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We argue that the effective theory for electromagnetic fields in spatially varying meson condensations in
dense nuclear and quark matter is given by the axion electrodynamics. We show that one of the helicity
states of photons there has the nonrelativistic gapless dispersion relation ω ∼ k2 at small momentum, while
the other is gapped. This “nonrelativistic photon” may also be realized at the interface between topological
and trivial insulators in condensed matter systems.
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I. INTRODUCTION

Recently, topologically nontrivial states of matter, such
as the topological insulators and topological superconduc-
tors [1,2], have attracted much attention. The nontrivial
topology of the fully gaped bulk is reflected in the physics
of boundaries. The well-known example is the boundary
between a topological insulator and an ordinary (or
topologically trivial) insulator [3], where electromagnetic
responses are modified and are described by the axion
electrodynamics [4].
In this paper, we point out yet another realization of the

essentially same physics of this surface state in a different
system: spatially varying meson condensations in dense
nuclear and quark matter, characterized by a nonzero
gradient of some meson field (say φ), h∇φi ≠ 0. Such
phases appear in nuclear matter in a strong magnetic field
(known as the pion domain wall) [5] and in color super-
conducting quark matter even in the absence of the
magnetic field (known as the meson supercurrent phase)
[6,7], which may be realized inside neutron stars or quark
stars.
We argue, based only on the symmetries and topology of

the system, that the low-energy dynamics of electromag-
netic fields there is described by the axion electrodynamics.
Similarly to the boundary of the topological insulator, the
anomalous magnetoelectric effects (e.g., the quantum Hall
effect) appear in these phases.
We also show that, due to the modifications of the

electromagnetic dynamics, photons behave differently
depending on the helicity at small momentum; one of
the helicity states has the nonrelativistic gapless dispersion
relation ω ∼ k2, while the other is gapped [see Eq. (23)].
Such behavior, including the “nonrelativistic gapless pho-
ton,” is a universal feature of the axion electrodynamics not
only there, but also at the interface between topological and
ordinary insulators. To the extent of our knowledge, this is a
new result, even in the latter context, which may be tested
in table-top experiments.
In this paper, we take the units ℏ ¼ c ¼ e ¼ 1.

II. SPATIALLY VARYING MESON
CONDENSATIONS

We first review the possible spatially varying meson
condensations in high density matter [5–7]. These exam-
ples in an external magnetic field include the π0 domain
wall in nuclear matter, the η meson domain wall in two-
flavor color superconductivity (2SC), and the η0 meson
domain wall in color-flavor locked (CFL) phase [5]. The
space-dependent meson condensation may also appear
even without the external magnetic field at intermediate
density between 2SC and CFL phases due the Fermi
surface splitting induced by the large strange quark mass
(ms ≫ mu;d); in this context, it is called the meson super-
current phase [6,7].
Our argument below is applicable to all of them, but for

simplicity and concreteness, we will consider a space-
dependent π0 field (in nuclear matter) as an example.
Applications of our argument to other possible spatially
varying meson condensations are straightforward.
At low energy, the dynamics of QCD can be system-

atically described by the effective theory—the chiral
perturbation theory for pions. Let us concentrate on the
dynamics of neutral pion (which we denote by π0), as the
other degrees of freedom (π�) will be irrelevant in our
discussion. The effective Lagrangian is given by

Lπ0 ¼
1

2
ð∂μπ

0Þ2 þm2
πf2π cos

�
π0

fπ

�
; ð1Þ

where fπ the pion decay constant and mπ is the pion mass.
The equation of motion for ϕ≡ π0=fπ derived from

Eq. (1) is given by the sine-Gordon equation,

∂2
tϕ − ∂2

zϕþm2
π sinϕ ¼ 0; ð2Þ

where, for simplicity, we assume ϕ depends only on z. This
has the domain-wall solution,
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ϕðzÞ ¼ 4tan−1emπz: ð3Þ

From this solution, it is easy to see that ϕ changes 2π across
the wall and the thickness of the wall is ∼1=mπ . The energy
density per unit area is

