered in the literature. We
provide examples of instanton configurations on Calabi-Yau manifolds that are elliptically and K3 fibered
and explore their consequences in the context of string dualities. The examples discussed include manifolds
containing infinite families of divisors with arithmetic genus, χðD;ODÞ ¼ 1, and superpotentials exhibiting
modular symmetry.
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I. INTRODUCTION

In the search for stabilized vacua and realistic models of
string phenomenology, nonperturbative effects are an
essential ingredient. In particular, instanton contributions
have played a significant role in most attempts at model
building and moduli stabilization in realistic four-
dimensional (4D), N ¼ 1 compactifications. Examples
of detailed calculations of instanton effects can be found
in [1–8] (heterotic string theory), [9–13] (F-theory) and
[14–17] (Type II).
In order to fully employ these nonperturbative effects it

is clear that systematic/algorithmic control of the under-
lying geometry is essential. In this paper, we will develop a
partial toolkit for such an approach and look at one
particular window into these nonperturbative effects in a
network of dual theories. We will explore the geometry
associated with M-theory instantons on a class of smooth
Calabi-Yau (CY) fourfolds [18–21], Y4, constructed as
complete intersections in simple projective ambient spaces
[22–25], as well as recent generalizations [26] of this
construction. Many of our results readily extend to other
constructions of CY fourfolds such as [27–32]. It is well
established that very simple observations regarding these
nonperturbative effects—including the structure of the
complex divisors, D ⊂ Y4, wrapped by M5-branes—can

have a wide range of consequences. This is true not only for
the effective three-dimensional description of M-theory
compactified on Y4 but also for many other theories
related by string dualities (i.e., Heterotic, Type IIB, and
F-theory) [13].
It should be noted that here we will consider only the

most universal sector of instanton contributions and
the geometry of smooth Calabi-Yau fourfolds. Within
the context of realistic string compactifications and dual
theories (especially heterotic, F-theory, and Type IIB) this
is only a first step. In the language of F-theory, for example,
the analysis presented here pertains only to ED3-ED3
instanton zero modes and omits the important consideration
of ED3-7 instanton zero modes which also play a crucial
role. There is rich literature on this subject including
investigations of the cohomology on divisors [33–36],
lifting of zero modes, and the role of fluxes and Uð1Þ
symmetries [37–40] in these questions. We view the geo-
metric tools for smooth CY fourfolds explored here as
essential but only preliminary steps toward a comprehen-
sive study of instantons in realistic heterotic/F-theory/Type
IIB vacua.
In particular, one of our primary goals in this work is

to explore fibration structures and effective divisors on Y4

that are not manifestly “inherited” from the ambient
space. That is, for CY fourfolds described in some
simple ambient space, Y4 ⊂ A, we are interested in
effective divisors D ⊂ Y4 that are not the restriction,
DjY4

, of some effective divisor D ⊂ A. It is this latter
type of divisor that has been most frequently used to
explore instanton solutions in the literature. As an
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illustration of why it is necessary to study more general
solutions, it should be noted that Ref. [41] demonstrated
that, for some classes of ordinary complete intersection
manifolds in products of projective spaces, no inherited
divisors can satisfy the necessary conditions to contribute
nontrivially to the superpotential.
The goals of the present work include the following:
(i) A complete, systematic study of the structure of

effective cones of divisors on Y4 and an investigation
of general divisors with arithmetic genus 1 in
smooth CY fourfolds.

(ii) An exploration of the structure of instantons on
fourfolds constructed as “generalized complete in-
tersections” (i.e., “gCICYs”) [26] in compactifica-
tions of M-theory.

(iii) An investigation of the consequences of instantons
wrapping “noninherited” divisors in string
dualities—including infinite families of instanton
solutions exhibiting modular symmetry.

With these goals in mind, we turn first to the
essential mathematical structure that we wish to explore
in this work: effective divisors on Y4 that are not inherited
from A.

A. Exploring the full cone of effective divisors

In this section we explore the simple geometric fact that
the cone of effective divisors (i.e., the codimension 1
algebraic subvarieties of Y4) can be significantly larger
than that inherited from the ambient space. As a straight-
forward example, consider the CY fourfold, described via a
degree (2,5) hypersurface in the product of complex
projective spaces P1 × P4,

Y4 ¼
�
P1

P4 ∥ 25
�
: ð1Þ

Since this manifold is defined via an ample hypersurface,
its H1;1 cohomology group descends simply from the
ambient product of projective spaces. Here h1;1ðY4Þ ¼ 2
and a basis of the Picard group is given by H1 and H2, the
restrictions of the ambient space hyperplanes to Y4. On the
ambient space, A ¼ P1 × P4, the effective cone is simply
the positive quadrant defined by aH1 þ bH2 with a, b ≥ 0
[42]. However, on Y4 itself there is a richer range of
possibilities. For example, the line bundles defined by L ¼
OY4

ð−1; nÞ with n ≥ 5 all satisfy h0ðY4; LÞ > 0, and thus
their global holomorphic sections define algebraic subvari-
eties of Y4 even though they cannot be simply described
by polynomial defining equations in the ambient coordi-
nates [and h0ðA;OAð−1; nÞÞ ¼ 0; ∀ n]. In other words,
the effective cone of Y4 is larger than simply aH1 þ bH2

with a, b ≥ 0.
It was noted in [26] that although divisors of this type are

“nonpolynomial” [43–48] in the homogeneous coordinate

system of A, they may still be represented simply as
rational functions in the ambient space coordinates that are
suitably regular (i.e., holomorphic polynomials) when
evaluated on the CY, Y4. To see this explicitly, let us build
the global sections of OY4

ð−1; nÞ on Y4. Labeling the
homogeneous coordinates of P1, P4 to be xi, yj with i ¼ 0,
1 and j ¼ 0;…; 4, consider the defining equation of
degree (2,5),

P∶ x20p5
ð1ÞðyÞ þ x0x1p5

ð2ÞðyÞ þ x21p5
ð3ÞðyÞ ¼ 0; ð2Þ

where p5
ðaÞðyÞ, a ¼ 1, 2, 3 are homogeneous quintic

polynomials in the y-coordinates of P4. Now, to consider
a divisor of the form OY4

ð−1; nÞ, by definition it can be
decomposed into the associated divisor of zeros and divisor
of poles [D ¼ ðDiv: of zerosÞ − ðDiv: of PolesÞ] which in
this case can take the form1

Div: of zeros
Div: of Poles

¼ fnðyÞ
g1ðxÞ

: ð3Þ

Here fn is a polynomial of degree n and g1 a polynomial of
degree 1. How then can this rational function be made
regular when evaluated on the CY given in (2)? Consider
the simple linear function given by x0 ¼ 0. On this locus,
the defining equation P ¼ 0 guarantees that one specific
quintic in the y-coordinates also vanishes,

p5
ð3ÞðyÞ ¼ 0: ð4Þ

As a result, the rational function

p5
ð3ÞðyÞ
x0

; ð5Þ

is manifestly regular—every zero of the denominator is
matched by a zero of a numerator for points satisfying the
defining relation given by (2). Likewise, by similar logic,
p5

ð1ÞðyÞ
x1

is also regular, and it is straightforward to verify that
these two can be used to construct a complete basis of
global sections of OY4

ð−1; nÞ. To be explicit, a basis of
H0ðY4;OY4

ð−1; nÞÞ for n ≥ 5 is given by

s ¼ p5
ð3ÞðyÞ
x0

rn−5ðyÞ þ
p5

ð1ÞðyÞ
x1

sn−5ðyÞ; ð6Þ

where rn−5ðyÞ and sn−5ðyÞ are arbitrary polynomials of
degree (n − 5) in the y-coordinates, each with ðn−1

4
Þ linearly

1In this paper we interchangeably use the following four
related terms—divisor, divisor class, line bundle, and global
holomorphic section of line bundle—and freely call one by
another unless confusions arise.
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independent monomials, thereby giving rise to a basis for
the cohomology with 2ðn−1

4
Þ elements.2

The type of construction described in the preceding
paragraphs was employed recently in [26] to build a new
data set of CY manifolds (including both threefolds and
fourfolds) which possess a range of interesting features
including new Hodge numbers and novel fibration
structures. In the following sections, the observations
above will be employed to find new divisor geometries
D ⊂ Y4 in both finite and infinite families leading to
nontrivial superpotentials.

