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We point out that the Cartan geometry known as the second-order conformal structure provides a natural
differential geometric framework underlying gauge theories of conformal gravity. We are concerned with
two theories: the first one is the associated Yang-Mills-like Lagrangian, while the second, inspired by [1], is
a slightly more general one that relaxes the conformal Cartan geometry. The corresponding gauge
symmetry is treated within the Becchi-Rouet-Stora-Tyutin language. We show that the Weyl gauge
potential is a spurious degree of freedom, analogous to a Stueckelberg field, that can be eliminated through
the dressing field method. We derive sets of field equations for both the studied Lagrangians. For the second
one, they constrain the gauge field to be the “normal conformal Cartan connection.”Finally, we provide in a
Lagrangian framework a justification of the identification, in dimension 4, of the Bach tensor with the
Yang-Mills current of the normal conformal Cartan connection, as proved in [2].
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I. INTRODUCTION

In 1918-1919, H. Weyl, trying to devise a “truly infini-
tesimal geometry” that generalizes Riemann’s,' came up
with a spacetime manifold equipped with what today we
would call a conformal class of metric: a metric defined up to
positive local rescalings. The natural scale-invariant
Lagrangian he proposed (of Yang-Mills type, as we could
say anachronistically) intended to unify gravity and electro-
magnetism [3,4]. The theory turned out to be incompatible
with the basic experimental fact of the stability of atomic
spectra. But still to this day, scale invariance retains theo-
retical interest, as witnessed by its importance e.g. in string
theory and conformal field theory, among many other topics.

In particular, the Lagrangian for Weyl gravity

Lyeyi = =Tr(W A +W) = —%WWWW"”/’”dV (1)
introduced by Bach in 1921 [5] and constructed with the
Weyl tensor W is still actively investigated. Solutions of its
field equation, the Bach equation, are under study to
connect the theory to empirical data and see if it can rival
general relativity. In particular its viability as an alternative
to dark matter and dark energy is still under scrutiny, as is
its viability as a quantum gravity theory. See the reviews

'H. Weyl did so by requiring that not only the directions of
vectors at distant points a manifold couldn’t be compared without
a non-canonical choice of connection, as in Riemann’s geometry,
but also that neither could be their lengths. This he called “scale
freedom” and then “gauge freedom”. He thereby originated the
notion of gauge symmetry, which would reveal its deepness
within quantum mechanics few years later, with the posterity we
know.
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[6,7] and references therein to get only a sample of the
significant literature on the subject.

After the 1956 pioneering work of Utiyama on the
gauging of an arbitrary Lie group and its first treatment of
gravitation as a gauge theory of the Lorentz group [8], in
the late 1970s, several authors investigated the question of
the gauge structure of gravity (and supergravity) [9-13].
During the same period, some of them studied the gauging
of the 15-parameter conformal group extending the
Poincaré group, and its supersymmetric counterpart as
well [14-18]. For a general review see e.g. [19].

Following a more abstract differential geometric
approach, authors [20-22] already gave a gauge formulation
of conformal gravity within the framework of higher-order
frame bundles [23]. The relevant geometry is known as the
second-order conformal structure. However, it is better to use
an equivalent formulation in terms of Cartan geometry
[23,24], which allows a matrix treatment much closer to
the usual gauge field framework familiar to physicists.

As is well known, the geometry of connections on
principal fiber bundles is an appropriate mathematical
setting for dealing with Yang-Mills gauge theories.
Because of its strong link to the spacetime manifold M,
Cartan geometry provides a natural framework that prop-
erly addresses the peculiarity of gravitation among the
other interactions. Thus, it would perfectly fit the geometry
underlying gauge theories of gravitation, in particular, that
of Weyl gravity. Accordingly, our aim is to show that the
second-order conformal structure is the Cartan geometry
underlying a genuine gauge formulation of conformal
gravity containing Weyl gravity as a special case.