E
S
¼ 8f2πmπ: ð4Þ

At finite baryon chemical potential μB in an external
magnetic field, we have the additional “Wess-Zumino-
Witten (WZW) term” related to quantum anomalies in the
effective Lagrangian [5],

LB ¼ CμBBex · ∇π0; ð5Þ
where

C ¼ 1

4π2fπ
: ð6Þ

This term gives the domain wall a nonzero baryon density
given by

nB ¼ CBex · ∇π0; ð7Þ
so that baryon number per unit surface area is

NB

S
¼ Bex

2π
; ð8Þ

where Bex ≡ jBexj.
Combining Eqs. (4) and (8), the energy of the domain

wall per baryon number is

E
NB

¼ 16πf2πmπ

Bex
: ð9Þ

When this energy becomes smaller than the baryon mass
mN, namely,

Bex >
16πf2πmπ

mN
; ð10Þ

the π0 domain wall is energetically more favorable than
nuclear matter [5]; the ground state becomes the π0 domain
wall. A more elaborate analysis shows that the most
energetically favorable ground state is the periodic array
of π0 domain walls that spontaneously break parity and
continuous translational symmetries [8]. The structure of
this state is mathematically similar to the “chiral magnetic
soliton lattice” experimentally observed in chiral magnets
CrNb3S6 in an external magnetic field [9].
In the chiral limit (mπ ¼ 0), Eq. (10) shows that nuclear

matter would be unstable against the decay into the space-
dependent π0 condensation in an infinitesimally small
magnetic field. In this case, the Hamiltonian density is
given by [10]

H ¼ 1

2
ð∇π0Þ2 − CμBBex · ∇π0: ð11Þ

This is minimized when

h∇π0i ¼ CμBBex; ð12Þ
and the minimum is

hHi ¼ −
1

2
ðCμBBexÞ2 < 0: ð13Þ

This is indeed lower than the energy density of nuclear
matter for μB ≈mN [5].

III. EFFECTIVE THEORY FOR
ELECTROMAGNETIC FIELDS

Let us consider the low-energy effective theory of
dynamical electromagnetic fields in spatially varying meson
condensations. We stress that our argument here is indepen-
dent of the microscopic origin of these phases. As an
example, we here consider the presence of the space-
dependent π0 condensation and investigate its consequences.
Note that the low-energy effective theory does not

respect the full Lorentz symmetry due to the presence of
the medium. So the effective Lagrangian can be written,
using the gauge-invariant electromagnetic fields, as1

LEM ¼ ϵ

2
E2 −

1

2μ
B2; ð14Þ

with some constants ϵ and μ that depend on microscopic
details. In the usual electromagnetism, ϵ and μ are called the
permittivity and permeability, respectively. We assume that
ϵ and μ do not depend on spatial coordinates and
ϵ ∼ μ ∼Oð1Þ.
At low energy, we also need to take into account light

meson degrees of freedom which couple to electromagnetic
fields. In the presence the pion background field, we have
the following WZW term due to the quantum anomalies
[11,12]:

LWZW ¼ Cπ0E · B: ð15Þ

In the QCD vacuum, this term is related to the decay of
a neutron pion to two photons, π0 → 2γ [13,14]. The

1For the π0 domain wall in an external magnetic field Bex in the
z direction, the rotational symmetry is explicitly broken by the
presence of Bex. The effective Lagrangian for dynamical electro-
magnetic fields in this case is

LEM ¼ ϵ

2
E2⊥ þ ϵ0

2
E2
z −

1

2μ
B2⊥ −

1

2μ0
B2
z ;

where E⊥ and B⊥ are the electromagnetic fields in the xy plane.
As a result, ϵ and μ in the z component in Eqs. (17) and (18)
below are replaced by ϵ0 and μ0. Note however that this
replacement does not affect the discussion in Sec. IV.
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coefficient C is uniquely determined by the anomaly
matching and is given by Eq. (6) [11,12].
If hπ0ðxÞi is a constant in space as usual, this anomalous

term is just a total derivative and does not affect the
dynamics of electromagnetic fields.2 However, when
hπ0ðxÞi varies spatially, it modifies the equations of motion
for electromagnetic fields. From the full Lagrangian,