B. A study of instanton superpotentials

In [41], it was argued that the simple form of CICY
manifolds make it possible to classify what types of
instanton solutions can exist. From remarkably little
geometric data, a wide array of conclusions can be
reached for several dual string compactifications includ-
ing M-theory, F-theory, Type IIB, and heterotic string
theory. In the following sections we will briefly review
this structure and point out how the expansion of
effective cones described above allows for a broader
class of instanton solutions than had previously been
explored in [41] and related work. We will explore the
consequences of this for the network of string dualities
described above.
In Sec. II we will provide a brief, self-contained

review of the necessary conditions on divisors D ⊂ Y4

for an M5-brane wrapping D to contribute to the three-
dimensional superpotential and the consequences for
dual geometries. In Sec. II A the necessary conditions
for a 5-brane to contribute to the superpotential, as well
as a sufficient condition and a simple topological
consistency check are reviewed. In Sec. II B we review
the detailed links between the geometry of D ⊂ Y4 and
the nonperturbative superpotentials in dual F-theory,
Type IIB, and heterotic vacua. Section III provides
the first core examples of this work—both traditional
CICY manifolds [19–25] as well as new gCICY con-
structions [26]—with the types of (noninherited) divi-
sors as described above. In Sec. IV we explore the
consequences for the superpotential, in heterotic/F-
theory dual pairs, of the situation where Y4 admits a
finite or infinite number of divisors capable of leading
to instanton contributions to the superpotential. Finally,
in Sec. V a brief summary and outlook for future work
is provided. Appendix A provides useful technical
results on fibration structures and line bundle cohomol-
ogy on CY fourfolds.

II. INSTANTONS IN M-THEORY
ON CY FOURFOLDS

A. Instanton geometry

We consider M-theory compactified on a smooth CY
fourfold, Y4, leading to an N ¼ 2 theory in three dimen-
sions. The necessary (but not sufficient) conditions for an
M5-brane to contribute nontrivially to the superpotential of
the 3D theory were clearly laid out in [41]. To facilitate a
self-contained discussion, we will briefly summarize these
results here. The first result is that an anomaly computation
and consideration of fermion zero modes leads to a
necessary condition that must be satisfied in order for a
nontrivial superpotential effect to be generated. This can be
concisely summarized by the following geometric con-
dition on the arithmetic genus of the holomorphic divisorD
on which the 5-brane is wrapped:

χðD;ODÞ ¼ 1: ð7Þ

To make sense of this criteria in terms of divisor geometry,
we consider the Koszul sequence

0 → OY4
ð−DÞ → OY4

→ OD → 0: ð8Þ

From the fact that Y4 is a CY fourfold and hence,
h•ðY4; OY4

Þ ¼ ð1; 0; 0; 0; 1Þ, the long exact sequence in
cohomology associated with (8) yields the following:

h0ðD;ODÞ ¼ 1 − h0ðY4;OY4
ð−DÞÞ þ h1ðY4;OY4

ð−DÞÞ;
ð9aÞ

h1ðD;ODÞ ¼ h2ðY4;OY4
ð−DÞÞ; ð9bÞ

h2ðD;ODÞ ¼ h3ðY4;OY4
ð−DÞÞ; ð9cÞ

h3ðD;ODÞ ¼ h4ðY4;OY4
ð−DÞÞ − 1: ð9dÞ

Defining the index on the fourfold as χðY4;OY4
ð−DÞÞ ¼P

4
i¼0ð−1ÞihiðY4;OY4

ð−DÞÞ, it is clear that (8) indicates
that

χðD;ODÞ ¼ 2 − χðY4;OY4
ð−DÞÞ; ð10Þ

and therefore,

χðD;ODÞ ¼ 1 ⇔ χðY4;OY4
ð−DÞÞ ¼ 1: ð11Þ

Within a CY fourfold, this criterion can also be simply
written [10] in terms of the intersection structure of D
inside Y4 as

χðD;ODÞ ¼ −
1

24
ðD4 þD2 · c2ðY4ÞÞ; ð12Þ

2It should be noted that the divisor, s, given in this
simple illustrative example is in fact singular. All of the
examples that are used in the study of instanton effects in
the rest of the paper, however, involve divisors which are
smooth.
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where D4 is the quadruple self-intersection number of D
and c2ðY4Þ is the second Chern class of the CY fourfold.
Finally, it should be noted that even when (7) is satisfied, if
the divisor is not embedded rigidly, the superpotential can
vanish due to the presence of additional fermion zero
modes or cancellations which can occur when integrating
over the M5-brane position moduli space [41] (see also [5]
and [3] for similar considerations of cancellations in the
context of the heterotic string). In the case of smooth
fourfolds, these possible cancellations can be avoided if
the stronger condition that D has no embedding moduli
holds, i.e.,

h•ðD;ODÞ ¼ ð1; 0; 0; 0Þ: ð13Þ

In terms of cohomologies on Y4, (13) and (12) lead to

h0ðY4;OY4
ðDÞÞ ¼ 1; ð14aÞ

h1ðY4;OY4
ðDÞÞ ¼ 0; ð14bÞ

h2ðY4;OY4
ðDÞÞ ¼ 0; ð14cÞ

h3ðY4;OY4
ðDÞÞ ¼ h4ðY4;OY4

ðDÞÞ ¼ k; ð14dÞ

where we used Serre duality, hiðY4;OY4
ð−DÞÞ ¼

h4−iðY4; KY4
⊗ OY4

ðDÞÞ ¼ h4−iðY4;OY4
ðDÞÞ, and k must

equal either 0 or 1 [due to the injectivity of the first nontrivial
map in the long exact sequence associated with the Koszul
sequence, (8)]. In this case no cancellations within the
divisor class can take place, and we are guaranteed a
nonvanishing contribution to the superpotential [41].
As a final comment, it is an interesting observation about

the structure of the three-dimensional effective theory that
the number of divisors satisfying (7) may be finite [41] or
infinite [10] for a given CY fourfold. In the former case the
contributions to the superpotential take a simple form,
while the latter case can demonstrate remarkable modular
invariance properties (see [10,15,16] for discussions). We
will explore both types of solutions in the following
sections.

B. Review of dual geometries

One of the main motivations for considering nonpertur-
bative effects in the context of three-dimensional compac-
tifications of M-theory is the powerful window such
considerations provide into the structure of more phenom-
enologically relevant four-dimensional theories. As first
noticed in [41], in the case that Y4 admits elliptic or K3
fibrations, simple observations about the geometry of the
divisor D ⊂ Y4 yield a variety of information about the
structure of the superpotentials in a network of dual four-
dimensional N ¼ 1 theories.

