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We consider a generalized two brane Randall-Sundrummodel where the branes are endowedwith nonzero
cosmological constant. In this scenario, we re-examine themodulus stabilizationmechanism and the nature of
Kaluza-Klein (KK) graviton modes. Our result reveals that while the KKmode graviton masses may change
significantly with the brane cosmological constant, the Goldberger-Wise stabilization mechanism, which
assumes a negligible backreaction on the background metric, continues to hold even when the branes have a
large cosmological constant. The possibility of having a global minimum for the modulus is also discussed.
Our results also include an analysis for the radion mass in this nonflat brane scenario.
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I. INTRODUCTION

The gauge hierarchy problem continues to be an
unsolved issue in the standard model of elementary
particles despite its enormous success in describing physics
up to the TeV scale. A solution to the gauge hierarchy
problem was proposed by Randall and Sundrum (RS
model) by considering an extra dimension compactified
into a circle S1 with Z2 orbifolding [1]. The modulus
corresponding to the radius of the extra dimension in such a
model can be stabilized via the Goldberger-Wise (GW)
stabilization mechanism [2]. Both RS and GW models do
not invoke any intermediate scale in the theory and are
robust against radiative corrections. This resulted in a large
volume of work in particle phenomenology and cosmology
in the backdrop of the Randall-Sundrum warped geometry
scenario. In the context of collider physics, a possible role
of the first Kaluza-Klein (KK) graviton mode has been
extensively studied in ATLAS and CMS detectors at LHC,
which have already set a stringent lower bound for the mass
of the first KK graviton to be mn¼1 ∼ 2.5 TeV [3,4].
Various implications of this have been discussed in [5–11].
There have been several efforts to formulate some

variants of the original RS model. One such effort
addresses a similar warped geometry model with nonflat
3-branes in contrast to the original RS model, which
assumes two flat 3-branes sitting at the two orbifold fixed
points. It has been shown in [12] that one can indeed
generalize the model with a nonzero cosmological constant
on the visible 3-brane, i.e., on our observable Universe, and
can resolve the gauge hierarchy problem concomitantly. In
this generalized RS model [13,14], it has been shown that
the 3-branes can be either de Sitter (dS) or anti-de Sitter
(AdS) where the magnitude of the induced cosmological
constant and that of the warping parameter are intimately

connected. It is therefore crucially important to determine
whether in such nonflat warped geometry models the
Goldberger-Wise stabilization mechanism, which neglects
the backreaction of the stabilizing field, can still be
employed successfully to stabilize the radius of the extra
dimension to the desired value ∼M−1

Pl . However, the
fluctuation of the radius around the stable value, namely,
radion dynamics [15–17] may be significantly influenced
by the brane cosmological constant. Moreover, it is worth
while to explore the effect of the brane cosmological
constant on the masses of the graviton KK modes, which
are expected to play important roles in high energy
scattering processes. This work is focussed on addressing
the following three questions in a generalized RS model:
(1) Can the modulus of an extra dimension be stabilized

to a global minimum for the entire range of values
of the cosmological constant in the context of the
generalized RS model?

(2) What are the KK graviton masses for different
choices of the cosmological constant?

(3) What is the effect of the brane cosmological constant
on the mass of the radion in this modified brane-
world scenario?

After a brief review of the original and generalized RS
model in the first two sections, we focus on the modulus
stabilization conditions as well as the expressions for the
modified KK graviton masses and radion mass due to the
presence of the nonvanishing brane cosmolgical constant.