L ¼ LEM þ LWZW þ Aμjμ; ð16Þ

with the electric current density jμ ¼ ðρ; jÞ, the equations of
motion for the electromagnetic fields are derived as

ϵ∇ · E ¼ ρ − Ch∇π0i · B; ð17Þ

1

μ
∇ × B ¼ ϵ∂tEþ jþ Ch∇π0i × E: ð18Þ

The final terms in Eqs. (17) and (18) are the additional
contributions to the usual Gauss’s law and Ampère’s law,
respectively, due to the presence of the space-dependent π0

field. The former correction was already found in Ref. [5]
through a different path. On the other hand, the latter
correction, which stands for the electric current in the
direction perpendicular to the electric field, has not yet been
appreciated. As we will see later, this anomalous Hall
current modifies the dispersion relation of photons.
Note that, if hπ0i were time-dependent, h∂tπ

0i would
play the role of the so-called chiral chemical potential and
generates the “chiral magnetic effect,” j ∼ h∂tπ

0iB [15].
The form of Lagrangian in Eq. (16) is equivalent to the

axion electrodynamics [4]. The axion electrodynamics is
also found to emerge at the interface between a topological
insulator and a normal insulator in condensed matter
physics, where the “axion field” θðxÞ varies in space from
θ ¼ 0 in the normal insulator to θ ¼ π in the topological
insulator [3]. In the specific case of the π0 domain wall
above, the field ϕðzÞ ¼ π0ðzÞ=fπ plays the role of the
“axion field,” which varies from 0 to 2π across the wall.

IV. NONRELATIVISTIC PHOTONS

We now consider an electromagnetic wave (or a photon)
in the spatially varying meson condensation. As an illus-
tration, we consider the simplest case where h∇π0i is
homogeneous. Such a configuration is achieved, e.g., by
Eq. (12) in a homogeneous external magnetic field [10].
Our argument may also be extended to periodic meson

condensations [8]. We assume the condition of local
electric charge neutrality, n ¼ 0, and j ¼ 0.3 We take the
variation of the meson condensation in the z direction,
h∂zπ

0i > 0, and consider the perturbation of electromag-
netic fields in the xy plane. In this setup, we have
h∇π0i · B ¼ 0, and so ∇ · E ¼ 0 from Eq. (17); the electro-
magnetic wave is a transverse wave. Below we will
consider the electromagnetic wave propagating in the
positive z direction.
Combining Eq. (18) and Faraday’s law, ∇ × E ¼ −∂tB,

and eliminating B, we obtain a closed equation in terms of
E as

∂2
tE ¼ v2∇2E −

C
ϵ
h∇π0i × ∂tE; ð19Þ

where v≡ 1=
ffiffiffiffiffi
ϵμ

p
is the velocity of light in medium.

Without the meson condensation, this reduces to the
conventional wave equation for electromagnetic waves.
We then look for the plane-wave solution of the form,

E ¼ E0e−iωtþikz, where E0 ¼ Exex þ Eyey and ω, k > 0.
Substituting it into Eq. (19), we have

ω2Ex ¼ v2k2Ex þ iω
C
ϵ
h∂zπ

0iEy; ð20Þ

ω2Ey ¼ v2k2Ey − iω
C
ϵ
h∂zπ

0iEx: ð21Þ

From these equations, we get the dispersion relation,

ω2 − v2k2 � C
ϵ
h∂zπ

0iω ¼ 0: ð22Þ

Here the signs � correspond to the positive and negative
helicity states of the photon, Ey ¼ �iEx, which we denote
as λ ¼ �1.
For k ≫ Ch∂zπ