If Y4 admits a genus-1 or elliptic fibration

π∶ Y4 → B3; ð15Þ

then it is possible to comment on the superpotentials of the
dual four-dimensional F-theory and Type IIB vacua. The
key distinction in these cases is whether the divisor, D, is
“vertical” or “horizontal” with respect to the fibration in
(15). That is, the distinction is made between the following
two possibilities:

(i) D is a section or multisection of the elliptic fibration.
(Horizontal.)

(ii) D is the pullback of a divisor on the base B3

[i.e., D ¼ π−1ðDB3
Þ for some divisor DB3

⊂ B3].
(Vertical.)

It is interesting to note that this key distinction in instanton
physics can be made independent of the existence of a
section to the fibration in (15). The effective physics of
F-theory compactified on a genus-1 fibered manifold (with
multisection) and its associated discrete symmetries has
recently become a topic of active investigation (for recent
work see e.g. [49–51]). The interplay of such symmetries
and nonperturbative physics is an intriguing area of open
investigation.
As argued in [41], the horizontal divisors only contribute

nontrivially to the superpotential in the three-dimensional
compactification. M-theory on Y4 is dual to Type IIB on
B3 × S1. If ϵ is the area of the elliptic fibers of π, then the
volume of a horizontal divisor is a factor of ϵ−1 different
from the volume of a vertical divisor, with ϵ → 0 being the
Type IIB/F-theory limit. As a result, a simple scaling
argument shows that contributions from horizontal divisors
vanish in the ϵ → 0 limit. It should be noted that con-
tributions from both horizontal and vertical divisors may
appear when one considers other, generically strongly
coupled, regimes of the theory. The complete knowledge
of these superpotential contributions can also be useful in
the context of strong-weak dualities.
The second class, of vertical divisors pulled back from

the base,3 can lead to D3 brane instanton contributions
to the four-dimensional effective theory in Type IIB/F-
theories. Depending on the structure of singular fibers of
Y4, such divisors can be either reducible or singular [11].
For the present consideration, however, we will restrict
ourselves to the case that D is smooth and irreducible (for
instance in the case that all fibers of Y4 are irreducible).
In the case of vertical divisors it is clear thatD4 ¼ 0, and

thus, the topological check given in (12) takes the simple
form

χðODÞ ¼ −
1

24
D2 · c2ðY4Þ: ð16Þ

3Note that we will refer to a divisor as vertical even if it only
contains vertical components.
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In [10] it was observed that Dn−2 · c2 ≥ 0 for all nef4

divisors in an n-dimensional CY manifold [52,53]. Thus,
it is clear from (16) that any vertical divisors satisfying (7)
must be non-nef.
In the case that the theory also admits a K3 fibration

(suitably compatible with the elliptic fibration described
above), we can also comment on the dual heterotic theory
[13]. In particular, heterotic/F-theory duality requires that
the geometries form a pair

Heterotic on πh∶ X3 !E B2 ⇔ F-theory on ρf∶ Y4 !K3 B2;

ð17Þ

where the fibrations are compatible in that they share a
common base, and the base B3 of the elliptic fibration (15)
is itself rationally fibered over B2 via

τ∶ B3 !P
1

B2: ð18Þ

In the case that the divisor,D, is not a section or multisection
of the elliptic fibration of Y4, it nontrivially contributes to the
superpotential of the N ¼ 1, 4-dimensional F-theory effec-
tive field theory, and we would expect this to also lead to
contributions in the heterotic theory. In [41], these contri-
butions were distinguished with respect to their projection
under the rational fibration, τ:

(i) DB3
⊂ B3 is a section of the P1 fibration τðDB3

Þ≃
B2 (“τ-Horizontal”).

(ii) τðDB3
Þ ⊂ B2 (“τ-Vertical”).

The first of these cases corresponds to spacetime instanton
contributions to the N ¼ 1, 4-dimensional heterotic super-
potential, while the second leads to world sheet instanton
contributions. These basic duality results are summarized in
Table I. For a further discussion on the dualities between
NS5-brane solutions in heterotic theories wrapping the
elliptic fibers of X3 or divisors DB2

⊂ B2 see [2,13].

To conclude, it is useful to make one more important
distinction in the case of torus fibered CY fourfolds. The
existence of a horizontal divisor (i.e., a section or multi-
section) does not automatically guarantee the existence of a
divisor D with arithmetic genus one. Instead, it should be
noted that sections (either holomorphic or rational) must
contribute nontrivially to the superpotential, while multi-
sections are not necessarily even of the correct arith-
metic genus.
First, we consider so-called “holomorphic” and

“rational” sections (see for example [54–56]). A holomor-
phic section defines the base, B3, as a subvariety of Y4 and
moreover can be expressed as a holomorphic (polynomial)
function of the base coordinates. On the other hand, rational
sections define a subvariety ~B3 ⊂ Y4 which is birational to
B3. Both holomorphic and rational sections automatically
satisfy the stronger condition (13). This can be seen simply
from the Koszul sequence,

0 → OY4
ð−SÞ → OY4

→ OS → 0: ð19Þ

Since Shol ¼ 0 defines the base B3 as an algebraic sub-
variety of Y4, it is clear that if hiðShol;OSholÞ ≠ 0, for i ¼ 1,
2, 3, then the holomorphic i-forms would pull back
nontrivially to Y4 under the projection map π∶ Y4 → B3,
in contradiction to the CY condition. As a result, any
holomorphic section must in fact not only have arithmetic
genus equal to 1 but also satisfy the stronger condition that
h•ðShol;OSholÞ ¼ ð1; 0; 0; 0Þ. On the other hand, a rational
section is only birational to B3 [and can “wrap” nontrivial
blowup directions in the (resolution) of the elliptic fiber].
As a result, its bundle-valued cohomology could in
principle differ from that of B3. However, since
hrðB;OBÞ is a birational invariant [57], here too, we see
that if Srational defines a threefold surface, ~B3, birational to
B3 inside of Y4, it will also satisfy (13).
In contrast, it should also be noted here that multi-

sections [50,51] do not generically have arithmetic genus
equal to 1. For instance,

Y4

2
66666664

P1 2

P1 2

P1 2

P1 2

P1 2

3
77777775

ð20Þ

is a genus-1 fibered CY fourfold which does not possess a
section, but instead only multisections of order 2 at best
[e.g. Oð1; 0; 0; 0; 0Þ], all with vanishing arithmetic genus.
Many examples of torus-fibered CICY or gCICY CY
manifolds in fact have only multisections and in such cases
are not guaranteed to give rise to any superpotential terms
even in the M-theory limit.

TABLE I. Description of trivial (×) vs nontrivial (✓) super-
potential contributions in different dual theories. Here we
assume that a divisor D⊂Y4 satisfies h•ðD;ODÞ¼ð1;0;0;0Þ in
M-theory on a CY fourfold Y4 which admits an elliptic fibration
(π∶ Y4 → B3). In the case that in addition Y4 admits a compatible
K3 fibration such that τ∶ B3 → B2 (with P1 fiber), a dual
heterotic theory also exists. In the heterotic theory “WSI” refers
to a world sheet instanton and “SPI” to a spacetime instanton.

