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We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromag-
netic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-
Euler effective action. We put special emphasis on deviations from the well-known constant field results,
also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we
analytically determine compact expressions for the number of merged/split photons as obtained in the focal
spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and
probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The
combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities
renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum
properties.
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I. INTRODUCTION

The vacuum of quantum electrodynamics (QED)
acquires properties akin to those of ordinary polarizable
matter when subjected to strong electromagnetic fields
[1–3]. These fields can couple to electron-positron fluctua-
tions inducing nonlinear interactions (for reviews, see
[4–12]). The spatial and temporal scale associated with
these electron-positron fluctuations is set by the Compton
wavelength λC ¼ 1=m ≈ 3.86 × 10−13 m and the Compton
time τC ¼ 1=m ≈ 1.29 × 10−21 s of the electron respec-
tively, where m ≈ 511 keV denotes the electron mass. At
leading order in the field strengths prominent signatures of
quantum vacuum nonlinearities such as vacuum magnetic
birefringence [13–15] and direct light-by-light scattering
[1,16] are mediated by an effective four-photon interaction.
The resulting nonlinear interactions among laboratory

electromagnetic fields are suppressed by powers of the field
strength ratio E=Ecr, with E denoting the electric/magnetic
field amplitude and Ecr ¼ m2=e ≈ 1.3 × 1018 V=m≈
4 × 109 T the critical field strength. Hence, experimental
verifications [17,18] have so far been limited to high-
energy experiments probing vacuum nonlinearities in the
strong Coulomb fields in the vicinity of highly charged ions
(Delbrück scattering [19,20] and photon splitting [21,22]).
Vacuum nonlinearities in macroscopic electromagnetic
fields have not been directly verified so far. Direct searches
of vacuum magnetic birefringence in macroscopic mag-
netic fields [23,24] for instance, have already demonstrated
that a combination of both high field strength as well as a
high signal detection sensitivity will eventually be needed
for a first discovery; see [25] for a recent proposal.
On the other hand, recent technological advances in the

development of high-intensity lasers have begun to access

new extreme-field territory. The perspective to directly
probe quantum vacuum nonlinearities in all-optical pump-
probe type setups is most promising: one high-intensity
laser (“pump”) generates a strong electromagnetic field
pulse polarizing the quantum vacuum in its focus, which is
then probed by a second high-intensity laser. A prominent
example is the fundamental physics program within the
HIBEF project [26], which plans to combine a near-infrared
petawatt (PW) laser as pump and the European XFEL as
probe laser aiming to detect vacuum birefringence [27–29];
see also [30,31] for related work. While the advantage of
using ultra-intense lasers is obvious from the accessible
field strengths, important progress also has been made
on the detection side in the form of high-purity x-ray
polarimetry [32]. Further attractive theoretical proposals
have focused on optical signatures of quantum vacuum
nonlinearities based on interference effects [33–35],
photon-photon scattering in the form of laser-pulse colli-
sions [36–38] and quantum reflection [39].
In some of these studies, a new ingredient in addition to

extreme fields and high detection efficiencies has been
identified: as laser pulses feature an intrinsic spatio-
temporal structure, these spacetime inhomogeneities allow
for a richer variety of quantum vacuum signatures that
remains invisible in the idealized theoretical limit of
constant homogeneous fields.
To this end, recently a representation of the one-loop

photon polarization tensor Πμνðk; k0Þ (photon two-point
function) in the limit of low energies and momenta and for
slowly varying but otherwise arbitrary electromagnetic
field inhomogeneities has been derived [40]. Note that
essentially all macroscopic electromagnetic fields attain-
able in the laboratory fall into this category, as they vary on
scales much larger than the Compton wavelength and time
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of the electron. This result facilitates a straightforward
investigation of photon propagation effects in high-
intensity laser fields. Whereas constant electromagnetic
fields only affect a probe photon’s polarization properties,
inhomogeneous fields may additionally alter its frequency
and wave vector, which can be employed to physically
separate the (tiny) amount of photons carrying the signature
from a large background consisting of probe photons
unaffected by quantum vacuum nonlinearities; inhomoge-
neities thus become the key ingredient for some phenom-
ena such as quantum reflection [39].
Besides propagation effects, photons in strong electro-

magnetic fields can also experience splitting [15,21,41–48]
and merging [49–51]. Photon splitting describes processes
where a single photon splits into two or more outgoing
photons under the influence of an external electromagnetic
field. Photon merging can be viewed as the inverse process:
two or more photons merge under the influence of the
external field, yielding a single outgoing photon. The first
detailed investigation of photon splitting has been per-
formed by Adler in 1971 [21], who considered this process
in a constant, purely magnetic background field.
In this work we aim at adopting the strategy devised in

[28,40,52] to study photon splitting and merging in the
strong, inhomogeneous electromagnetic fields attainable
with high-intensity laser experiments. For this, we start in
Sec. II by deriving the “three-photon polarization tensor”
Πμνρðk; k0; k00Þ to one-loop order in the limit of low energies
and momenta and for weakly varying but otherwise
arbitrary electromagnetic field inhomogeneities. This quan-
tity describes the effective interaction between three photon
fields facilitated by vacuum fluctuations in the presence of
external electromagnetic fields. It accounts for couplings to
the external field to all orders. We furthermore detail on
how to determine the amplitudes and numbers of signal
photons for the splitting and merging processes. In Sec. III,
we analyze the polarization properties and selection rules
for photon splitting and merging. More specifically, we
focus on the special class of field inhomogeneities char-
acterized by unidirectional orthogonal electric and mag-
netic fields of equal strength, but featuring arbitrary field
amplitude profiles. In Sec. IV, we consider a specific field
amplitude profile and compare the magnitudes of the
numbers of photons experiencing photon splitting and
merging in this field inhomogeneity. Finally, we provide
estimates for the number of accessible signal photons from
the photon merging process for realistic laser parameters.
We finish with a conclusion in Sec. V.

II. THE THREE-PHOTON POLARIZATION
TENSOR IN AN ELECTROMAGNETIC FIELD

INHOMOGENEITY

The goal of this article is to study photon splitting and
merging in an all-optical experiment, where both pump
and probe fields are provided by lasers. We consider a

macroscopic “probe” photon field aρðqÞ traversing an
electromagnetic “pump” field configuration described by
the field-strength profile FμνðxÞ. The nonlinear interactions
between the pump and probe fields may induce outgoing
signal photons via the effective interactions of the probe
and pump fields. Each signal photon is characterized by its

four-momentum kμ and polarization four-vector ϵ�ðpÞσ ðkÞ,
where p labels the two transverse photon polarizations. For
photon splitting we study the process linear in the probe
photon field giving rise to two outgoing signal photons.
Conversely, for photon merging we consider the process
quadratic in the probe photon field resulting in a single
signal photon. More specifically, the amplitude