II. RANDALL-SUNDRUM MODEL

In the RS scenario, it is predicted that there exists an
extra spatial dimension in addition to the (3þ 1) dimen-
sional observed Universe. The corresponding five-
dimensional bulk spacetime is described by a metric

ds2 ¼ exp ð−2krjϕjÞημνdxμdxν þ r2dϕ2; ð1Þ
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where Greek indices μ and ν run over 0, 1, 2, and 3 and refer
to the four observed dimensions. The geometry of the
extra dimension is S1=Z2 and is described by the angular
coordinate “ϕ. Here, the circle S1 has radius r, and Λ is the
bulk cosmological constant, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ=12M3

p
. The factor

exp ð−2kjyjÞ is known as the warp factor. The ϕ ¼ constant
slices atϕ ¼ 0 and atϕ ¼ π are known as the hidden and the
visible branes, the observable Universe being identified with
the latterwhich has a negative brane tension as opposed to the
hidden brane with a positive brane tension. It can be shown
that a mass parameter m0 of the order of Planck scale is
warped to a value TeV on the visible brane following the
relation m ¼ m0 exp ð−krπÞ for kr ∼ 11.6. Thus, in this
picture, the stability of the Higgs mass against a large
radiative correction is ensured by the warped geometry of
the five-dimensional spacetime. In this context, the KK
graviton mass modes are determined by considering a small
fluctuation around the flat metric with its KKdecomposition.
Some of these modes have masses mn¼0 ¼ 0, mn¼1 ¼
0.383 TeV, and mn¼2 ¼ 0.702 TeV for k=Mpl ∼ 0.1 [5].
The requirement of k < Mpl emerges from the fact that k,
which measures the bulk curvature, must be smaller than the
Planck scale so that the classical solutions of Einstein’s
equations in the bulk can be trusted [5].
In the context of modulus stabilization, it was proposed

by Goldberger and Wise that the modulus of the model
(i.e., the radius of the extra dimension) can be stabilized to
the desired value by introducing a massive scalar field in
the bulk. Evaluating the effective modulus potential due
to the massive scalar field of mass m, one gets the
stabilization condition as kr ¼ m2=ð4πk2Þ ln ðvh=vvÞ,
where vh=vv is the ratio of the vacuum expectation values
(vev) of the scalar field on the hidden and visible brane.
Taking vh=vv ∼ 1.45 and m=k ∼ 0.2, one gets kr ∼ 11.6. In
this analysis, it was further shown that both vh and vv (in
Planckian units) must be smaller than unity so that the
effect of the backreaction on the background metric can be
ignored. Moreover, the condition of having a global
minimum for the modulus potential was found to be
δVv < kv2v, where δVv is a perturbation on the visible
brane tension.

III. GENERALIZED RANDALL-SUNDRUM
MODEL

Present cosmological observations indicate the possible
existence of a four-dimensional cosmological constant
(∼10−124) in Planckian units. It has been demonstrated
[12] that by relaxing the condition of the zero cosmological
constant (i.e., flat 3-brane), it is possible to obtain a more
general expression for the warp factor. Starting from a
general metric ansatz,

ds2 ¼ exp ½−2AðϕÞ�gμνdxμdxν þ r2dϕ2; ð2Þ

one may solve the bulk equations for both anti-de Sitter
(AdS) and de Sitter (dS) 3-branes. The corresponding warp
factor for the AdS brane is

exp ½−AðϕÞ� ¼ ω cosh ½ln ðω=c1Þ þ krϕ�; ð3Þ

with c1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
and ω2 ¼ −Ω=ð3k2Þ, while that

for the dS brane is

exp ½−AðϕÞ� ¼ ω sinh ½ln ðc2=ωÞ − krϕ�; ð4Þ

with c2 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

p
and ω2 ¼ Ω=ð3k2Þ. Here, Ω is the

brane cosmological constant and ω2 is a dimensionless
parameter. Just as in the original RS model, this generalized
scenario also can address the gauge hierarchy problem
for appropriate choices of the parameters, which we discuss
below.
The scalar mass on the visible brane [18] gets warped

through the warp factor. In order to resolve the gauge
hierarchy problem, it must satisfy exp ½−AðπrÞ� ¼ 10−16 ¼
m=m0. This leads to

exp ½−kπr� ¼ ð10−16=c1Þ
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω21032

p i
ð5Þ

for the AdS case and

exp ½−kπr� ¼ ð10−16=c2Þ
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω21032

p i
ð6Þ

for the dS case.
From the above two relations one can say that (1) the real

solution of kπr exists, which resolves the hierarchy problem,
and (2) the warping parameter kr depends on the cosmo-
logical constant. In the following section,we employ theGW
stabilization mechanism for the generalized RS model with
nonflat branes to derive the new stability condition.