Moreover, inspection of the explicit field equations
obtained in [1] raises the issue of whether the field variables
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could be pieced together into a single object, namely, the
conformal Cartan connection. Because of the possible
geometry underlying Weyl gravity, it may be relevant to
give an account of this aspect.

The paper is organized as follows. In Sec. I we give a
brief description of the second-order conformal structure.
In Sec. I we write the most natural Yang-Mills-like
Lagrangian, and a slightly generalized version. We show
why the Weyl gauge potential of dilation can be considered
as a spurious degree of freedom, and can be suppressed
thanks to the so-called dressing field method; the latter is
consistent with the locality principle. We also derive field
equations and show that they single out the normal
conformal Cartan connection as a gauge field. In Sec. III
we make contact with some papers in the literature, in
particular, with [1] and in addition we justify the equiv-
alence between the Bach equation and the Yang-Mills
current of the normal conformal Cartan connection as
found in [2]. Then we conclude. Appendixes give some
details on how gauge invariance restricts the choices of
Lagrangians, as well as a brief recap of the dressing field
method.

II. SECOND-ORDER CONFORMAL STRUCTURE

We refer to [24] and to [23,25] for a detailed math-
ematical presentation of Cartan geometry and higher-order
frame bundles respectively. Here we just sketch the
necessary material to follow our scheme.

The whole structure is modeled on the Klein pair
of Lie groups (G,H) where G = O(2,m)/{+I,,,,} and
H is the isotropy group such that the corresponding
homogeneous space is the compactified Minkowski space
(§™=1 x §')/Z?> = G/H. The group H has the following
factorized matrix presentation,

z 0 1 r %rr
H:K()Kl: O S 0 O T] rt . (2)
0 0 ! 0 0 1

wherez € W=R*,S € SO(l,m — 1), and r € R™*. Here
" stands for the -transposition; namely, for the row vector r
one has r' = (ry~")T (the operation T being the usual
matrix transposition), and R™* is the dual of R"”. We refer
to W as the Weyl group of rescaling. Obviously
Ky=CO(l,m—1), and K, is the Abelian group of
inversions (or conformal boosts).

Infinitesimally we have the Klein pair (g, §)) of graded
Lie algebras [23]. They decompose respectively as g =
g1 Pg®g =R"@co®R™, and h=g,Dg =
co @ R™*. In matrix notation,
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e 1 O e 1 O
g = T v 0 Dh= 0 v 1 ,
0 7 —e 0 0 —e

with (v —€l) € ¢o, 7 € R™, 1 € R™*, and the -transposi-
tion of the column vector 7 is 7/ = (y7)7. The graded
structure of the Lie algebras, [g;.q,] € g,.;, i,j=0,=%1
with the Abelian Lie subalgebras [¢_;, g_;] = 0 = [g;, g,],1s
automatically handled by the matrix commutator.

The second-order conformal structure is a Cartan geom-
etry (P,w) where P ="P(M,H) is a principal bundle
over M with structure group H = KoK, and w €
Q!'(U,g) is a (local) Cartan connection 1-form on
U C M. The curvature of w is given by the structure
equation, Q = dw + 1 [w, w| = dw + w* € Q*(U, g) (the
wedge product is tacit, @w?> = @ A w). Both have matrix
representations,

a a 0 f I o
w=|0 A o | and Q=|0 F II' |. (3)
060 —a 0 0 —f

One can single out the so-called normal conformal
Cartan connection (which is unique) by imposing the
constraints

® =0 (torsion free) and F9,,, =0. (4)
Together with the g_;-sector of the Bianchi identity
dQ + [w,Q] =0, (4) implies f = 0 (trace free), so that
the curvature of the normal Cartan connection reduces to

0 I o
Q=0 F IT
0 0 O

From the normality condition F¢,,; = 0 in (4), it follows
that @ has components [in the 6 basis of Q" (/)]

(ml—z) <R“” - 2(,:;1)%1) (5)

where R and R, are the Ricci scalar and Ricci tensor
associated with the 2-form R = dA + AZ. In turn, from (5)
it follows that

Qg = —

F:=R+6a+d0 =W

is the Weyl 2-form. By the way, in the gauge a = 0, II :=
da + aA = Da looks like what we can call the Cotton
2-form.