Mp→p0p00
Split ðk0; k00Þ for photons from a macroscopic probe

photon field aðpÞρ ðqÞ, with momentum qμ and polarization

vector ϵðpÞρ ðqÞ, to split into two real photons with momenta
k0μ ¼ ðjk0j;k0Þ and k00μ ¼ ðjk00j;k00Þ, and polarization vec-

tors ϵ�ðp
0Þ

σ ðk0Þ and ϵ�ðp
00Þ

η ðk00Þ respectively, is given by

Mp→p0p00
Split ðk0; k00Þ

¼ ϵ�ðp
0Þ

σ ðk0Þffiffiffiffiffiffiffiffiffiffi
2jk0jp ϵ�ðp

00Þ
η ðk00Þffiffiffiffiffiffiffiffiffiffiffi
2jk00jp

Z
q
Πρσηð−q;k0; k00jFÞaðpÞρ ðqÞ: ð1Þ

Here, Πρσηð−q; k0; k00jFÞ denotes the three-photon polari-
zation tensor (three-point proper vertex) in an external
electromagnetic field inhomogeneity FμνðxÞ, and the indi-
ces p, p0, p00 label the polarizations of the incident probe
photon beam and the signal photons to be specified later.
We use “all-outgoing” sign conventions for the momentum
arguments of Πρση. At one-loop order, the three-photon
polarization tensor quantifies the effective coupling of three
photon fields mediated by an electron-positron loop. At this
stage, Πρση accounts for the coupling to the field inhomo-
geneity FμνðxÞ to all orders; see Fig. 1. Throughout the
paper we work in Heaviside-Lorentz units, setting
ℏ ¼ c ¼ 1. Spatio-temporal four vectors are denoted by
italic letters, xμ ¼ ðt; x; y; zÞ, for the spatial components we
use roman letters. Our metric is gμν ¼ ð−;þ;þ;þÞ, such
that kx≡ kμxμ ¼ ð−k0tþ k · xÞ. We employ the shorthand

notation
R
q ≡

R d4q
ð2πÞ4 for momentum integrations, andR

x ≡
R
d4x for space-time integrations.

In analogy to Eq. (1), the amplitude Mp0p00→p
Merg ðkÞ for

merging photons from the probe field to yield a single
outgoing photon with momentum kμ ¼ ðjkj;kÞ and polari-
zation vector ϵ�ðpÞρ ðkÞ reads

Mp0p00→p
Merg ðkÞ ¼ ϵ�ðpÞρ ðkÞffiffiffiffiffiffiffiffiffi

2jkjp
Z
q0

Z
q00
Πρσηðk;−q0;−q00jFÞ

× a0σðp
0Þðq0Þa00η ðp00Þðq00Þ: ð2Þ
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Here we accounted for the most generic situation, where the
merged photons are originating from two distinct probe
photon fields a0σðp

0Þðq0Þ and a00η ðp00Þðq00Þwith polarizations p0

and p00, respectively.
The physical information about the splitting and merging

processes in Eqs. (1) and (2) is encoded in the three-photon
polarization tensor. At present, no exact analytical results
for the three-photon polarization tensor for arbitrary
momentum transfers and background field inhomogene-
ities are known. At one-loop order and for generic
momentum transfers, exact results for two classes of
background field configurations are available. The first
class comprises uniform electromagnetic fields: Papanyan
and Ritus [42,43] derived a parameter integral representa-
tion of the three-photon polarization tensor in “constant-
crossed” fields, i.e. for orthogonal constant electric and
magnetic fields of equal amplitude jEj ¼ jBj ≕ E. For this
setting, the field invariants F ¼ 1

4
FμνFμν ¼ 1

2
ðB2 −E2Þ

and G ¼ 1
4
Fμν

�Fμν ¼ −E · B vanish; �Fμν ¼ 1
2
ϵμναβFαβ

denotes the dual field strength tensor. Later, splitting
amplitudes valid for arbitrary photon energies have been
derived in constant, but generically oriented electromag-
netic fields [45]. Energy-momentum conservation in con-
stant fields implies that all three photons propagate
collinearly. As a consequence, an expansion of the ampli-
tude in the background field strength starts with terms
∝ ðeEm2Þ3, i.e., arising from a hexagon diagram in accordance
with the Adler theorem [21]. This will also become
manifest in our results below.
The second class of background field configurations

encompasses plane-wave backgrounds with vector
potential AμðκxÞ, where κμ ¼ ðjκj; κÞ denotes the four-
momentum of the plane wave. Photon splitting amplitudes
for arbitrary photon energies in this class of background
fields have been derived in [48]. Recall that photon splitting

amplitudes amount to on-shell matrix elements of the three-
photon polarization tensor. In this configuration, the probe
photons can exchange energy and momentum with the
background field, and an expansion in the background field
strength hence generically starts with terms ∝ ðeEm2Þ, corre-
sponding to box diagrams. For small angles between the
photon momenta, splitting amplitudes have also been
calculated in Coulomb fields [22].
A study of photon splitting and merging in generic

background field inhomogeneities may eventually require
dedicated numerical efforts; see, e.g., [53]. However, in the
present work we confine ourselves to field inhomogeneities
whose spatial and temporal variation, w and τ, are large
compared to the spatial and temporal Compton scale of the
electron-positron loop, i.e., w ≫ λC and τ ≫ τC. These
slowly varying fields mark the regime of the locally
constant field approximation (LCFA). As a matter of fact,
practically all current and proposed all-optical probes of
QED vacuum nonlinearities in macroscopic fields fall into
this category.
The LCFA corresponds to treating the microscopic

quantum fluctuations as propagating in a constant field
at each point in spacetime. This culminates in the effective
Heisenberg-Euler Lagrangian LðxjFÞ which is a local
function of spacetime. On the macroscopic level, this
Lagrangian can now be applied locally. In the present
work, we use it to calculate the three-photon polarization
tensor for manifestly inhomogeneous background field
profiles following the strategy of [40]. For strictly constant
background fields, an analogous idea has originally been
adopted by Adler [21] and Bialynicka-Birula [15] in the
1970s to study photon splitting. Still, it is important to
realize that the same line of reasoning also applies to slowly
varying fields with parametrically suppressed errors which
are quantified below. The photon polarization tensor
derived in this way is manifestly restricted to low four-
momentum transfers; i.e., also the probe photons have to be
slowly varying. Let us emphasize that this procedure
manifestly preserves gauge invariance and therefore retains
complete information about the polarization properties of
the involved photons for any given slowly varying back-
ground field inhomogeneity.
Our starting point is the one-loop effective action

SintðF;fÞ¼
R
xLðxjFþfÞ, mediating effective interactions

between probe photon fields aμðxÞ, with field strength
tensor fμνðxÞ, in a background field inhomogeneity with
field strength tensor FμνðxÞ. It is obtained from the
Heisenberg-Euler Lagrangian for constant fields, which
only depends on the field strength tensor Fμν,1 by
substituting Fμν → FμνðxÞ þ fμνðxÞ, cf. [40]. Corres-
pondingly, the effective interactions among the probe
photons can be seen as generated by derivatives of the

FIG. 1. Feynman diagrams of the three-photon interactions
considered in this work. (a) Photon splitting: An incoming photon

with momentum kμ and polarization four-vector ϵðpÞρ ðkÞ splits,
under the assistance of the external field inhomogeneity FμνðxÞ,
into two photons with fk0μ; ϵ�ðp0Þ

σ ðk0Þg and fk00μ; ϵ�ðp00Þ
η ðk00Þg.

(b) Photon merging: Two incoming photons with

fk0μ; ϵðp0Þ
σ ðk0Þg and fk00μ; ϵðp00Þ

η ðk00Þg merge to yield a single

outgoing photon with fkμ; ϵ�ðpÞρ ðkÞg. The coupling of the probe
photons and the external field inhomogeneity FμνðxÞ to the
electron-positron loop is encoded in the three-photon polarization
tensor Πρση.