A. Modulus stabilization for nonflat branes

To stabilize the modulus r in the context of the
generalized RS model, we adopt the method proposed
by Goldberger and Wise [2]. Let us consider a massive
scalar field Φ in the bulk with quartic interactions on the
Planck (ϕ ¼ 0) and visible branes (ϕ ¼ π). The corre-
sponding action is

S5 ¼ ð1=2Þ
Z

d4xdϕ
ffiffiffiffiffiffiffiffi
−g5

p ½1=r2ð∂ϕΦÞ2 þm2Φ2�

−
Z

d4xdϕ
ffiffiffiffiffiffiffiffi
−gh

p
λhðΦ2 − v2hÞ2δðϕÞ

−
Z

d4xdϕ
ffiffiffiffiffiffiffiffi
−gv

p
λvðΦ2 − v2vÞ2δðϕ − πÞ: ð7Þ

Here, we assume that the scalar field depends only on the
extra dimensional coordinate. Also, gh and gv are the
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determinants of the induced metric on the hidden and
visible brane, respectively. The vacuum expectation values
of the scalar field on the branes are given by vh and vv; λh
and λv are brane tensions.
The equation of motion for the scalar field is given by

ð1=r2ÞΦ00ðϕÞ − ð4=r2ÞA0ðϕÞΦ0ðϕÞ −m2Φþ ð4=rÞλv
ðΦ2 − v2vÞΦδðϕ − πÞ þ ð4=rÞλhðΦ2 − v2hÞΦδðϕÞ ¼ 0; ð8Þ

where 0 denotes the derivative with respect to the coor-
dinate ϕ. For large λh and λv, one obtains the following two
boundary conditions:

Φð0Þ ¼ vh; ð9Þ

ΦðπÞ ¼ vv: ð10Þ

Now, we discuss the stability mechanism for two different
scenarios, i.e., AdS and dS branes separately.

1. Anti-de Sitter brane (Ω < 0)

It has been shown in [12] that the magnitude of the
cosmological constant on the AdS brane is constrained to
have an upper bound and must lie between −10−32 <
Ω < 0. Due to this tiny value of the magnitude of the
cosmological constant, we keep terms up to ω2 order.
Differentiation of both sides of Eq. (3) with respect to “y”
yields,

A0ðϕÞ ¼ kr½1 − ðω2=2Þ exp ð2krϕÞ�:

Putting the above expression in Eq. (8), one gets the
equation of motion for the scalar field in the bulk as

ð1=r2ÞΦ00ðϕÞ − 4ðk=rÞ½1 − ðω2=2Þ exp ð2krϕÞ�Φ0ðϕÞ
−m2Φ ¼ 0:

This leads to the solution

ΦðϕÞ ¼ ½A exp ðð2þ νÞkrϕÞ þ B exp ðð2 − νÞkrϕÞ�
− ω2=2½Að2þ νÞ=ð1þ νÞ exp ðð4þ νÞkrϕÞ
þ Bð2 − νÞ=ð1 − νÞ exp ðð4 − νÞkrϕÞ�: ð11Þ

Here, A and B are arbitrary constants, and ν ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þm2=k2Þ

p
. An effective potential Veff can be obtained

by putting the above solution (11) back into the scalar field
action (7) and integrating over the extra dimension. This
yields an effective modulus potential at the visible brane as

Veff ¼ ½2A2kð2þ νÞexpð2νkπrÞ þ 2B2kðν − 2Þ�
− ω2½2A2k expð2νkπrÞ − 2B2kðν − 2Þ
− 4A2kð2þ νÞ=ð1þ νÞexpðð2þ 2νÞkπrÞ
− 4B2kð2 − νÞ=ð1 − νÞ
− 2ABkð4 − ν2Þ=ð1 − ν2Þexpð2kπrÞ�: ð12Þ