The principal bundle P(M, H) is a second-order G-
structure, a reduction of the second-order frame bundle
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L>M,; it is thus a “2-stage bundle.” The bundle P(M, H)
over M can also be seen as a principal bundle P; :=
P(Py, K;) with structure group K; over P, := P(M, Ky).

III. CONFORMAL GAUGE THEORIES

A. Yang-Mills conformal Lagrangian

In this geometrical setting given by the above principal
bundle P(M, H), consider the Cartan connection (3) w as
the gauge field and its curvature Q as the field strength. A
physical theory describing the dynamics of the gauge field is
given by a choice of H-invariant Lagrangian m-form, with
m= dmM and H={y:UCM->H} as the
gauge group.

The most obvious and natural choice is to write the
Yang-Mills prototype Lagrangian

Lyy(w) = Tr(Q A xQ),

=Tr(F A *F) +4I1 A %@ + 2f A xf. (6)

At this stage some care is required. Indeed when H acts, so
too does the Weyl gauge group of rescalings,
W= {z:d c M - W}. In particular, its action on w
implies 8% = z0. Hence, given a p-form B, the Hodge
operator transforms under Y according to
(xB)Y = 7" 2P x B,

Therefore, the H invariance of the Lagrangian (6) requires
one to restrict oneself to a spacetime M of dimension
m = 4% this is assumed throughout the rest of the paper.

Along the lines suggested by [1], one can also choose the
slightly more general Lagrangian, which relaxes the con-
formal Cartan geometry

Loen (@) =c|Tr(F A #F) + c3ITA O +cof Axf (7)

with ¢y, ¢,, and c3 arbitrary constants.

Some remarks are in order. First, the discrepancy from
the case 4c; = c3 = 2c, is not quite natural with respect to
the underlying geometry. Second, let §, and &; be the
infinitesimal actions of the gauge subgroups Iy and Ky,
respectively. One has (see Appendix A) dyLye, = 0 since
each of the three terms in (7) is separately K, invariant, but
81 Lgen =(4cy —¢3)Tr(Ok A #F) + (c3=2¢,)k® A xf, (8)
where « is the infinitesimal K; parameter (i.e., an infini-
tesimal conformal boost). This vanishes only if ® = 0, or if

*This peculiarity of dimension m =4 is very similar
to the requirement of the conformal invariance of the
Maxwell Lagrangian density Lypawen(F.g) = F *, F. Indeed,

‘CMaxwell(F7 Zzg) :Zm_4‘CMaXW§ll(F’g) lmphes ‘CMaxwell(F7 Zzg) =
Litaxwen (F, g) for all ze W if m = 4.
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4cy = c3 = 2c,. The latter case is of course Lye, = ¢ Lywm,
the natural choice dictated by the conformal geometry.
Confronted with this problem one can adopt three
strategies.

First, one could restore full H invariance by restricting to
a torsion free geometry ® = 0 from the very beginning.
This reduces the Lagrangian (7) to

Ly (@) == ¢|Tr(F A xF) + cof A xf. 9)

In addition, if one is willing to allow for torsion, one
could state that the K gauge group of conformal boost
does not act, thus breaking by hand the gauge symmetry
from H to K.

Finally, the third route consists in erasing the /C; gauge
symmetry by means of the so-called K;-valued dressing
field u;, as described in [26] (see Appendix B). This
amounts to a local reduction of P(M,H) to the sub-
bundle P(M, K;). The dressing of w and Q respectively
gives

0 a O
@ = ulou +uplduy =1 0 A o |,
0 6 0
f I 0
Q =u'Qu =dw,+wi=| © F II (10)
0 O -—f

These are not gauge transformations (see B and [26-28])
but Ki-invariant composite fields. Nevertheless, they still
transform as KCy-gauge fields. Thus, in @, the 1-form A, is
the genuine spin connection.