M-theory F-theory IIB Heterotic

Section (or multisection) of π ✓ × × ×
D contains π−1ðDB3

Þ ✓ ✓ ✓ ✓

τðDB3
Þ≃ B2 (D ∼ π−1ðDB3

Þ) ✓ ✓ ✓ ✓ (SPI)
τðDB3

Þ ⊂ B2 (D ∼ π−1ðDB3
Þ) ✓ ✓ ✓ ✓ (WSI)

4A divisor D is nef if D · C ≥ 0 for any algebraic curve C.
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III. EXAMPLES

A. Example 1: A CICY fourfold

In this section we demonstrate that smooth CICY four-
folds as constructed in [18] and fully classified in [19–21]
can admit divisors with arithmetic genus 1 (and indeed
rigid divisors). As one simple illustration of this, we will
consider an elliptically and K3-fibered manifold which
admits a section to its elliptic fibration. The following CY
fourfold,

Y4 ¼

2
66666666664

P1 1 1 0 0 0

P2 0 1 0 1 1

P3 1 0 1 1 1

P1 1 0 1 0 0

P1 1 0 0 1 0

P1 0 0 1 0 1

3
77777777775
; ð21Þ

has Euler number χðY4Þ ¼ 456 and the Hodge numbers
h1;1 ¼ 6, h3;1 ¼ 62, h2;2 ¼ 316.
This manifold is elliptically fibered over P1 × P1 × P1,

π∶ Y4→
E
P1 × P1 × P1 and has a compatible K3-fibration

over P1 × P1, ρf∶ Y4→
K3
P1 × P1. More precisely, the K3-

fiber is described via the complete intersection

K3 ¼

2
666664

P1 1 1 0 0 0

P2 0 1 0 1 1

P3 1 0 1 1 1

P1 1 0 1 0 0

3
777775
; ð22Þ

which in turn is elliptically fibered over P1 with fiber

E ¼

2
664
P1 1 1 0 0 0

P2 0 1 0 1 1

P3 1 0 1 1 1

3
775: ð23Þ

On the fourfold given in (21), let Hi, with i ¼ 1;…; 6,
denote the divisors obtained by restriction of the ambient
projective space factor hyperplanes. Then, in this notation,
the divisor

−H1 þH2 ð24Þ

is in fact a section to the elliptic fibration described above.
Using the tools described in the Introduction, the global
sections of OY4

ðDÞ associated with this effective divisor
can be described as follows.
Denote the homogeneous coordinates of the six

projective space factors by x ∈ P1, y ∈ P2, z ∈ P3,

u ∈ P1, v ∈ P1, w ∈ P1, respectively. The five defining
relations of the complete intersection can be written as
Piðx; y; z;u; v;wÞ, with i ¼ 1; 2;…; 5. Explicitly, P2 and
P3 for example take the following form:

P2ðx; yÞ ¼ x0p
2ð1Þ
1 ðyÞ þ x1p

2ð2Þ
1 ðyÞ;

P3ðz;u;wÞ ¼ u0p
3ð1Þ
11 ðz;wÞ þ u1p

3ð2Þ
11 ðz;wÞ; ð25Þ

where p2ðiÞ
1 are linear functions in y and p3ðjÞ

11 are multi-
degree (1,1) in ðz;wÞ. The divisor can be described
uniquely, up to an overall factor, as

p2ð2Þ
1 ðyÞ
x0

¼ 0: ð26Þ

It can be verified that

h•ðY4;OY4
ð1;−1; 0; 0; 0; 0ÞÞ ¼ ð0; 0; 0; 0; 1Þ; ð27Þ

so the cohomology of OY4
ð−DÞ satisfies the criteria

laid out in (11), and the stronger one given by (13),
and (14) with k ¼ 0. Since this divisor is, by construction,
a section of the fibration, D ⊂ Y4 is a copy of the entire
P1 × P1 × P1 base.
As described above this divisor provides an instanton

superpotential in M-theory which provides a trivial con-
tribution when dualized into F-theory/Type IIB. However,
the fourfold given in (21) is also K3 fibered, and as a result,
we can consider the heterotic dual theory as well.
To generate nontrivial instanton contributions to F-

theory, and thus heterotic string theory, on (21), one can
consider a second example divisor

OY4
ð0; 0; 1;−1; 0; 1Þ: ð28Þ

The global sections of this line bundle can be explicitly
realized, in a similar manner to the case described above, as

p3ð2Þ
11 ðz;wÞ

u0
; ð29Þ

which is again unique up to an overall factor. Once again
h•ðD;ODÞ ¼ ð1; 0; 0; 0Þ, where (14) is satisfied with k ¼ 0,
and χðD;ODÞ ¼ 1. But here we get a nontrivial super-
potential contribution in F-theory generated by D3 branes
wrapping πðDÞ. These dualize in the heterotic theory into
world sheet instanton contributions.

B. Example 2: A gCICY fourfold

In this section we explore another example, a gCICY
manifold, using the tools described in Sec. I A. A smooth
CY fourfold with Euler number χðY4Þ ¼ 480 can be
defined by the configuration matrix
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Y4 ¼

2
666664

P3 1 3

P1 1 1

P1 3 −1
P1 1 1

3
777775
: ð30Þ

This, according to the gCICY notation [26], characterizes
Y4 as a hypersurface inside

M ¼

2
666664

P3 1

P1 1

P1 3

P1 1

3
777775
; ð31Þ

given by a global section of OMð3; 1;−1; 1Þ. The inde-
pendent Hodge numbers of this fourfold are given by
h1;1 ¼ 4, h3;1 ¼ 68, h2;2 ¼ 332. Denoting the homo-
geneous coordinates of the four ambient projective space
factors in turn by x ¼ ðx0∶x1∶x2∶x3Þ, y ¼ ðy0∶y1Þ,
z ¼ ðz0∶z1Þ, and u ¼ ðu0∶u1Þ, the defining equation for
M can be written as

Pðx; y;z;uÞ ¼ z30p
ð1Þ
111ðx;y;uÞ þ z20z1p

ð2Þ
111ðx;y;uÞ

þ z0z21p
ð3Þ
111ðx;y;uÞ þ z31p

ð4Þ
111ðx; y;uÞ: ð32Þ

Here, the pðaÞ
111ðx; y;uÞ, where a ¼ 1;…; 4, are generic

homogeneous trilinear polynomials. To obtain the explicit
expression for a section Q ∈ H0ðM;OMð3; 1;−1; 1ÞÞ that
defines the embedding of Y4 in M, we follow the gCICY
construction method [26]. According to the degree-splitting
rule there, Q is taken to have the rational form

Q ¼ fðx; y;uÞ
gðzÞ ; ð33Þ

where f and g are, respectively, polynomials of multidegree
(3, 1, 0, 1) and (0, 0, 1, 0) in the x, y, z, and u coordinates.
Now, with the denominator choice of gðzÞ ¼ z0, the
corresponding numerator polynomial fðx; y;uÞ should
vanish on the divisor z0 ¼ 0 of M. On the other hand,
the defining equation for M, (32), also vanishes on M by

construction, which indicates that pð4Þ
111ðx; y;uÞ ¼ 0 on the

locus z0 ¼ 0 inside M. Given this, we can obtain an

appropriate numerator by multiplying pð4Þ
111ðx; y;uÞ with a

quadric polynomial in x, thus ending up with the following
ten global sections of line bundle OMð3; 1;−1; 1Þ:

si ¼
pð4Þ
111ðx; y;uÞ

z0
m2;iðxÞ; i ¼ 1;…; 10: ð34Þ

Here m2;iðxÞ, for i ¼ 1;…; 10 are the ten quadratic
monomials, ðx0Þ2; x0x1;…; ðx3Þ2, in the coordinates

x ¼ ðx0∶x1∶x2∶x3Þ. One can also choose different denom-
inators, such as gðzÞ ¼ z0 − z1 and gðzÞ ¼ z0 þ z1, which,
respectively, give rise to ten more sections each,

ti ¼
P

4
a p

ðaÞ
111ðx; y;uÞ
z0 − z1

m2;iðxÞ; i ¼ 1;…; 10; ð35aÞ

ui ¼
P

4
að−1ÞapðaÞ

111ðx; y;uÞ
z0 þ z1

m2;iðxÞ; i ¼ 1;…; 10:

ð35bÞ

It is easy to verify that these 30 sections are linearly
independent and that any other section constructed by
choosing a different denominator from z0, z0 − z1, z0 þ z1
can be written as a linear combination of (34) and (35).
Given that h0ðM;OMð3; 1;−1; 1ÞÞ ¼ 30, we conclude
that si, ti, and ui span the entire section space
H0ðM;OMð3; 1;−1; 1ÞÞ. As a result, the defining equation,
Q, for Y4 ⊂ M, can be written as

Q ¼
X10
i¼1

αisi þ
X10
i¼1

βiti þ
X10
i¼1

γiui; ð36Þ

where αi, βi, and γi, for i ¼ 1;…; 10, are generic complex
coefficients. One can further check that the resulting gCICY,
Y4, is smooth for a generic choice of P and Q.
Once again this manifold is torus fibered (π∶ Y4!E

P1 × P1 × P1) and K3-fibered (ρf∶ Y4!K3P1 × P1). Note
that the torus fibration of the manifold does not necessarily
admit a section in this case. Here the K3 fiber is given by

K3 ¼
�
P3 1 3

P1 1 1

�
; ð37Þ

which is in turn torus fibered,

T2 ¼ ½P3 ‖ 1 3 �ð≃½P2 ‖ 3 �
over any given point in the baseÞ: ð38Þ

In this example we find a vertical instanton which leads
to a nontrivial superpotential contribution in F-theory
according to the distinction made in Sec. II. Taking

D ∼OY4
ð1;−1; 3; 1Þ; ð39Þ

it can be verified using the techniques developed in [26]
that h•ðD;ODÞ ¼ ð1; 0; 0; 0Þ. Moreover this divisor is not a
section of the fibration, but also includes nontrivial base
dependence. Since the geometry admits both K3 and T2

fibrations (and they are compatible), the consequences of
this divisor for dual theories are readily ascertainable. As
shown in Table I,D above will lead to a nontrivial instanton
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superpotential not only in M-theory but also in the dual F-
theory/Type IIB theories. Moreover, since this geometry is
alsoK3 fibered, we see that ρðDÞ is a nontrivial curve in the
twofold base—P1 × P1—of the heterotic dual (i.e., it is
also not a section to the K3-fibration). As a result this
divisor leads to a nontrivial world sheet instanton effect in
the four-dimensional heterotic dual theory.
With these examples in hand, we turn now to a more

systematic study of instantons in dual heterotic/F-theory
effective theories.

IV. HETEROTIC/F-THEORY DUAL PAIRS
AND FINITE VS INFINITE FAMILIES

OF SOLUTIONS

In this section we turn our attention to two important
questions:

(i) Under what conditions is it possible for an infinite
family of divisors to contribute to the superpotential?

(ii) Is it possible to characterize divisors (and potentially
infinite families as above) that will contribute to the
superpotential in heterotic/F-theory dual pairs?

Beginning with the first point above, an important dis-
tinction can be made between fourfold geometries which
admit only a finite number of divisors with arithmetic genus
1 [i.e., (7)] and those that admit infinitely many such
divisors. In the latter case, the structure of the super-
potential can exhibit interesting modular behavior (see
[15,16] for early conjectures and [10] for an explicit
modular superpotential with E8 symmetry). We start by
observing that it is straightforward to engineer examples of
CICY (or gCICY) fourfold geometries with an infinite
family of divisor classes with arithmetic genus 1.

A. An infinite family of divisors with
arithmetic genus 1

Consider the following CY fourfold,

Y4 ¼

2
66666666664

P1 0 0 1 1

P1 0 1 0 1

P1 1 0 1 0

P1 0 0 0 2

P1 0 0 2 0

P3 1 1 2 0

3
77777777775

ð40Þ

and the family of divisors

Da ∼OY4
ða;−1; a; 0; 0; 1Þ; a ≥ 0; ð41Þ

parametrized by integer a. The cohomology computation
leads to

h•ðY4;OY4
ðDaÞÞ ¼ ððaþ 1Þ2; a2 þ 2a; 0; 0; 0Þ; ð42Þ

from which we see that the divisor Da is effective and the
Koszul sequence (8) leads to

h•ðDa;ODa
Þ ¼ ð1; 0; a2 þ 2a; a2 þ 2aÞ; ð43Þ

which in particular gives χðDa;ODa
Þ ¼ 1. Therefore, for

a ¼ 0, the cohomology (43) guarantees a nontrivial super-
potential contribution, while each of the divisors with a ≠ 0
in (41) is a potential source for a nontrivial superpotential
term. Since these divisors are not rigidly embedded, further
analysis is required to determine whether each member of
the family survives possible cancellations to contribute to
the superpotential. Because of such possible cancellations,
it is difficult to directly analyze the structure of the
superpotential and any possible modular behavior. As a
result, it is intriguing to search for infinite families
satisfying the stronger condition in (13). In the majority
of the literature (see [10]), M-theory superpotentials with
modular symmetry involve heterotic/F-theory dual pairs
and divisors of a very special form. To explore this we turn
now to heterotic/F-theory dual pairs and infinite families
within this context.

B. Instanton families in heterotic/F-theory dual pairs

In the context of heterotic/F-theory duality, one particu-
larly rich class of instanton solutions for an elliptically/K3
fibered CY fourfold includes divisors that are pulled back
from the twofold base, B2 in (17). If divisors are found in
this class with arithmetic genus equal to one, or the
stronger, rigidly embedded condition in (13), this provides
insight into the nonperturbative superpotential of both the
dualN ¼ 1, 4-dimensional theories. In this case, a relevant
divisor DB2

⊂ B2 will also pull back nontrivially to a
divisor in the elliptically fibered threefold, X3 in (17),
and can lead to a world sheet instanton contribution to the
heterotic superpotential.
It should be noted that the consideration of such dual

pairs is particularly interesting due to the involved
structure of the moduli dependent prefactors which
appear in the superpotential. In heterotic effective theory,
one must consider not only the isolated/rigid curves that
contribute to the superpotential, but also the bundle-
moduli dependent Pfaffian factors (which vanish if
the bundle restricts nontrivially to the curve in B2)
[1,3–5,17,58,59]. Such calculations can be compared
with analogous computations on the M-=F-theory side
[9] to yield nontrivial support for both methodologies.
Important information to obtain before such considera-
tions, however, is a systematic consideration of the
divisors (pulled back from B2) in Y4 [2,9,10,12]. In
the following paragraphs, we will systematically explore
several solutions of this type and consider under what
conditions we can find heterotic/F-theory dual theories
with superpotentials exhibiting modular behavior.
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1. Pulling back divisors from B2

Suppose that there exists a divisor DB2
⊂ B2 with

cohomology h•ðB2;OB2
ðDB2

ÞÞ ¼ ð1; 0; 0Þ. Under what
conditions will this pull back to a divisor of Y4 with
arithmetic genus equal to one and satisfying the strong
condition, h•ðY4; ρ�ðOB2

ðDB2
ÞÞÞ ¼ ð1; 0; 0; k; kÞ, of (14)?