The boundary conditions given by Eqs. (9) and (10) yield
the arbitrary constants A and B in the following form:

A ¼ ½vvexp−ðð2þ νÞkπrÞ − vhexpð−2νkπrÞ�
þ ω2=2½vvð2þ νÞ=ð1þ νÞexp− νkπrÞ
− vvð2 − νÞ=ð1 − νÞexp− 3νkπrÞ
þ 2vvðν=1 − ν2Þexp− ðð2þ 3νÞkπrÞ
þ 2vhðν=1 − ν2Þexp− ðð2ν − 2ÞkπrÞ� ð13Þ

and

B ¼ vh½1þ ω2=2ð2 − νÞ=ð1 − νÞ� − A½1þ ω2ðν=1 − ν2Þ�:
ð14Þ

Putting A and B in expression (12) and minimizing the
modulus potential, one gets the condition

½v2v − v2h expð−2ϵkπrÞ� þ ω2=2 expð2kπrÞ
½ðvv − vh exp−ðϵkπrÞÞ2 − 8v2v exp−ðð6þ ϵÞkπrÞ�

− ω2½vv − vh expð−ϵkπrÞ� ¼ 0; ð15Þ

where we use ν ¼ 2þ ϵ with ϵ ¼ m2=ð4k2Þ and ignore
terms proportional to ϵ. In this approximation, Eq. (15)
becomes

kπr ¼ 4ðk2=m2Þ ln ðvh=vvÞ
þ ð16=3Þω2ðk2=m2Þðvv=vhÞð2þ4=ϵÞ: ð16Þ

Here, r is the stabilized distance between the two branes. If
we now require that the same r resolves the gauge hierarchy
problem as well, then the following condition holds:

ω2 ¼ ½100 ln ðvh=vvÞ − 16 lnð10Þ�=½ð1=4Þ1032
− ð400=3Þðvv=vhÞ402�; ð17Þ

where we take m=k≃ 0.2. This result reveals that the ratio
of the vev of the scalar field at the two branes depends on
the brane cosmological constant. From the above relation
(17) between the brane cosmological constant and vev
ratio, we obtain Fig. 1 [ω2 ¼ −Ω=ð3k2Þ] as,
Figure 1 demonstrates that for a wide range of values

of the brane cosmological constant, the vev ratio varies
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insignificantly and does not lead to any hierarchical values
between the vevs.

2. de Sitter brane (Ω > 0)

For the de Sitter brane, we split the parameter space of
the cosmological constant into different regimes as follows:

(i) 0 ≤ Ω ≤ 10−32: Using the dS warp factor (4), one
gets the scalar field solution for this regime as

ΦðϕÞ ¼ ½Aexpðð2þ νÞkrϕÞ þ Bexpðð2 − νÞkrϕÞ�
þ ω2=2½Að2þ νÞ=ð1þ νÞexpðð4þ νÞkrϕÞ
þ Bð2 − νÞ=ð1 − νÞexpðð4 − νÞkrϕÞ�:

ð18Þ

Now, proceeding similarly as in the AdS case, one
ends up with the relation between the brane cos-
mological constant and the vev ratio as

ω2 ¼ ½16 ln ð10Þ − 100 ln ðvh=vvÞ�=½ð1=4Þ1032
− ð400=3Þðvv=vhÞ402�: ð19Þ

This leads to Fig. 2 [ω2 ¼ Ω=ð3k2Þ].
(ii) 10−32 ≤ Ω ≤ 1:

Using the dS warp factor (4), the scalar field
solution for this regime is

ΦðϕÞ ¼ A exp−ððν − 2ÞkrϕÞ
× 2F1ð2; 2 − ν; 1 − ν; ðω2=4Þexpð2krϕÞ
þ B expððνþ 2ÞkrϕÞ
× 2F1ð2; 2þ ν; 1þ ν; ðω2=4Þexpð2krϕÞ;

where 2F1ðargÞ is the hypergeometric function.
Keeping terms up to ω2, the above solution of scalar
field becomes