In the normal case, that is, imposing the condition (4), o,
is the Schouten 1-form with components given, mutadis
mutandis, by (5). Since the gauge invariance of the
condition a; = 0 is guaranteed, Il; = da; + A;a; is the
Cotton 2-form.

By the way, given that Lyy(w”") = Lym(w), for
yi: U > K, €K,. And using the formal resemblance
between gauge transformation and dressing, one has
Lym(@) = Lym,i () with

Ly (1) =Tr(Q A *Qy)

=Tr(F| AxF ) +4I1; Ax@+2f Axf. (11)
This Lagrangian is K; invariant because it is constructed
with /C-invariant fields, the only true residual gauge
symmetry being K, (Lorentz x Weyl). Furthermore, it
gives a field equation for the gauge field @, which unfolds
as three equations only, respectively for the vielbein field 6,
the spin connection A, and «;. The Weyl gauge potential
of dilation, a in the previous writing of the theory, was a
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spurious degree of freedom, compensated by an “artificial”
K, gauge symmetry.’
The analogue of (7) for the dressed variables,

Loent =1 Tr(Fy AxFy) +c3ll AxO+cof 1 Axfy, (12)

is invariant under the Lorentz gauge group SO C K, but
not under the Weyl gauge group W (see Appendix B).
Indeed, if dy, is the infinitesimal Weyl action with param-
eter € € Lie)V (z = exp(¢)), then

SwLlgent = (4c1 — c3)Tr(O(de - e7') A %F))
+(c3=2¢,)(0e - e 1)® A xf.

This vanishes only if ® =0, or if 4c; = c3 =2c»,
that is, Lgen; = ¢1Lym,, the natural choice for which
OowLym1 = 0 as expected.

But now we have no choice; we cannot freeze the action
of the Weyl gauge group W, neither by decree nor by
dressing. In order to preserve the VW-invariance, one must
require ® = 0, the torsionless condition. Implementing the
latter in (12) restricts one to

Lwi(w) = c\Tr(Fy A *Fy) +eof | Axfy (13)

as a theory for the gauge potential and field strength

0 ap 0 f1 Hl 0
w| = 0 Al (th s Ql = 0 Fl Hﬁ
0 6 0 0 0 —f

B. Normality and field equations

The field equations deriving from Lyy; (11) are
obtained by varying the corresponding action with respect
to the dressed Cartan connection w; [see (10)]. Two
contributions must be considered: one is the standard
Yang-Mills term; the other comes from variation of the
Hodge-* operator, defined with respect to the coframe basis
{6} for differential forms,

5TU|SYM,1 = /(Tr(5w1 A D] * Q]) +69 A TQI) = 0,

where D, := d + [w,] and T* is the energy-momentum
3-form of Q. Thanks to the nondegeneracy of the Killing
form and taking into account the various sectors of the Lie
algebra, one gets three equations with respect to the
respective three gauge fields

The dressing field method is shown to be here the inverse of
the Stueckelberg procedure, which aims at implementing a gauge
symmetry by adding the so-called Stueckelberg field. In the
situation at hand, a is such a Stueckelberg field indeed. See the
appendix in [28] for a discussion.
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bay: Dx®—xF ANO+0 A xf; =0,
SA;: DxF| —xO® A ) + a} A 0!
+O A Il — I A0 =0,

1
86: D xII; — xf; A a; +a; A *F, :—ETQI,

where D :=d + [A},].
The field equations for Ly ; (13) are a special case of
those of Ly, (12) (see Appendix C). They read
oay: 2ci x Fi ANO—cr0 Axf; =0,
5A1 D x Fl = 0,
50: C2 *fl A (11 —2C1(11 VAN *Fl = C171F1 + C2Tf1.