1In fact, the Heisenberg-Euler Lagrangian depends on Fμν only
via the field invariants F and G.
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Heisenberg-Euler Lagrangian. An expansion in terms of
probe photons reads

Sint ¼ Sð1Þ
int þ Sð2Þ

int þ Sð3Þ
int þ…

¼
Z
x

∂L
∂Fμν f

μν þ 1

2!

Z
x

∂2L
∂Fμν∂Fαβ f

μνfαβ

þ 1

3!

Z
x

∂3L
∂Fμν∂Fαβ∂Fγδ f

μνfαβfγδ þ…; ð3Þ

where SðlÞint contains the effective interaction between l
photons. To keep the notation compact, we have omitted
the spacetime arguments of the fields. As a consequence of
Furry’s theorem, only an even number of contractions of
FμνðxÞ and fμνðxÞ may constitute building blocks of the
Lagrangian. On the level of the action, the LCFA neglects
derivatives of the field strength tensors which are generic
constituents of the exact effective Lagrangian. Derivatives
of the fields in position space translate to multiplications of
the fields in momentum space with their typical momentum
v. As the action is dimensionless, the LCFA therefore

inherently neglects contributions of Oðv2m2Þ, with the elec-
tron mass m as the only dimensionful scale in QED.

The lowest order interaction term Sð1Þ
int of the expansion

(3) describes vacuum emission processes [52]. The

second order term Sð2Þ
int entails propagation effects [40],

such as vacuum birefringence [28] and quantum reflection

[39]. Finally, the third order term Sð3Þ
int encodes three-

photon interactions such as splitting and merging to be
considered here. The three-photon polarization tensor in

momentum space is now easily inferred from Sð3Þ
int .

Employing the momentum space representation of the
probe photons, aμðxÞ ¼ R

k e
ikxaμðkÞ, we substitute

fμνðxÞ ¼ i
R
k e

ikx½kμgνσ − kνgμσ�aσðkÞ into Sð3Þ
int and obtain

Sð3Þ
int ¼−

1

3!

Z
k

Z
k0

Z
k00
aρðkÞaσðk0Þaηðk00ÞΠρσηðk;k0;k00Þ; ð4Þ

where the three-photon polarization tensor has been
defined as

Πρσηðk; k0; k00Þ ≔ iðkμgνρ − kνgμρÞðk0αgβσ − k0βgασÞðk00γgδη − k00δgγηÞ
Z
x
eiðkþk0þk00Þx ∂3L

∂Fμν∂Fαβ∂Fγδ ðxÞ: ð5Þ

The tensorial structure guarantees that the Ward-identity, ensuring gauge invariance, is fulfilled: kρΠρσηðk; k0; k00Þ ¼
k0σΠρσηðk; k0; k00Þ ¼ k00ηΠρσηðk; k0; k00Þ ¼ 0. This three-photon polarization tensor neglects contributions of order v3Oðv2m2Þ.
For explicit calculations it is useful to rewrite the derivatives of the Lagrangian with respect to Fμν in terms of the

invariants F and G. Then, the third derivative of the Lagrangian is spanned by 20 independent tensor structures,
corresponding to the full set of basis elements of a completely symmetric rank-3 spacetime tensor. It reads

∂3L
∂Fμν∂Fαβ∂Fγδ ¼

1

8

�
½ðgμαgνβ − gμβgναÞFγδ þ ðgμγgνδ − gμδgνγÞFαβ þ ðgαγgβδ − gγβgδαÞFμν�

∂2L
∂F 2

þ ½ϵμναβ�Fγδ þ ϵμνγδ
�Fαβ þ ϵαβγδ

�Fμν�
∂2L
∂G2

þ ½ðgμαgνβ − gμβgναÞ�Fγδ þ ðgμγgνδ − gμδgνγÞ�Fαβ

þ ðgαγgβδ − gγβgδαÞ�Fμν þ ϵμναβFγδ þ ϵμνγδFαβ þ ϵαβγδFμν�
∂2L
∂F∂Gþ FμνFαβFγδ

∂3L
∂F 3

þ �Fμν
�Fαβ

�Fγδ
∂3L
∂G3

þ ½FμνFαβ
�Fγδ þ Fμν

�FαβFγδ þ �FμνFαβFγδ�
∂3L

∂F 2∂G
þ ½�Fμν

�FαβFγδ þ Fμν
�Fαβ

�Fγδ þ �FμνFαβ
�Fγδ�

∂3L
∂F∂G2

�
: ð6Þ

An explicit representation of the one-loop Heisenberg-
Euler Lagrangian for constant electric and magnetic fields
of arbitrary orientation and amplitudes is given in terms of a
proper-time integral [2,5,54],

LðF ;GÞ¼ α

2π

Z
∞

0

ds
s
e−i

m2s
e

�
jGjcothðasÞcotðbsÞþ2

3
F −

1

s2

�
;

ð7Þ

where a¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þG2

p
−F Þ12 and b ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p
þ F Þ12.

Due to CP invariance, this Lagrangian is an even function
of G. The derivatives with respect to F and G in Eq. (6) can
now be calculated from Eq. (7). For either purely electric or
purely magnetic fields, or alternatively for orthogonal
electric and magnetic fields the field invariant G vanishes,
and the proper-time integrals can be performed analytically.
This leads to a representation of the one-loop Heisenberg-
Euler Lagrangian and its derivatives in terms of Γ- and
Hurwitz ζ-functions (cf. [4,5,40,55]). Hence, for this class
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of configurations explicit analytical insights into the strong-
field limit are possible.
In the following, we concentrate on the case of crossed-

fields with E ·B ¼ 0 and jEj ¼ jBj ≕ E. This configura-
tion is of particular importance as it can be employed to
describe the electromagnetic fields delivered by high-
intensity lasers; cf. Sec. IV. Since both field invariants
vanish in this case, F ¼ G ¼ 0, it is useful to perform a
weak field expansion of theHeisenberg-Euler Lagrangian (7),

LðF ;GÞ ¼ α

90π

�
e
m2

�
2

ð7G2 þ 4F 2Þ

−
2α

315π

�
e
m2

�
4

ð13FG2 þ 8F 3Þ þOðfF ;Gg4Þ:

ð8Þ

The derivatives of the Lagrangian with respect to F and G
are then given by

∂L
∂F ¼ ∂L

∂G ¼ OðfF ;GgÞ;
�∂2L
∂F 2

;
∂2L
∂G2

;
∂2L
∂F∂G

�
¼ f4; 7; 0g α

45π

�
e
m2

�
2

þOðfF ;GgÞ;
�∂3L
∂F 3

;
∂3L
∂G3

;
∂3L

∂F∂G2
;