A simple tool to answer this question is provided by the
Leray spectral sequence for bundle-valued cohomology on
a fibered manifold (see [60] for a review). As discussed in
Appendix A, we find the following criteria,

h•ðB2;OB2
ðDB2

ÞÞ ¼ ð1; 0; 0Þ;
h•ðB2;OB2

ðDB2
Þ ⊗ KB2

Þ ¼ ð0; k; kÞ; ð44Þ

to guarantee that a (rational) curve in B2 will pull back to a
rigidly embedded divisor in Y4 with h•ðD;ODÞ¼ð1;0;0;0Þ.
Moreover, it is known that a curve in B2 satisfying the
above criteria is an isolated, rational curve in B2 (i.e., a
curve of genus zero).
To see this, recall that by the Riemann-Roch theorem

[61], the genus of a curve C ⊂ B2 is given by

2g − 2 ¼ C · ðCþ KB2
Þ; ð45Þ

while the Euler characteristic (i.e., index) of any smooth
curve is in turn

X
i

ð−1ÞihiðB2;OB2
ðCÞÞ ¼ χðB2;OB2

ðCÞÞ

¼ 1

2
C · ðC − KB2

Þ þ χðB2;OB2
Þ:

ð46Þ
Furthermore, for the baseB2 of a torus-fibered CY threefold
(theheterotic geometry) it is clear thatχðB2;OB2

Þ ¼ 1. Thus,
combining the formulas above with the required conditions
in (44), it is clear that the index of DB2

þ KB2
is

χðB2;OB2
ðDB2

þ KB2
ÞÞ ¼ 0 ¼ 1

2
ðDB2

þ KB2
Þ · ðDB2

Þ þ 1

¼ g − 1þ 1; ð47Þ

hence, g ¼ 0. Thus, as expected, a search for divisors in B2

contributing to the superpotential leads to a consideration of
rational curves. Since a rational curve inB2 always obeys the
proposed criteria (44), the divisors of B2 with these proper-
ties have tobe inone-to-onecorrespondencewith the rational
curves inB2.Wecannowask, forwhat complex surfaces,B2,
can we expect an infinite number of genus zero curves,DB2

?
To begin, it should be observed that the work of Grassi

[62], Gross [63], and the minimal model program [64,65]
has led to a characterization of the possible surfaces, S,
which can support an elliptically (or genus-1) fibered CY
threefold. This set consists of the following surfaces, P2,

the Enriques surface, the Hirzebruch surfaces Fm, for
0 ≤ m ≤ 12, and the blowups of these surfaces at one or
more points. A systematic approach toward enumerating
and classifying these nonminimal (i.e., blown-up) surfaces
has recently been undertaken in [66–71] and has led
to a data set of tens of thousands of distinct toric surfaces
(see [67,68]) and some nontoric geometries [with
h1;1ðSÞ < 8] [70].
These surfaces then form the arena for our question:

How many of them can admit infinite families of rational
curves? Of the minimal set, P2 and Fm, as well as the del
Pezzo surfaces, dPr with 0 ≤ r ≤ 8 can immediately be
ruled out, as all are known to contain only finitely many
rational curves. More interesting is the family of surfaces
including K3, the Enriques surfaces, and the rationally
elliptically fibered surface (dP9) [10]. Each of these admits
an elliptic fibration over P1,

πS∶ S → P1; ð48Þ
with sections σi. It is the presence of more than one such
section in these cases—that is, a nontrivial Mordell-Weil
group—which generates an infinite family of sections and
hence, of rational curves (since each holomorphic section
to the elliptic fibration is a copy of the P1 base). In the case
of dP9, the Mordell-Weil group is famously large (rank 8)
and leads to a space of sections (with self-intersection
C2 ¼ −1) which are linked to the root lattice of E8 [72]. If
dP9 forms the base of a K3-fibered CY fourfold, it is
natural to consider the pullback of infinite families of such
sections as divisors in Y4. The contribution of these
Mordell-Weil elements to the superpotential was studied
in [10,12] and found to lead to a remarkable E8 modular
symmetry. Since the K3 surface cannot serve as base to a
nontrivial CY3 elliptic fibration and the Enriques surfaces
leads to an essentially trivial Weierstrass model, the dP9

surface remains one of the most interesting examples which
we will explore in detail below.
To conclude, we consider how the existing data sets of

bases B2 available could be explored for infinite families
and modular superpotentials in the future. A result due to
Bogomolov (see [73,74]) states that if S is a surface of
general type with

c21ðSÞ > c2ðSÞ; ð49Þ
then for any g, the curves of geometric genus g on S form a
bounded family. Since a surface of general type cannot be
covered by rational curves, these curves cannot deform. So
this result implies that a surface S satisfying (49) contains
only finitely many rational curves. This criteria could be
employed to filter the data set of surfaces B2 for those
leading to infinite families. Some surfaces constructed
already in [66] are similar to dP9 in that they are known
to contain ð−1Þ-curves and possess infinitely generated
Mori cones. It would be interesting to explore the possible
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modular structure of such examples in the future. For now,
we simply return to the dP9 surface to illustrate that the
techniques developed in this work readily lead to infinite,
modular families. In this case we find a class of instanton
contributions leading to an SUð2Þ symmetry in the
superpotential.

2. An infinite family on dP9

In this section we will study a fibration ρf∶ Y4!K3dP9

similar to that investigated in [10,12]. Consider the follow-
ing CY fourfold,

Y4 ¼

2
666666664

P2 0 0 3

P1 0 0 2

P1 1 1 0

P2 1 2 0

P1 1 0 1

3
777777775
; ð50Þ

and the family of divisors,

Da ¼ OY4
ð0; 0;−1þ 3a; 1 − 2a; 1 − 8aþ 10a2Þ;

a ∈ Z: ð51Þ

We claim that each divisor Da satisfies

h•ðDa;ODa
Þ ¼ ð1; 0; 0; 0Þ; ð52Þ

and, therefore, a nontrivial superpotential term is generated
by each Da in the family (51) (for the smooth fourfold
above). To see how (52) comes about, note first that the
fourfold geometry is K3-fibered,

ρ∶ Y4 → B2; ð53Þ

where the base B2 has the following configuration matrix,

B2 ¼

2
664
P1 1 1

P2 1 2

P1 1 0

3
775; ð54Þ

which describes a dP9 surface. Then, the cohomology
in (52) originates from the following observations on the
base B2,

h•ðB2; LaÞ ¼ ð1; 0; 0Þ;
h•ðB2; KB2

⊗ LaÞ ¼ ð0; 0; 0Þ; ð55Þ

where

La ¼ OB2
ð−1þ 3a; 1 − 2a; 1 − 8aþ 10a2Þ ð56Þ

satisfies Da ¼ π�La and KB2
¼ OB2

ð0; 0;−1Þ is the
canonical bundle of B2. This family of divisors is in fact
holomorphic sections of the elliptic fibration visible in (54).
The cohomology group in (55) on the base can be pulled
back to Y4 via the Leray spectral sequence (see
Appendix A 2 for details)

H0ðY4; DaÞ≃H0ðB2; LaÞ ¼ C;

H1ðY4; DaÞ≃H1ðB2; LaÞ ¼ 0;

HiðY4; DaÞ≃HiðB2; LaÞ ⊕ Hi−2ðB2; La ⊗ KB2
Þ ¼ 0;

i ≥ 2; ð57Þ

which then leads to the desired result (52). Because the first
two degrees of each divisor class (51) are zero, in
describing the superpotential contributions, we may restrict
to the three-dimensional subspace of H2ðY4;CÞ spanned
by y1, y2, and y3, corresponding to the hyperplanes in the
last three projective pieces of the ambient space, respec-
tively. Then, the family (51) contributes to the super-
potential as