0i, the dispersion relation (22) reduces to
ω ¼ vk independently of the helicity. This is the same
dispersion as the usual electromagnetic wave in medium;
the wavelength 1=k is so short that the wave is not affected
by the structure of the meson condensation.
For k ≪ Ch∂zπ

0i, on the other hand, the dispersion
relation (22) are different depending on the helicity; the
dispersion relations for λ ¼ �1 are given by4

ωþ ¼ v2k2

m� ; ω− ¼ m�; ð23Þ
2We note that, when hπ0ðxÞi ≠ 0, the WZW term above leads

to anomalous magnetoelectric responses similar to topological
insulators [3], such as the magnetization induced by the electric
field, M ¼ Chπ0ðxÞiE, and the electric polarization induced by
the magnetic field, P ¼ Chπ0ðxÞiB. When hπ0ðxÞi is a constant,
however, these modifications do not affect the equations of
motion for electromagnetic fields.

3When the Ohmic current is added, the dispersion relation that
we will derive below has the imaginary part and the electromag-
netic wave is damped by dissipation.

4For the electromagnetic wave propagating in the negative z
direction (ω < 0 and k > 0), we have ωþ ¼ −m� and
ω− ¼ −v2k2=m�.
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respectively, where m� ¼ Ch∂zπ
0i=ϵ. The photon with

λ ¼ þ1 is gapless, limk→0ωþðkÞ ¼ 0, while the one with
λ ¼ −1 is gapped. Note also that the former has the
“nonrelativistic” dispersion. In this way, the spatially
varying meson condensation can distinguish between the
two helicity states of photons.
This should be contrasted with Maxwell-Chern-Simons

theories (topologically massive gauge theories) in two
spatial dimensions [16] and superconductors. In these
systems, the dispersion relation of photons is ω2 ¼ k2 þ
m2 with m the screening mass, which reduces to a gapped
dispersion ω ¼ �m for k ≪ m and is not the same
as Eq. (23).
It is known that the usual photons with the dispersion

relation ω2 ¼ k2 in the vacuum can be understood as the
gapless Nambu-Goldstone (NG) modes [17,18]. The non-
relativistic gapless photons in Eq. (23) may be understood
as the so-called type-II NG modes [19]5 due to the presence
of spatially varying meson condensation, in a way similar
to Ref. [23]. This will be reported elsewhere.

V. DISCUSSION

In this paper, we argued that the low-energy effective
theory for electromagnetic fields in spatially varying meson
condensations is given by the axion electrodynamics. This
is analogous to the physics at the interface between
topological and ordinary insulators. We also found that
such meson condensations can distinguish between the
helicity states of photons, and, in particular, one of them
is a nonrelativistic gapless photon. Our finding suggests
that, if such phases are realized in neutrons stars, the

electromagnetic properties of neutron stars should be
modified by the quantum Hall effect.
In this paper, we consider the time-independent (but

space-dependent) meson condensation. If the meson con-
densation is time-dependent, h∂tπ

0i ≠ 0, the chiral mag-
netic effect of the form j ∼ h∂tπ

0iB would lead to an
unstable mode, which then tends to erase the time depend-
ence of hπ0i and generates helical magnetic fields. This is
an analogue of the chiral instability [24,25] in the meson
condensation, which may have relevance to the origin of
the strong magnetic fields in magnetars [26,27].
Finally, we emphasize once again that essentially the

same physics should also be realized at the surface of
topological insulators. It would be interesting to exper-
imentally observe the nonrelativistic gapless photons,
which is a novel signature of the “axion field” θ, in
condensed matter systems.
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Note added.—After this work was being completed, we
learned that a closely related observation was found in
Ref. [28], where the axion electrodynamics emerges in the
dual chiral density wave (DCDW). While Ref. [28] uses an
NJL-type model and considers the DCDW, our argument is
based on the low-energy effective theory and is model-
independent; our assumption is rather the presence of the
gradient of a meson field alone, and it does not necessarily
require the CDW itself. Also, the nonrelativistic gapless
photons found in this paper were not discussed in Ref. [28].
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