∂3L
∂F 2∂G

�
¼ −f24; 0; 13; 0g 4α

315π

�
e
m2

�
4

þOðfF ;GgÞ: ð9Þ

For generic slowly varying backgrounds, neglecting
higher-order expansion terms is equivalent to a weak-field
limit, eE

m2 ≪ 1, with E being a characteristic field strength
scale of the background. Working with Eqs. (8), (9)
corresponds to the same level of accuracy as has recently
been used for a study of vacuum higher-harmonic gen-
eration in a slowly varying background [56] or constant
crossed-field background in the shock regime [57] based on
the quantum equations of motion. For general crossed-field
configurations considered here, higher-order terms vanish
identically and the terms written explicitly in Eq. (9)

constitute the full result within the LCFA. The correspond-
ing parametric analysis can be made more rigorously: for
F ¼ G ¼ 0, the different contributions to the three-photon
polarization tensor scale as ∼mðvmÞ3 eE

m2 ½1þOðv2m2Þ� for the
term linear in E, and as ∼m v

m
eE
m2 ½ðeEm2Þ2Oðv2m2Þ�n, with

n ∈ Nþ, for higher powers of E. As the LCFA adopted
here neglects contributions ∼Oðv2m2Þ, terms with n > 1 are
not accounted for in the corresponding three-photon
polarization tensor. Hence, in the limit of F ¼ G ¼ 0
we find

Πρσηðk; k0; k00Þ ¼ i
α

45π

�
e
m2

�Z
x
eiðkþk0þk00Þx

��
eEðxÞ
m2

�
cρσηð1Þ ðk; k0; k00Þ −

4

7

�
eEðxÞ
m2

�
3

cρσηð3Þ ðk; k0; k00Þ
�
: ð10Þ

Here, we have decomposed the polarization tensor into components linear and cubic in the field amplitude E,

cρσηð1Þ ðk; k0; k00Þ ¼ 4½ðkk0gρσ − kσk0ρÞðk00F̂Þη þ ðkk00gρη − kηk00ρÞðk0F̂Þσ þ ðk0k00gση − k0ηk00σÞðkF̂Þρ�
− 7½kμk0νϵμνρσðk00�F̂Þη þ kμk00νϵμνρηðk0�F̂Þσ þ k0μk00νϵμνσηðk�F̂Þρ�; ð11Þ

cρσηð3Þ ðk;k0;k00Þ¼24ðkF̂Þρðk0F̂Þσðk00F̂Þηþ13½ðk�F̂Þρðk0�F̂Þσðk00F̂ÞηþðkF̂Þρðk0�F̂Þσðk00�F̂Þηþðk�F̂Þρðk0F̂Þσðk00�F̂Þη�; ð12Þ

employing the shorthand notation ðkF̂Þρ ≔ kνF̂
νρ. Note

that Eq. (10) is spanned by just 10 tensor structures, as
further 10 tensor structures have been eliminated by the 10
independent equations of the Ward identity. Additionally,
we have introduced the normalized field strength tensor F̂μν

as Fμν ¼ F̂μνE, which is independent of x for unidirec-
tional fields, i.e., E ¼ êEEðxÞ and B ¼ êBEðxÞ. This is,
e.g., the case for linearly polarized Gaussian laser beams in
the paraxial approximation.

For inhomogeneities with sufficiently simple profiles,
the space-time integration can be performed straightfor-
wardly. For constant backgrounds EðxÞ ¼ E, this yields
delta functions ð2πÞ4δð4Þðkþ k0 þ k00Þ in Eq. (10) which
enforce energy and momentum conservation. It is particu-
larly instructive to study the constant-field limit for the case
where kμ, k0μ and k00μ are four-momenta describing real
photons. In this case, we have kμ ¼ k̂μω, with photon
frequency ω ¼ jkj and normalized four-momentum
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k̂μ ¼ ð1; k̂Þ. The unit vector k̂ ¼ k=ω points into the photon
propagation direction; in turn k̂μ is frequency independent,
solely representing the propagation geometry. Accounting
for the relative sign for in- and outgoing photons [cf. Eqs. (1)
and (2)], all three photons propagate collinearly in the
constant-field case, and the combination δð4Þð−k þ k0 þ
k00Þcρσηð1Þ ð−k̂; k̂0; k̂00Þ ¼ δð4Þðk − k0 − k00Þcρσηð1Þ ðk̂; −k̂0; −k̂00Þ
vanishes. Hence, in constant fields the lowest-order con-
tributions to three-photon amplitudes are ofOððeEm2Þ3Þ, which
is a manifestation of the Adler theorem [21]. Beyond the
constant-field limit, however, first-order contributions are
expected to become relevant if inhomogeneities facilitate an
appreciable four-momentum transfer between the back-
ground field and the probe photons. This can give rise to
interactions among probe photons whose directions of
propagation differ notably from each other.
In order to explicitly evaluate the number of signal

photons from splitting or merging from the amplitudes (1)
and (2), we have to specify the incoming photon fields.
The differential number dN of induced photons from
photon splitting or merging can then be obtained
from the corresponding amplitude M by Fermi’s Golden

Rule, d6N p→p0p00
Split ¼ d3k0

ð2πÞ3
d3k00
ð2πÞ3 jM

p→p0p00
Split ðk0; k00Þj2 and

d3N p0p00→p
Merg ¼ d3k

ð2πÞ3 jM
p0p00→p
Merg ðkÞj2. In this work, we limit

ourselves to incoming probe photon beams modeled as
monochromatic linearly polarized plane waves,

aðpÞν ðxÞ ¼ 1
2
E
ω ϵ

ðpÞ
ν ðk̂Þeiωðk̂xÞ. For plane waves, we can

express the field strength of the probe beams through
the time averaged intensity, E ¼ ffiffiffiffiffiffiffiffiffi

2hIip
, which in turn is

related to the photon current density J ¼ N
σT (i.e. the number

of photons N passing through an area σ in a certain time
interval T) via hIi ¼ ωJ. Hence, the formulae for the
differential number of photons induced from either photon
splitting or merging can be compactly represented as

d6N p→p0p00
Split ¼ J

d3k0

ð2πÞ3
d3k00

ð2πÞ3
				 ϵ

ðpÞ
ρ ðkÞffiffiffiffiffiffi
2ω

p Πρσηð−k; k0; k00Þ

×
ϵ�ðp

0Þ
σ ðk0Þffiffiffiffiffiffiffi

2ω0p ϵ�ðp
00Þ

η ðk00Þffiffiffiffiffiffiffiffi
2ω00p

				
2

; ð13Þ

d3N p0p00→p
Merg ¼ J0J00

d3k
ð2πÞ3

				 ϵ
�ðpÞ
ρ ðkÞffiffiffiffiffiffi
2ω

p Πρσηðk;−k0;−k00Þ

×
ϵðp

0Þ
σ ðk0Þffiffiffiffiffiffiffi
2ω0p ϵðp

00Þ
η ðk00Þffiffiffiffiffiffiffiffi
2ω00p

				
2

: ð14Þ

III. POLARIZATION PROPERTIES IN THE
CROSSED-FIELD CASE

For the remainder of this work we assume a unidirec-
tional background field inhomogeneity with orthogonal

electric and magnetic fields, characterized by the unit
vectors êE and êB respectively. We assume êE ¼ cosφêx þ
sinφêy and êB ¼ êEjφ→φþπ