WðyÞ ∝
X
a∈Z

e2πiðð−1þ3aÞy1þð1−2aÞy2þð1−8aþ10a2Þy3Þ

¼
X
a∈Z

e2πiða2·10y3þa·ð3y1−2y2−8y3Þþð−y1þy2þy3ÞÞ

¼ e2πiz
X
a∈Z

e2πiðτa2þwaÞ; ð58Þ

where in the last step the following reparametrization has
been made:

z ¼ −y1 þ y2 þ y3;

w ¼ 3y1 − 2y2 − 8y3;

τ ¼ 10y3: ð59Þ

Now, with a Lie groupG of rank r there is associated a theta
function defined by

ΘGðτ;w¼ðw1;…;wrÞÞ≡
X
m∈ΓG

e2πiðτ2QGðmÞþhm;wiÞ: ð60Þ

QG is the quadratic form associated with the Cartan matrix
for the Lie algebra of G, and h·; ·i is the natural pairing.
Then, the superpotential contribution, Eq. (58), is propor-
tional to ΘSUð2Þ and hence, shows a modular behavior.5

5It is important to observe that this modular behavior exists
only because the prefactors of each term in the series are identical
in the case that the pulled-back divisors are sections to the elliptic
fibration of dP9. As pointed out in [10] this is due to invariance
under reparametrizing/shifting of elements of the Mordell-Weil
group of the elliptic fibration. See [75] for another look at the
physical reparametrizations of Mordell-Weil elements.
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It should be noted that the one-parameter family of sections
leading to the above superpotential is a subset of that
which could be generated using the full rank 8 Mordell-
Weil group, as discussed in [10]. We leave to future
work a systematic survey of the more general base surfaces
of [66–68], non-Higgsable clusters, and the intriguing
question of how many such symmetries can appear in
the nonperturbative superpotentials of dual heterotic/F-
theory compactifications.

V. CONCLUSIONS

In this paper, we have studied instanton superpotential
contributions from branes wrapping effective divisors of
smooth CY manifolds, constructed as CICYs and their
generalizations, gCICYs. In M-theory compactification on
a smooth CY fourfold, instantons arise from M5-branes
wrapping a divisor of the fourfold and may contribute to the
superpotential of the effective 3D, N ¼ 2 theory. Via a
network of string dualities, their consequences to the
related 4D, N ¼ 1 theories are well established, where
the relevant arenas are Type IIB/F-theory (E3-brane instan-
tons) or the heterotic theory (world sheet or spacetime
instantons).
First, we have reviewed some known criteria for a

divisor to potentially contribute to the superpotential.
For a nontrivial contribution, the divisor necessarily has
to be of arithmetic genus one (though this is not in
general sufficient for a superpotential contribution),
whereas a divisor being embedded rigidly is a sufficient
condition (though not in general necessary). We have
then provided explicit examples of CICY and gCICY
geometries, together with the relevant brane-wrapping
divisors that obey these criteria. Notably, the divisors
are not inherited from the ambient space, but are
nevertheless effective.
In the network of dual theories in 4D, fibered

geometries determine much of the structure of the
nonperturbative superpotential. In particular, for ellip-
tically and/or K3 fibered CY fourfolds, divisors that are
pulled back from the base of the fibration play a
special role. For the two-dimensional base B2 of a K3
fibration, the relevant 4D N ¼ 1 duals are heterotic
compactifications on an elliptically fibered CY three-
fold with base B2. Via the Leray spectral sequence, we
have systematically studied the relevant cohomology
structures and have thereby found that the sufficient
rigidity criterion leads us to rational curves inside the
base. In particular, amongst the “minimal” bases which
generate the base surfaces of [63], dP9 turns out to be
the only base that can give rise to an infinite family of
rigid divisors on a nontrivial smooth CY fourfold. With
such an infinite family of relevant divisors, the super-
potential exhibits an intriguing modular behavior, and
we have indeed found a simple fourfold geometry with
the dP9 base, for which the resulting superpotential has

an SUð2Þ modular symmetry. Modular structures may
also arise from CY geometries with nonminimal bases,
and it would be interesting to explore them in a
systematic manner, using the techniques that we have
described here.
It should be noted that in principle a systematic

analysis of this same type can be applied to the three-
dimensional base B3 of an elliptically fibered CY four-
fold. The related 4D N ¼ 1 theories in this case are IIB/
F vacua. Furthermore, in the case that B3 is a P1 fibration
over a surface B2, the dual theories can also include
heterotic vacua with nontrivial superpotential terms gen-
erated via both world sheet instantons and spacetime
instantons. In future work, we hope to add such effects to
the systematic study of heterotic “Standard Model”
effective theories [76–79] and their potentials [79–83].
In the search for interesting infinite families of divisors,
the Leray sequence remains a crucial tool. Unlike in the
B2 case, however, it is not straightforward to classify
infinite families of relevant divisors on B3 to uplift. In
Appendix A 1, similar criteria to those of the B2 case
have been proposed for the lift of a base divisor to give
rise to a desired divisor in Y4. A detailed study of such
examples (and the different modular symmetries they
could give rise to) would be a fruitful area of future
investigation.
In summary we have provided an improved prelimi-

nary toolkit for the study of divisors in CY fourfolds and
the associated nonperturbative superpotentials. We hope
that in the future these tools can be extended to the
context of realistic vacua in string phenomenology and
for singular CY fourfolds. In particular, the presence of
such nonperturbative effects plays a critical role in
moduli stabilization in the 4D, N ¼ 1 theories.
Explicit constructions such as those provided here can
help to constrain the possible form of the moduli fixing
potential, as well as shed light on the vacuum structure of
the underlying effective 3D N ¼ 2 and 4D N ¼ 1
theories arising from geometric engineering in string
theory.
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APPENDIX: LERAY SPECTRAL SEQUENCES
FOR ELLIPTICALLY AND K3-FIBERED CY

FOURFOLDS

In this section we consider CY fourfolds that are
elliptically and K3 fibered. We will consider each of these
fibrations in turn and use divisors in the fibration bases to
generate divisors D ⊂ Y4 with arithmetic genus equal to
one, satisfying (13).
For any fibered space, a Leray spectral sequence pro-

vides a simple tool to relate the cohomology of line bundles
on the total space to some associated cohomology groups
on the base. More specifically, let π ∶Y → B be a fibration
with a generic fiber being k-dimensional and given by
π−1ðbÞ for a point in b ⊂ B.
Then we have a natural bigrading such that for any

bundle V on Y,

HpðY; VÞ ¼
X

p¼lþm

El;m
∞ ; ðA1Þ

where

El;m
2 ¼ HlðB; Rmπ�ðVÞÞ; ðA2Þ

and Rmπ�ðVÞ is the mth direct image sheaf of the bundle V
(pushed forward under the fibration π). The spectral
sequence is iterated via the maps

dr∶ Ep;q
r → Er

pþr;q−rþ1; ðA3Þ

where dr2 ¼ 0 and

Ep;q
rþ1 ¼

kerðdr∶Er
p;q → Er

pþr;q−rþ1Þ
imðdr∶Er

p−r;qþr−1 → Er
p;qÞ ; ðA4Þ

where E∞ is defined as the limit to which this iterative
sequence converges.
Note that on any open set U on B, the mth direct image

sheaf, Rmπ�ðVÞ, can be locally represented by the presheaf

U → Hmðπ−1ðUÞ; Vjπ−1ðUÞÞ: ðA5Þ

It is clear then that if the fiber is k-dimensional, that
Rmπ�ðVÞ is nonvanishing only for m ¼ 0; 1;…; k.
To analyze the cohomology in any given fibration, a

series of tools must be employed. The first of these will be
useful to compute the cohomology of line bundles pulled
back from the base. For any line bundle OBðDBÞ on the
base B, we can consider its pullback, π�ðOBðDBÞÞ. Then
the push-forward functors Rmπ� of this line bundle obey the
so-called projection formula: For any bundles V on Y and
U on B,