ΦðϕÞ ¼ ½A expðð2þ νÞkrϕÞ þ B expðð2 − νÞkrϕÞ�
− ω2=2½Að2þ νÞ=ð1þ νÞexpðð4þ νÞkrϕÞ
þ Bð2 − νÞ=ð1 − νÞexpðð4 − νÞkrϕÞ�:

Again, proceeding similarly as before, one ends up
with the relation between the brane cosmological
constant and the vev ratio as

ω2 ¼ 4ðvv=vhÞ200: ð20Þ

This leads to Fig. 3 [ω2 ¼ Ω=ð3k2Þ].
Both Figs. 2 and 3 reveal that just as in the Ads case, here

also the deviation of the vev ratio of the scalar field from
that of the GW value is insignificant even when the brane is
endowed with a large positive cosmological constant.

B. Graviton modes

To study the graviton modes, we decompose the four-
dimensional components of the metric into its Kaluza-Klein
(KK) modes as

gμνðx; yÞ ¼ ð1= ffiffiffi
r

p Þ
X

hnμνðxÞξnðϕÞ: ð21Þ

Here, hnμνðxÞ is the nth KK graviton mode. Plugging back
the decomposition in the action and using the appropriate
gauge conditions for hμνðxÞ [19], one gets

S5 ¼ −ð1=4Þ
Z

d4xdy
ffiffiffi
g

p ½∂Mgij�½∂Mgij�: ð22Þ
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This modified action leads to the equation of motion

ημν∂μ∂νhnijðxÞ ¼ m2
nhnijðxÞ: ð23Þ

The above differential equation for the x-dependent part of
the metric holds if

ð1=r2Þ∂ϕ½expð−4AðϕÞÞ∂ϕξ
n� ¼ −m2

n expð−2AðϕÞÞξnðϕÞ
ð24Þ

and the orthogonality condition

Z
expð−2AÞχnðϕÞχmðϕÞdϕ ¼ δmn

are simultaneously satisfied.
Here, mn denotes the mass of nth KK graviton mode.

The solution of Eq. (24) as well as graviton KK modes for
AdS and dS branes are discussed in the following sections.

1. Anti-de Sitter brane (Ω < 0)

As mentioned before, the range of the cosmological
constant on the AdS brane is −10−32 < Ω < 0. Once again,
keeping terms up to ω2 and using the perturbative expan-
sion of ξðyÞ and mn as

ξðϕÞ ¼ ξ0nðϕÞ þ ω2ξ1nðϕÞ
mn ¼ m0

n þ ω2m1
n; ð25Þ

where m0
n is the mass of the nth KK graviton mode on flat

branes, which is the RS scenario, Eq. (24) becomes

½ð1=rÞ∂ϕðexpð−4krϕÞξ0nðϕÞÞ þ expð−2krϕÞðm0
nÞ2ξ0n�

− ω2½ð1=rÞ∂ϕðexpð−4krϕÞξ1nðϕÞÞ
− ð1=rÞ∂ϕðexpð−2krϕÞξ0nðϕÞÞ
× expð−2krϕÞðm0

nÞ2ξ1n − ð1=2Þðm0
nÞ2ξ0n

þ 2m0
nm1

nexpð−2krϕÞξ0n� ¼ 0: ð26Þ

Defining the new variable z0n ¼ ðm0
n=kÞexpðkrϕÞ, one gets

the solution of ξnðϕÞ as

ξnðϕÞ¼ ð1=NnÞexpð2krϕÞ½J2ðz0nÞþanY2ðz0nÞ−ω2fnðz0nÞ�:
ð27Þ

Now, demanding the continuity of the graviton wave
function at two branes, we get the following boundary
conditions:

ξ0nðϕ ¼ 0Þ ¼ 0;

ξ0nðϕ ¼ πÞ ¼ 0:

From the first boundary condition and using the approxi-
mation ðmn=kÞ ≪ 1, one can conclude that the coefficient
an is negligible. Thus, the solution (27) becomes
ξnðϕÞ ¼ ð1=NnÞexpð2krϕÞ½J2ðz0nÞ − ω2fnðz0nÞ�. The other
boundary condition yields

expðkπrÞðm0
n=kÞJ1ðexpðkπrÞðm0

n=kÞÞ
− 2ω2kfnðexpðkπrÞðm0

n=kÞÞ
− ω2expðkπrÞðm0

n=kÞf0nðexpðkπrÞðm0
n=kÞÞ ¼ 0; ð28Þ

which leads to the first-order correction of graviton KK
mass modes as

mðn¼1Þ ¼ m0
n¼1 þ 3.5 � 1030 � ω2

mðn¼2Þ ¼ m0
n¼2 þ 2 � 1030 � ω2:

2. de Sitter brane (Ω > 0)

As before for
(i) 10−32 ≤ Ω ≤ 1 using Eq. (4), the expression for the

warp factor becomes

exp½−4AðϕÞ� ¼ expð−4krϕÞ½1 − ω2expð2krϕÞ�:

Taking this expression of warp factor and proceed-
ing similarly, one ends up with following graviton
mass correction due to the brane cosmological
constant:

mðn¼1Þ ¼ m0
n¼1 þ ð0.44Þ;

mðn¼2Þ ¼ m0
n¼2 þ ð0.55Þ;

for Ω ∼ 10−20 and the corrections are in TeV units.
In a similar, way we can extend our analysis for very
large values of the brane cosmological constant (Ω). We
now summarize our results for different cases in Table I
(for k=Mpl ∼ 0.1).
From the above table, it is evident that the ratio of vh and

vv is of the order of unity for the entire chosen range of
values of the brane cosmological constant. This condition
justifies the fact that the backreaction of the stabilizing
scalar field on the background spacetime can be neglected
even in the presence of the brane cosmological constant.
Again from [12], it turns out that the perturbation of the
visible brane tension due to the brane cosmological con-
stant is given by

δVv ¼ 12M3k½ω2expð2krπÞ�=
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ω2Þ

q

þ ðω2=2Þexpð2krπÞ
i
: ð29Þ

Since for the AdS braneω2 ¼ −Ω=ð3k2Þ, from Eq. (29) it is
easy to see that δVv < kv2v. This immediately ensures [2]
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that the minimum is a global one. A similar argument also
holds for the dS brane.

C. Radion mass

In this section, we consider a fluctuation of branes
around the stable separation (r). So, the interbrane sepa-
ration can be considered as a field, and here, for simplicity,
we assume that this new field depends only on the brane
coordinates. The corresponding metric ansatz is

ds2 ¼ exp½−2Aðx;ϕÞ�gμνdxμdxν þ T2ðxÞdϕ2; ð30Þ

where ϕ is the extra dimensional angular coordinate.
Following the procedure adopted in [15], the warp factor
for the AdS brane is given by

exp½−Aðx;ϕÞ� ¼ ω cosh ½ln ðω=c1Þ þ kTðxÞϕ�; ð31Þ

while that for the dS brane is

exp½−Aðx;ϕÞ� ¼ ω sinh ½ln ðc2=ωÞ − kTðxÞϕ�: ð32Þ

From the perspective of four-dimensional effective theory,
TðxÞ is known as the radion field. In the following two
subsections, we present the mass of the radion field for both
AdS and dS branes.
A Kaluza-Klein reduction of the five-dimensional

Einstein-Hilbert action for the anti-de Sitter warp factor
(31) (in a leading order correction over the RS warp factor
due to the brane cosmological constant) leads to the
following kinetic part of TðxÞ:

Skin½T� ¼ 6M3kπ2
Z

d4x
ffiffiffiffiffiffi
−g

p
expð−2kπTðxÞÞ½1þ ðω2=3Þ

× kπTðxÞexpð2kπTðxÞÞ�∂μTðxÞ∂μTðxÞ: ð33Þ

To derive this effective action, we keep the terms only up
to ω2 order. As we see that the field TðxÞ is not canonical,
we redefine the field (TðxÞ → ΨðxÞ) by the following
transformation:

T 0ðΨÞ2 ¼ expð2kπTðxÞÞ=ð12M3kπ2Þ½1 − ðω2=3Þ
× kπTðxÞexpð2kπTðxÞÞ�; ð34Þ

where 0 denotes the derivative with respect to ΨðxÞ. The
kinetic part of the physical radion field [ΨðxÞ] is now
canonical and is given as

Skin½Ψ� ¼ ð1=2Þ
Z

d4x
ffiffiffiffiffiffi
−g

p ∂μΨ∂μΨ:

After obtaining the canonical radion field [ΨðxÞ], we now
find the radion mass square (m2

Ψ) is given by

m2
Ψ ¼ ½T 0ðΨÞ2V 00

effðTÞ�ð<T>¼rÞ; ð35Þ

where r is the stabilized modulus (16) and VeffðTÞ is
obtained from Eq. (12) by replacing r by TðxÞ. One can
now easily obtain the expression of V 00

effðhTi ¼ rÞ as

V 00
effðrÞ ¼ 2ϵ2k3v2hπ

2exp½−ð4þ 2ϵÞkπr�
þ ð8ω2=3Þk3v2vπ2ð4þ 2ϵÞexp½−ð8þ 2ϵÞkπr�:

ð36Þ

Putting the expression of V 00
effðhTiÞ into Eq. (35), one ends

up with the squared mass of the radion field as follows:

m2
Ψ ¼ m2

ð0Þ þ ðα �m2
ð1ÞÞ; ð37Þ

where m2
Ψ and m2

ð0Þ are the mass square of the radion field

for nonflat and flat branes, respectively, while m2
ð1Þ gives

the correction of the radion mass due to the nonzero
cosmological constant on branes. Here, α ¼
ω2expð2kπhTiÞ and m2

ð0Þ, m
2
ð1Þ are given by the expressions

m2
ð0Þ ¼ ½ðϵ2k2v2vÞ=ð6M3Þ� � expð−2kπhTiÞ; ð38Þ

m2
ð1Þ ¼ ½ðϵ2k2v2vÞ=ð18M3Þ� � ðkπhTiÞ; ð39Þ

where ϵ ¼ m2=ð4k2Þ,m is the mass of the stabilizing scalar
field, and hTi is the vev of the radion field. These
expressions clearly depict how the correction to the mass
term depends on the brane cosmological constant as well as
on the parameters of the stabilizing scalar field. Moreover,
we also note that the correction to the radion mass is always
positive and is always greater than what it would be in the

TABLE I. Warping parameter (kr), vev ratio (vh=vv), and graviton mass modes (mn) for a wide range of cosmological constants (Ω).

Ω kr vh=vv mðn¼1Þ ¼ ðm0
n¼1 þ ΔmnÞðTeVÞ mðn¼2Þ ¼ ðm0

n¼2 þ ΔmnÞðTeVÞ
−10−32 ∼11 1.446 (0.383þ 0.03) (0.702þ 0.02)
0 ∼11 1.445 439 771 0.383 0.702
10−20 ∼10 1.3700 (0.383þ 0.44) (0.702þ 0.55)
100 0.095 ∼1 10.5263 21.0526
625 0.039 ∼1 25.641 51.282
104 0.0099 ∼1 101.01 202.02
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flat brane limit. Proceeding as before, we find that for the de
Sitter brane (Ω > 0) also the radion mass square is positive
and is enhanced from that for a flat brane scenario.

IV. STRESS TENSOR OF STABILIZING
SCALAR FIELD: CONDITION FOR
NEGLIGIBLE BACKREACTION IN

NONFLAT BRANE SCENARIO

Using the warp factor for the nonflat brane [Eqs. (3)
and (4)], different components of the stress tensor of the
stabilizing scalar field can be written as

TϕϕðΦÞ ¼ ð1=4Þr2½−ð1=r2Þð∂ϕΦÞ2 þm2Φ2�

and

TμνðΦÞ ¼ ð1=4Þ½ð1=r2Þð∂ϕΦÞ2 þm2Φ2�gμνðxÞexpð−AðϕÞÞ:

Putting the bulk scalar field solution [Eq. (11)] in the
expression of TϕϕðΦÞ and TμνðΦÞ and using the form of A
and B in terms of vv and vh [Eqs. (13) and (14)], one can
show that the ratio of the corresponding component of the
stress tensor between the bulk scalar field and the bulk
cosmological constant varies as v2v=M3 or v2h=M

3, i.e.,
½TϕϕðΦÞ=TϕϕðΛÞ� ∼ v2v=M3 as well as ½TμνðΦÞ=TμνðΛÞ�∼
v2v=M3, where TϕϕðΛÞ and TμνðΛÞ are different compo-
nents of the stress tensor for the bulk cosmological
constant. Thus, the stress tensor for the bulk scalar field
(Φ) is less than the bulk cosmological constant (Λ) for
v2v=M3 and v2h=M

3 less than unity. Our result closely
resembles that obtained in [2]. This condition allows us
to neglect the backreaction of the stabilizing scalar field in
comparison to the bulk cosmological constant in nonflat
brane models.
It is worthwhile to mention that in Ref. [16] the warp

factor and the radion mass have been estimated by con-
sidering the effects of the backreaction of the stabilizing
bulk scalar field. However, in that analysis, the choice of
the form of the scalar potential turns out to be crucial in
getting an exact solution for the warp factor where the
coefficients of the quartic term and the quadratic term (i.e.,
the mass term) in the scalar potential are related by a
common parameter u (see [16]) such that the vanishing of
one leads to the vanishing of the other as u → 0. As a result,
their scalar potential does not have a smooth limit that may
result in the GW scalar potential, which contains only a
nonvanishing quadratic mass term with coefficientm. Thus,
the limit u → 0 in [16] essentially amounts tom → 0 in [2],
which in turn makes the radion mass zero in both the cases.
It is interesting to note that while the GW radion mass
scales asm=k, the radion mass determined by the authors of
[16] scales as u=k.

V. CONCLUSION

We now summarize the findings and the implications of
our results.

(i) We have demonstrated that the extra dimensional
modulus can be stabilized by the Goldberger-Wise
mechanism for a wide range of values of the cosmo-
logical constant both in de Sitter and anti-de Sitter
regions. It has been shown in [2] that if the vev ratio of
the scalar field in the bulk is of the order∼1.46 or less
than that, then one can safely ignore the backreaction
of the scalar field on the background spacetime for the
purpose of modulus stabilization. Now, from Table I,
it is evident that since the vev ratio lies between 1 <
ðvh=vvÞ < 1.46 for the entire parameter space of the
cosmological constant, the backreaction can be sagely
ignored even in the generalized Randall-Sundrum
scenario. In this sense, the Goldberger-Wise stabili-
zation mechanism is extremely robust against the
extent of the nonflatness of our Universe. Our result
also reveals that even for nonflat branes the modulus
potential continues to yield a global minimum ensur-
ing a robust modulus stabilization against perturba-
tions. We also justify the reason for negligible
backreaction of the bulk stabilizing scalar field on
the background metric.

(ii) We have derived the modifications of the KK
graviton mass modes due to the presence of a
nonzero cosmological constant on the brane in the
generalized Randall-Sundrum scenario. We found
that the masses of the graviton KK modes increases
with the brane cosmological constant and may
deviate significantly from the values estimated in
the RS scenario as the values of the brane cosmo-
logical constant increase. During this analysis, we
restricted the choice of the parameters in a region so
that the gauge hierarchy problem can simultaneously
be resolved. In the context of the present epoch of
our Universe (visible 3-brane), these results indicate
that due to extreme smallness of the value of the
cosmological constant (10−124 in Planckian units),
the warped model resembles very closely the RS
model with graviton KK mode masses TeV. How-
ever, this scenario will change significantly in an
with a large cosmological constant. Finally, we find
the dependence of the radion mass square on the
brane cosmological constant for both de Sitter and
anti-de Sitter space. We show that the radion mass
squared continues to be positive in both cases
without leading to any instability in the model.
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