2
. The direction of the field

vectors in the x-y plane is parametrized by the angle φ ∈
½0; 2πÞ (see Fig. 2). It is convenient to introduce the four-
vector κμ ¼ ð1; êE × êBÞ ¼ ð1; êzÞ; its spatial components
correspond to the normalized Poynting vector of the
background field. In order to describe the propagation
and polarization properties of the probe photons efficiently,
we switch to spherical coordinates. A probe photon’s four-
momentum is then given by kμ ¼ ωð1; k̂Þ, where
k̂ ¼ ðcosϕ sin θ; sinϕ sin θ; cos θÞ. Without loss of gener-
ality, we define its polarization four-vector for the polari-

zation mode p ¼ 1 as ϵð1Þμ ðkÞ ¼ ð0; ϵð1ÞðkÞÞ, with

ϵð1ÞðkÞ ¼

0
B@

cos θ cosϕ sin γ − sinϕ cos γ

cos θ sinϕ sin γ þ cosϕ cos γ

− sin θ sin γ

1
CA: ð15Þ

It is straightforward to verify that k̂ and ϵð1ÞðkÞ are
orthogonal for any angle γ. The corresponding second
perpendicular polarization mode hence is given by

ϵð2Þμ ðkÞ ¼ ϵð1Þμ ðkÞjγ→γ−π
2
. The photon state is now completely

characterized by its energy ω and the set of parameters
Θ ≔ fθ;ϕ; γg. The angle γ ∈ ½0; 2πÞ determines the ori-
entation of the trihedron composed of k̂, ϵð1ÞðkÞ and
ϵð2ÞðkÞ. For γ ¼ 0, the polarization vector ϵð1ÞðkÞ lies in
the x-y plane, while ϵð2ÞðkÞ lies in the plane spanned by êz
and k̂; cf. Fig. 2. For θ ¼ f0; πg both polarization vectors
lie in the x-y plane. Since we have left the angle γ in the
definition of ϵð1ÞðkÞ unspecified, it actually suffices to
perform all the subsequent calculations exclusively for the
choice of p ¼ p0 ¼ p00 ¼ 1 in order to study the inter-
actions of linearly polarized photon beams. All other linear
photon polarizations can be addressed by shifting the
angles γ, γ0 and γ00 accordingly.
Equations (13) and (14) require us to calculate contrac-

tions of photon polarization vectors with the polarization
tensor. To this end, we define the polarization overlap
functions as the contraction of the photon polarization
vectors with the tensor structures in Eqs. (11) and (12),

cpp
0p00

ðnÞ ðΘ;Θ0;Θ00;φÞ≔ ϵðpÞρ ðkÞϵðp0Þ
σ ðk0Þϵðp00Þ

η ðk00ÞcρσηðnÞ ðk̂; k̂0; k̂00Þ:
ð16Þ

Recall that the label n refers to the contributions linear
(n ¼ 1) and cubic (n ¼ 3) in external field amplitude. We
obtain
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c111ð1Þ ðΘ;Θ0;Θ00;φÞ

¼ 2sin2
θ00

2



½ð1 − cos θ cos θ0Þ cosðϕ − ϕ0Þ − sin θ sin θ0�

× ½4 sin δ00 cosðγ þ γ0Þ þ 7 cos δ00 sinðγ þ γ0Þ�
þ ðcos θ − cos θ0Þ sinðϕ − ϕ0Þ
× ½4 sin δ00 sinðγ þ γ0Þ − 7 cos δ00 cosðγ þ γ0Þ�

�

þ cyclic perm: of Θ;Θ0;Θ00; ð17Þ
c111ð3Þ ðΘ;Θ0;Θ00;φÞ

¼ −8sin2
θ

2
sin2

θ0

2
sin2

θ00

2



24 sin δ sin δ0 sin δ00

þ 13½sin δ cos δ0 cos δ00 þ cos δ sin δ0 cos δ00

þ cos δ cos δ0 sin δ00�
�
; ð18Þ

where δ ≔ φ − γ − ϕ, and likewise for the primed
quantities.
The polarization overlap functions are independent of

the background amplitude profile EðxÞ. Furthermore, they
are fully symmetric with respect to an exchange of the
photons Θ, Θ0 and Θ00. If two photons, say Θ and Θ0,
propagate parallelly, the term proportional to sin2 θ00

2
in

cpp
0p00

ð1Þ vanishes, as then θ ¼ θ0 and ϕ ¼ ϕ0. Consequently,
if all three photons propagate in the same direction, which
is the case, e.g., for photon splitting in constant fields,
cpp

0p00
ð1Þ vanishes and the three-photon amplitudes are cubic
in the background field (Adler theorem). Also note that the
polarization overlap functions cpp

0p00
ð1Þ and cpp

0p00
ð3Þ behave

quite differently with regard to probe photon propagation
along the direction of the background field’s normalized

Poynting vector κ ¼ êz. In general, c
pp0p00
ð1Þ does not vanish if

at least one photon’s propagation direction differs from êz.

In contrast, cpp
0p00

ð3Þ vanishes if at least one photon travels

along êz. In the context of pure photon propagation effects,
i.e., on the level of single-photon to single-photon tran-
sition amplitudes in external fields, it is a well-known fact
that photon propagation is not modified in weak crossed-
field backgrounds, if ðk̂; êE; êBÞ form a basis of a right-
handed orthogonal coordinate system [5]. Since in our case

the function cpp
0p00

ð3Þ determines the polarization properties in

constant-crossed background fields to leading order in the
background field, we find a similar behavior for photon
splitting and merging here.
Let us briefly investigate the selection rules for the

photon merging and splitting processes. These are a direct
consequence of the structure of the Heisenberg-Euler
Lagrangian being an even function of G as dictated by
the CP invariance of QED. This exerts a strong influence on
the structure of the three-photon polarization tensor (10);
cf. also Eq. (6).
Considering the case of unidirectional backgrounds, the

normalized field strength tensor F̂μν is x independent. For a
given four-momentum kμ, one can then construct four
independent four-vectors: kμ, ðF̂2kÞμ, ðk�F̂Þμ and ðkF̂Þμ.
The latter two span the physical polarization eigenmodes of
a probe photon of momentum kμ. We call the polarization
aμ ∼ ðk�F̂Þμ the “slow” (s) mode of propagation, since the

external field reduces its phase velocity to vðsÞph ≃ 1 −
14
45

α
4π ρð E

Ecr
Þ2 (where ρ is a purely geometrical factor [5]).

Correspondingly, ðkF̂Þμ describes the “fast” (f) mode with

vðfÞph ≃ 1 − 8
45

α
4π ρð E

Ecr
Þ2 ≥ vðsÞph . As ðk�F̂ÞμðkF̂Þμ ¼ 0, the 10

FIG. 2. Left: geometry of photon merging in a localized background field inhomogeneity with mutually perpendicularE,B and κ ∼ êz
for the particular choice of φ ¼ 0 (cf. main text). In this field configuration, two incoming probe photons with momenta k0 and k00 may
merge into one photon with momentum k. For photon splitting (not depicted) the roles are reversed: An incident photon with momentum
k may split into two photons with momenta k0 and k00. The polarization degrees of freedom of the photons are spanned by the unit
vectors ϵð1ÞðqÞ and ϵð2ÞðqÞ, where q ∈ fk; k0; k00g. This figure depicts the special case where the incident photons propagate in the x-z
plane, and γ0 ¼ γ00 ¼ 0. Right: the convention for the trihedron composed of k̂, ϵð1ÞðkÞ and ϵð2ÞðkÞ is such that for γ ¼ 0 the polarization
vector ϵð1ÞðkÞ lies in the x-y plane (shaded area).
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tensor structures (11) and (12) give rise to selection rules
which determine the allowed interactions between in- and
outgoing probe photons in the slow and fast modes.
Table I lists the resulting selection rules. Photon splitting