Rmπ�ðV ⊗ π�UÞ ¼ Rmπ�ðVÞ ⊗ U: ðA6Þ

Another important tool is known as Grothendieck (or
“relative”) duality [60,61]. For any sheaf F on Y, the
push-forward functors obey the following relation:

Rk−iπ�ðF∨ ⊗ ωYjBÞ ¼ ðRiπ�F Þ∨; i ¼ 0; 1;…; k;

ðA7Þ

where

ωYjB ¼ KY ⊗ π�ðKB
∨Þ; ðA8Þ

and using the projection formula (A6), this reduces to

Rk−iπ�ðF∨ ⊗ KYÞ ⊗ K∨
B ¼ ðRiπ�FÞ∨; i ¼ 0; 1;…; k:

ðA9Þ

Using these tools, we will consider the following
question. Let π∶ Y → B by a CY manifold. Suppose that
a divisorDB ⊂ B has cohomology h0ðB;OBðDBÞÞ ¼ 1 and
hiðB;OBðDBÞÞ ¼ 0 ∀ i > 0. Under what conditions will
this pull back to a rigidly embedded divisor on Y with
hiðY;π�ðOBðDBÞÞÞ¼0∀i>0 and h0ðY;π�ðOBðDBÞÞÞ¼1?
We will consider this in turn for Y an elliptically, respec-
tively, K3, fibered fourfold.

1. Elliptic fibrations, π∶ Y4 → B3

Let π∶ Y4 → B3 be an elliptically (or genus one) fibered
fourfold. Note that Rmπ�ðVÞ is nonvanishing only for
m ¼ 0, 1, because the fiber is one-dimensional. Let D ⊂
B3 have h0ðB3;OB3

ðDB3
ÞÞ ¼ 1 and hiðB3;OB3

ðDB3
ÞÞ ¼

0 ∀ i > 0 and define L ¼ π�ðOB3
ðDB3

ÞÞ. Then it is clear
that by the projection formula

Rmπ�L ¼ ðRmπ�OY4
Þ ⊗ OB3

ðDB3
Þ: ðA10Þ

Furthermore, it will be useful to observe that using
Grothendieck duality, (A7), in this case

R0π�ðOY4
Þ ⊗ K∨

B3
¼ ðR1π�ðOY4

ÞÞ∨: ðA11Þ

Finally, for an elliptically fibered CY manifold it is
straightforward to demonstrate that

R0π�ðOY4
Þ ¼ OB3

; R1π�ðOY4
Þ ¼ KB3

: ðA12Þ

Now, with LB3
¼ OB3

ðDB3
Þ, suppose that

h•ðB3; LB3
⊗ KB3

Þ ¼ ð0; 0; k; kÞ; ðA13Þ

for some integer k ≥ 0, in which case the spectral sequence
terminates at E2. Then, the pullback bundle L ¼
π�ðOB3

ðDÞÞ has cohomology that is given by

H0ðY4; LÞ ¼ H0ðB3; R0π�ðLÞÞ; ðA14Þ
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H1ðY4; LÞ ¼ H1ðB3; R0π�ðLÞÞ ⊕ H0ðB3; R1π�ðLÞÞ;
ðA15Þ

H2ðY4; LÞ ¼ H2ðB3; R0π�ðLÞÞ ⊕ H1ðB3; R1π�ðLÞÞ;
ðA16Þ

H3ðY4; LÞ ¼ H3ðB3; R0π�ðLÞÞ ⊕ H2ðB3; R1π�ðLÞÞ;
ðA17Þ

H4ðY4; LÞ ¼ H3ðB3; R1π�ðLÞÞ: ðA18Þ

Using the projection formula, it is clear that
Rmπ�ðLÞ ¼ Rmπ�OY4

⊗ LB3
. Thus, by (A12), we have

H0ðY4; LÞ ¼ H0ðB3; LB3
Þ; ðA19Þ

H1ðY4; LÞ ¼ H1ðB3; LB3
Þ ⊕ H0ðB3; LB3

⊗ KB3
Þ; ðA20Þ

H2ðY4; LÞ ¼ H2ðB3; LB3
Þ ⊕ H1ðB3; LB3

⊗ KB3
Þ; ðA21Þ

H3ðY4; LÞ ¼ H3ðB3; LB3
Þ ⊕ H2ðB3; LB3

⊗ KB3
Þ; ðA22Þ

H4ðY4; LÞ ¼ H3ðB3; LB3
⊗ KB3

Þ: ðA23Þ

Note that this result is manifestly consistent with Serre
duality on Y4 and on B3, as expected. Thus, a line bundle/
divisor, LB3

, of the form described above will pull back to a
rigidly embedded divisor with arithmetic genus equal to
one, satisfying h•ðY4; LÞ ¼ ð1; 0; 0; k; kÞ. Note that k ¼ 0
or 1, as k > 1 contradicts the Koszul sequence for L.

2. K3 fibrations, ρ∶ Y4 → B2

Let ρ∶ Y4 → B2 be a K3 fibered fourfold. Here the fiber
is two dimensional and Rmπ�ðVÞ is nonvanishing only for

m ¼ 0, 1, 2. As in the previous case, consider DB2
⊂ B2

with h0ðB2;OB2
ðDB2

ÞÞ ¼ 1 and hiðB2;OB2
ðDB2

ÞÞ ¼
0 ∀ i > 0 and define L ¼ ρ�ðOB2

ðDB2
ÞÞ. As in the pre-

vious section, by the projection formula, (A6), the coho-
mology of L on Y4 is fully specified by the higher derived
push-forward functors of the trivial line bundle OY4

,

Rmρ�ðOY4
Þ for m ¼ 0; 1; 2: ðA24Þ

For a K3-fibered CY fourfold, it can be shown that

R0ρ�ðOY4
Þ ¼ OB2

; R1ρ�ðOY4
Þ ¼ 0;

R2ρ�ðOY4
Þ ¼ KB2

:
ðA25Þ

With LB2
¼ OB2

ðDB2
Þ, presuming again that

h•ðB2; LB2
⊗ KB2

Þ ¼ ð0; k; kÞ; ðA26Þ

for some integer k ≥ 0, we see that the spectral sequence
terminates at E2 and that the cohomology forms a pattern
very similar to that given in the previous section,

H0ðY4; LÞ ¼ H0ðB2; LB2
Þ; ðA27Þ

H1ðY4; LÞ ¼ H1ðB2; LB2
Þ; ðA28Þ

H2ðY4; LÞ ¼ H2ðB2; LB2
Þ ⊕ H0ðB2; LB2

⊗ KB2
Þ; ðA29Þ

H3ðY4; LÞ ¼ H1ðB2; LB2
⊗ KB2

Þ; ðA30Þ

H4ðY4; LÞ ¼ H2ðB2; LB2
⊗ KB2

Þ: ðA31Þ

We then find that h•ðY4; LÞ ¼ ð1; 0; 0; k; kÞ where k has to
be either 0 or 1 again for a consistency with the Koszul
sequence for L.
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