and merging are both governed by the same selection rules,
since they are both inferred from the same tensor structures
cρσηðnÞ ðk; k0; k00Þ; cf. Eqs. (11) and (12). Processes which are

cubic in the background field (n ¼ 3) feature selection
rules which are well known from photon splitting and
merging in constant fields [43]: only processes involving
either three fast, or one fast and two slow photons are
permitted in this case.
However, inhomogeneous backgrounds allow for

momentum transfers to probe photons. This gives rise to
processes linear in the background field which potentially
dominate over processes cubic in the background. The
function cρσηð1Þ ðk; k0; k00Þ then determines the leading order

polarization properties, and the restrictions on the selection
rules of the process cubic in the background field are lifted;
see Table I (middle column).
For the explicit calculations performed in this work, we

have employed the four-vectors ϵðpÞμ ðkÞ to specify the
polarization states of the incoming and outgoing probe

photons. In contrast to ðk�F̂Þμ and ðkF̂Þμ, the ϵðpÞμ ðkÞ form a
polarization basis independently of the background. Of
course, we can always tune a given polarization vector

ϵð1Þμ ðkÞ to either the slow or the fast mode by adjusting the
angle γ. Generically, the appropriate choice of γ depends on
the propagation direction k̂ of the considered photon. A
notable exception is obtained by restricting the photon
propagation to the x-z plane and specializing the back-
ground field polarization to φ ¼ 0. In this case, the back-
ground electric field points along êx, and the magnetic field
along êy as in Fig. 2. In this case we find that the choice of
γ ¼ 0 coincides with the slow photon mode, as

ϵð1Þμ ðkÞjϕ¼f0;πg;γ¼0 ∼ ðk�F̂Þμ. Likewise, γ ¼ π
2
describes the

fast photon mode, as ϵð1Þμ ðkÞjϕ¼f0;πg;γ¼π
2
∼ ðkF̂Þμ. For this

special case, we observe that the selection rules for the
processes linear and cubic in the background field coincide;
cf. Table I (right column).

IV. PHOTON MERGING AND SPLITTING IN A
LOCALIZED BACKGROUND INHOMOGENEITY

In what follows, we specialize the background inhomo-
geneity to resemble the electromagnetic field configuration
in the focal spot of a pulsed high-intensity laser beam,
propagating along the z direction with normalized four-
wavevector κμ (cf. Sec. III above). We assume a linearly
polarized beam with unidirectional perpendicular electric
and magnetic fields of equal amplitude profile (see Fig. 2),

�
eEðxÞ
m2

�
¼

�
eE
m2

�
e−ð 2r

w0
Þ2−ð2z

wzÞ2−ð2ðz−tÞτ Þ2 cos


Ωðz − tÞ

�
;

ð19Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Equation (19) mimics the profile of a

pulsed laser beam of peak field amplitude E, frequency Ω
and pulse duration τ, which is focused around z ¼ 0. The
transversal profile is a Gaussian with 1

e-width w0, resem-
bling the transversal profile of a Gaussian laser beam. We
neglect beam divergence effects and assume this width to
be constant along the beam. This can be justified by the fact
that the considered phenomena become sizable only within
the Rayleigh range of the focused laser beam. Here, beam
widening effects are small, and the beam width can be
considered as approximately constant. The length wz=2
mimics the Rayleigh length of the pump laser beam. Note
that the real longitudinal profile of a Gaussian beam is the
square root of a Lorentzian (∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2z=wzÞ2

p
) rather

than a Gaussian, as has been chosen here. Nevertheless, the
qualitative features of photon splitting and merging are
expected to result in quantitatively comparable effects for
both types of profiles. The exponential profile simply helps
us to obtain more compact formulae due to the appearance
of Gaussian integrals in Eq. (10).

TABLE I. Selection rules for photon splitting and merging for
generic propagation directions (middle column), as well as the
special case where all photons propagate in the x-z plane and the
choice φ ¼ 0 for the background field polarization (right col-
umn). These selection rules can be inferred from the tensor
structures cρσηðnÞ ðk; k0; k00Þ in Eqs. (11) and (12). Here, “s” (“f”)

denotes probe photons polarized in the “slow” (“fast”) polariza-
tion mode in the background field; see main text. Photon splitting
and merging are governed by the same selection rules. The
selection rules for processes which are cubic in the background
field strength (n ¼ 3) agree with the well-known rules valid in the
constant-field limit [43]. By contrast, first-order processes
(n ¼ 1) generically lift the restrictions for the n ¼ 3 case, unless
the wave-vectors of all probe photons are confined to the x-z
plane, i.e., for ϕ ¼ ϕ0 ¼ ϕ00 ¼ f0; πg, and φ ¼ 0 (right column).

For this special case we have ϵð1Þμ ðkÞjϕ¼f0;πg;γ¼0 ∼ ðk�F̂Þμ and

ϵð1Þμ ðkÞjϕ¼f0;πg;γ¼π
2
∼ ðkF̂Þμ, such that the “s” (“f”) polarization

mode corresponds to the choice of γ ¼ 0 (γ ¼ π
2
); cf. the main

text.

Allowed? In x-z plane, φ ¼ 0

(Splitting), (Merging) n ¼ 1 n ¼ 3 n ¼ 1, 3

(s → s0, s00), (s0, s00 → s) Yes No No
(f → f 0, f 00), (f 0, f 00 → f) Yes Yes Yes
(s → f 0, f 00), (f 0, f 00 → s)
(f → s0, f 00), (s0, f 00 → f) Yes No No
(f → f 0, s00), (f 0, s00 → f)
(s → s0, f 00), (s0, f 00 → s)
(f → s0, s00), (s0, s00 → f) Yes Yes Yes
(s → f 0, s00), (f 0, s00 → s)
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Inserting the field profile Eq. (19) into the polarization tensor Eq. (10), and plugging the resulting expression into
Eqs. (13) and (14), yields the induced numbers of signal photons due to photon splitting and merging,

� d6N p→p0p00
Split

d3N p0p00→p
Merg

�
¼

� J
ð2πÞ3 d

3k0d3k00

J0J00d3k

�
w4
0w

2
zτ

2α2

115202π

�
eE
m2

�
2
�

e
m2

�
2

ωω0ω00

×

				cpp0p00
ð1Þ ðΘ;Θ0;Θ00;φÞ

X
l¼�1

e−
1
16
½w2

0
ðq2xþq2yÞþw2

zðq0−qzÞ2þτ2ðq0þlΩÞ2�

−
1

63

�
eE
m2

�
2

cpp
0p00

ð3Þ ðΘ;Θ0;Θ00;φÞ
X3
l¼0

½1þ lð3 − lÞ�e− 1
48
½w2

0
ðq2xþq2yÞþw2

zðq0−qzÞ2þτ2ðq0þð3−2lÞΩÞ2�
				
2

: ð20Þ

Here, qμ ≔ kμ − k0μ − k00μ denotes the four-momentum
exchange of the probe and signal photons. The value
of qμ measures the deviation from the four-momentum
conservation law in constant background fields,
qμjconst: bg: ¼ 0. The contribution proportional to cð1Þ in
Eq. (20) encodes the process linear in the background: the
pump laser field exchanges a single photon of frequency Ω
with the probe photon fields. The contribution proportional
to cð3Þ encodes the process cubic in the pump field
amplitude. Here the exchange of three pump photons
facilitates possible energy transfers of f3Ω;Ω;−Ω;−3Ωg
between the pump laser pulse and the probe photon beams.
On the level of the three-photon amplitude, the latter
process is generically suppressed by a factor of ðeEm2Þ2
compared with the linear process. However, the exponential
suppression of splitting and merging as a function of the
four-momentum transfer is smaller for the cubic than for
the linear process, as is visible from the prefactors ( 1

48
) vs

( 1
16
). This allows for kinematical situations where the cubic

processes dominate over the linear ones.
Furthermore, the momentum dependences in the expo-

nentials in Eq. (20) give first insights into the emission
characteristics of photon splitting and merging. A maxi-
mum of induced signal photons occurs for those energy
and angle parameters which lead to a vanishing argument of
one of the exponential functions in Eq. (20). This happens
if the interacting photons fulfill energy conservation
ω − ω0 − ω00 þ lΩ ¼ 0, with l ∈ f−3;−1; 1; 3g. A spe-
cific set of energies then results in a relation for the
corresponding polar angles fθ; θ0; θ00g: ω cos θ þ lΩ ¼
ω0 cos θ0 þ ω00 cos θ00 from z-momentum conservation.
Finally, the propagation characteristics in the x-y plane
transversal to the pump laser beam are determined by the
corresponding momentum conservation kx − k0x − k00x ¼ 0
and ky − k0y − k00y ¼ 0. These relations can be employed to
obtain an estimate for the optimum angle of incidence of
the probe photons maximizing the signal photon yield for a
desired emission angle. For more precise estimates, the
influence of the polarization overlap functions has to be
taken into account as well. Furthermore, as our pump beam
has a finite spatial and temporal extent, the emission signal

will be spread out over a certain angle interval, whose width
is determined by the focusing parameters fw0; wzg and
pulse duration τ of the pump beam.
On the one hand, the microscopic amplitudes for photon

splitting and merging coincide, as they are fully determined
by the three-photon polarization tensor. On the other hand,
completely different scaling behaviors occur for the num-
ber of signal photons evaluated from Eqs. (13) and (14):
photon merging is quadratic in the macroscopic probe
photon fields, whereas photon splitting is linear in the
probe photon field. To linear order in the pump field, the

ratio of N Split to NMerg thus scales as
N Split

NMerg
∼ ðvmÞ4ðeEinm2 Þ−2;

cf. also Eq. (20). Here, Ein denotes the field strength of each
incoming probe photon field, and v is the typical momen-
tum scale of the probe photons. In the following, we show
that setups with high-intensity lasers in the optical regime
(vm ≪ 1) strongly favor the merging process because of a
substantially different phase space for the signal photons as
well as the scaling with the incoming probe photon
currents.
To make contact with an experimental setup, we assume

the inhomogeneous pump field to be generated by a high-
intensity laser, which is focused down to the diffraction
limit (attainable with a focusing aperture with f# ¼ 1).
In this case, the diameter of the pump beam in its focus
is given by twice its wavelength λpump ¼ 2π

Ω , such that
w0 ¼ 2λpump. Likewise, we identify wz with twice the
Rayleigh length of a Gaussian beam, i.e.
wz ¼ 2zR ¼ 2πλpump. The pulse duration is given by
τ ¼ τpump. Assuming that the effective focal area contains
86% of the laser energy W ( 1e2-criterion), we estimate the
peak field strength of the pump as

E2 ¼ 2hIi ≈ 2
0.86W
τσ

; ð21Þ

with focal area σ ≈ πλ2. We employ Eq. (21) to determine
the field strength of the pump laser for given laser
parameters. The analogous relation for the probe beams
is used to determine the photon current densities J,
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introduced in Eqs. (13)–(14). Given the probe laser
parameters such as pulse energyWprobe, frequency ωprobe ¼
2π

λprobe
and pulse duration τprobe, we obtain J ¼ 0.86

2π2
Wprobe

τprobeλprobe
.

Note that the plane-wave probe picture is only fully
adequate for τprobe ≥ τpump. Otherwise corrections because
of the finite time overlap of the pump and probe laser pulses
have to be taken into account.
For a first estimate, we adopt the parameters of state-of-

the-art high-intensity laser facilities, namely two identical,
fully synchronized petawatt-class laser systems of wave-
length λbeam ¼ 800 nm ≈ 4.06 eV−1, and pulse duration
τbeam ¼ 25 fs ≈ 38.0 eV−1. Note that these parameters
match the parameters of the laser system to be installed
at ELI-NP [58]. We assume an energy of Wbeam ¼ 25 J ≈
1.56 × 1020 eV for each beam, which corresponds to a laser
power of 1PW per beam. Note that this can be considered
as a rather conservative estimate as the ELI-NP lasers are
designed as 10PW systems. One of these lasers is assumed
to constitute the pump, and the second one is assumed to be
frequency doubled and split into two probe beams of equal
power. The energy loss for frequency-doubling is estimated
as 50%, while the pulse duration is considered as unaf-
fected by the frequency-doubling process. For each of the
two probe beams we thus have τprobe ¼ τbeam, λprobe ¼
1
2
λbeam and Wprobe ¼ 1

4
Wbeam. Of course, the parameters of

the pump are τpump ¼ τbeam, λpump ¼ λbeam, and
Wpump ¼ Wbeam. The fact that such a setup greatly favors
photon merging over splitting becomes obvious from the

ratio of the induced signal photons, N Split

NMerg
∼ v4

E2in
∼

ω4
probe

E2
probe

∼

10−16 (cf. above).

For the remainder, we therefore exclusively focus on
photon merging. We only retain contributions in Eq. (20)
which are of first order in the pump, and neglect third-order
terms. The latter are subleading for the considered kin-
ematical settings dictated by requirement that the argument
of the exponential function in the second line of Eq. (20)
should vanish. The total number of merged photons arises
from Eq. (20) (second line) by integrating over all possible
energies of the merged photons, ω ¼ 0…∞. Energy con-
servation requires the merged photon to have a final energy
of ≈2ωprobe � Ω ¼ ð4� 1Þωbeam, corresponding to the
absorption/emission of one photon with energy Ω from/to
the pump laser field. For the specific beam configuration
considered below, the argument in the exponential function
of Eq. (20) can only vanish for the emission process. Hence,
the induced signal photons will predominantly be emitted
with an energy ofω ≈ 2ωprobe −Ω ¼ 3ωbeam ¼ 4.6 eV. The
fact that the signal photon is an odd harmonic of the probe
can be used for efficient filtering and detection techniques
for optimizing the signal-to-noise ratio.
For simplicity, we limit ourselves now to pump and probe

beam propagation in the x-z plane; cf. also Table I (right
column). Figure 3 shows the total number of merged
photons for the present setup. Here, one probe beam with
wave vector k0 counterpropagates the pump laser beam, and
the second probe beam with wave vector k00 enters under an
angle of θ00. The geometry is depicted in the right panel of
Fig. 3.As is visible in the left panel of Fig. 3, this setup yields
a sizable total number of merged photons near the optimum
incoming angle of θ00 ≈ 1.23 rad. The number of merged
photons depends strongly on the polarization modes of the
probe photons, with a maximum given for the parameter
choice γ ¼ 0 for the merged photon, and γ0 ¼ 0 and γ00 ¼ π

2

FIG. 3. Left panel: total number of merged photons NMerg as a function of the angle θ00 ¼ ∢ðk00; êzÞ attainable for the beam
configuration sketched on right panel driven by two 1PW-class lasers as described in the main text. In the vicinity of the focal spot of a
Gaussian beam, curvature effects can be neglected, justifying the simpler pump-beam profile (19) employed in this work (indicated by
the dashed lines). The result includes an integration over the complete energy range and the full solid angle of the induced merged
photons. The probe beams have been chosen to propagate in the x-z plane, i.e. ϕ0 ¼ 0, ϕ00 ¼ 0, and θ0 ¼ π (cf. also Fig. 2). The
polarization of the pump beam is chosen as φ ¼ 0. The plot depicts the number of merged photons for various polarization assignments
of the probe photons, allowed according to the selection rules in Table I (right). For two 10PW driver lasers, the number of merged
photons increases by a factor of 1000.
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for the probe photons. As we limit ourselves to the x-z plane
and φ ¼ 0, this choice can be identified with the process s0,
f 00 → s (cf. Table I). As the number ofmerged signal photons
scales as ∼W3

beam, our results can straightforwardly be
rescaled to the design parameters of ELI-NP featuring
two 10PW laser beams bymultiplyingwith a factor of 1000.
Figure 4 displays the emission characteristics for the

optimum geometry with θ00 ¼ 1.23 rad as inferred from
Fig. 3. The left panel shows the distribution of merged
photons as a function of the polar angle θ, while the right
panel depicts the distribution as a function of ϕ. In both
cases Eq. (20) has been integrated over the entire parameter
range of the correspondingly remaining angle as well as the
signal photon energy. These plots imply that the merged
photons are emitted into a rather small solid angle element:
they predominantly propagate in the x-z plane at an
outgoing polar angle of θ ≈ 2.46 rad (this result is illus-
trated in the right panel of Fig. 3, where the dashed vector k
has been chosen correspondingly). As noted above, the
widths of the curves depicted in Fig. 3 depend on the
focusing parameters w0 and wz as well as the angles of
incidence of the probe beams.
Most notably, for our specific setup the requirements of

momentum and energy conservation yield a maximum
emission of signal photons into regions where the fields of
both the pump and the probe beams essentially vanish.
Such a constellation is most favorable for optimizing the
signal-to-noise ratio. Note that a Gaussian beam focused
down to the diffraction limit, as exemplarily depicted in
Fig. 3 (right panel), has an opening angle of
1=π ≈ 0.31 rad. The resulting emission of the signal into
the “free field” area together with the comparatively large
number of signal photons makes this scenario an ideal
candidate to experimentally verify the nonlinear nature of

the quantum vacuum. Note that the laser parameters
employed here resemble the parameters of typical petawatt
class optical laser facilities which are currently in oper-
ation. Facilities with even more intense laser beams are
being projected and developed (see, e.g., [58–61]).
For completeness let us note that it might prove

experimentally challenging to realize a setup with two
exactly counterpropagating lasers as considered here;
cf. Fig. 3 (right panel). Even though this setup provides
for a larger number of merged photons, it might be
desirable to avoid counterpropagating beams for experi-
mental purposes. Keeping the remaining experimental
parameters fixed but taking, e.g., θ0 ¼ 3π

4
and θ00 ¼

0.77 rad still yields a total number of NMerg ≈ 11.7 signal
photons per laser shot (for s0, f 00 → s), emitted predomi-
nantly at θ ¼ 1.92 rad. In summary, our merging proposal
facilitates rather flexible experimental realizations without
fine-tuning requirements for the geometry of the incoming
pump and probe beams.
Let us finally compare the all-optical configuration con-

sidered herewith the four-wavemixing scenario suggested in
[36,37]. The latter scenario focuses on the mixing of three
incident photon waves from the outset to address elastic
photon-photon scattering with high power lasers. Both
scenarios have the use of high-intensity lasers in common
as well as the same underlying set of Feynman diagrams. A
maindifference is thatwe consider themergingof two photon
waves in a pump field inhomogeneity which is not restricted
to the electromagnetic field of a propagating laser beam. Our
formalism generalizes straightforwardly to any inhomo-
geneous pump field. Moreover, in our approach we can
naturally make contact with the constant crossed-field limit
for the pump field configuration aswell as read off thevarious
selection rules which govern the photon merging process.

FIG. 4. Emission characteristics of the attainable number of merged photons for our setup driven by two 1PW-class lasers. The
parameters of the incoming beams are chosen as θ0 ¼ π, ϕ0 ¼ 0, θ00 ¼ 1.23 rad and ϕ00 ¼ 0; the polarization of the pump beam is φ ¼ 0.
The angle θ00 maximizing the merged photon yield is visible in Fig. 3. Left panel: differential photon number dNMergðθÞ as a function of
the polar angle θ, with the corresponding energy and ϕ integrations performed over the full parameter regime. Right panel: dNMergðϕÞ
as a function of the polar angle ϕ, with the corresponding energy and polar angle integrals performed over their full parameter regimes.
From these plots we infer that the merged signal photons are predominantly emitted in the x-z plane, at an outgoing polar angle of
θ ≈ 2.46 rad. For two 10PW driver lasers, the number of merged photons increases by a factor of 1000.
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V. CONCLUSIONS

We have investigated photon merging and splitting
processes in inhomogeneous, slowly varying electromag-
netic fields, based on the three-photon polarization tensor
following from the Heisenberg-Euler effective action. The
influence of inhomogeneities appears particularly promis-
ing in the context of high-intensity laser facilities. For the
parameter range of typical petawatt class lasers as pump
and probe, we provide estimates for the numbers of signal
photons attainable in an actual experiment. The combina-
tion of frequency upshifting, polarization dependence and
scattering off the inhomogeneities yields an inherent signal-
to-background separation. This may give rise to successful
implementations of single-photon detection schemes
and renders photon merging an ideal signature for the
experimental exploration of nonlinear quantum vacuum
properties.
The central theoretical tool for these results is the explicit

representation of the three-photon polarization tensor at
one-loop order for slowly varying, but otherwise arbitrary,
electromagnetic field backgrounds. This expression allows
us to analyze in detail the selection rules for photon
splitting and merging in crossed fields. We have also been
able to demonstrate how the well-established restrictions
arising from selection rules in constant background fields
are lifted in inhomogeneous background fields.

The framework laid out in this work is ideally suited to
obtain analytical insights into three-photon interaction
processes induced by vacuum fluctuations in the strong
electromagnetic fields generated by high-intensity lasers.
The relevance of inhomogeneities becomes obvious from
the fact that photon splitting and merging processes in
constant background fields are suppressed as ðE=EcrÞ6 in
the ratio of the background field strength E to the critical
field strength Ecr. This consequence of the Adler theorem
can be circumvented by inhomogeneous background fields
which allow for momentum and energy transfers between
the probe photons and the background field. As a result, the
suppression is decreased to only ðE=EcrÞ2.
As our quantitative estimates for the number of attainable

signal photons already yield a decent amount of merged
signal photons per laser shot—even for already existing
state-of-the-art 1PW class high-intensity laser systems—
we believe that photon merging can be a good candidate to
detect and investigate the optical nonlinearities of the
quantum vacuum for the first time.
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