Dropping out the subscript “1” for convenience, one has in
components

2Cchb,ca - CZfab = O’ (14)
DCFda,ch:()’ (15)
20, o f b — 20100 4 FC 4 0 = Cngf, + e Ty, (16)

with the two energy-momentum tensors,

1 . ) : ;
F
Tall7 = ZFlj~CdF]i.Cd’7ab =+ Flj.ch]i,Cdnda’

), = Zlf cdf “MNap + Fref “Naa-

A remarkable fact is that the field equations (14) select the
(dressed) normal conformal Cartan connection as the gauge
field, provided that ¢, # 2c¢;. Let us prove this.

From the Bianchi identity DQ; = [Q,,w;| which is
easily written in matrix form, the g_;-sector reads
d® = (F, - f,1)0 —A,0. Since ® =0 this reduces to
(Fi = f11)0 =0, or in components Fy g = f[cad"s).
By contracting over a and b and remembering that
F¢, .. =0 since F € 80(1,3), one has

Foua = Faac = —2f ca
Now the antisymmetric part of (14) is
c1(Fach = Fpea) + 2fap = 0.
Combining these two equations, we end up with
(c2=2¢1)fap =0.

Now the point in writing the linear combination (12), thus
(13), was to depart from the natural (and rigid) geometric
case ¢, = 2c;. So the above equation implies f,, =0,
which in turn implies that (14) reduces to
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Féup = 0. (17)

In other words, the field equations of Ly ; single out the
dressed normal Cartan connection as the gauge field.

Since in this case a; is the Schouten 1-form [a function
of A through solving (17)], it is not an independent field
variable. Furthermore, since A; € 80(1,3) and ® = 0, the
spin connection A; is a function of the vielbein field
e = e“,. Thus, the only independent gauge field in @, is
the vielbein I-form 6 = e - dx = e ,dx".

It is quite easy to see that it induces a conformal class of
metrics {g}. Indeed from (B6) in Appendix B, one has that
the gauge BRST variation of @, provides

510 =—v; 0, and syl = €0,
where v; € 80(1, 3) is the Lorentz ghost, and ¢ is the Weyl
ghost. So, defining a metric by g:= e’ne, one has the
infinitesimal gauge transformations,

s.9=(spe)ne+elnspe = —et (vin+nvy)e =0,

swg = (swe) ne + e nsye = 2¢(e'ne) = 2eg.

In other words, at the finite level, one has g" = z?g. This
means that the true degrees of freedom of the theory

described by Ly (13) are those of a conformal class of

metric {g} (@ —1 =9 in dimension m = 4).

Moreover, in dimension m = 4, the tensor TZ; vanishes
identically; see [29,30]. It is then easily seen that while (14)
enforces the normality, combining (15) and (16) provides
particular solutions of the Bach equation,

ZDdDCFda,hc + ac,chu.bd =0, (18)

but does not exhaust them.

IV. DISCUSSION

Aiming at finding the vacuum Einstein equations from
conformal gravity, the author of [1] (see also [31]) starts
with the Lagrangian Ly (9), that is, setting ¢c3 = 0 in (7).
With this choice of Lagrangian he needs to assume, first
that /C; does not act (breaking of the gauge symmetry by
hand), and second that ® = 0 for the field equations to
enforce normality. Subsequently, he also requires the gauge
fixing condition a = O (there referred to as the “Riemann
gauge”’) for the Cartan connection .

Obtaining the Lagrangian Ly ; (13) by redefining the
fields through the dressing field method has several advan-
tages. Indeed, the vanishing of the (dressed) Weyl potential
a; and the K| invariance are simultaneously guaranteed by
the dressing construction. Furthermore, Lyy ; is SO invari-
ant, and requiring the invariance under WV imposes ® = 0
right away. Then, the field equations for Ly, ; directly select
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the normal conformal Cartan connection as the gauge
field.

Suppose that the choice of the constants in Ly ; is taken
to be the natural one with respect to the underlying
geometry of the second-order conformal structure,
¢y =2c;. Then the field equations fail to select the
(dressed) normal conformal Cartan connection.

The authors of [2] made the mathematical observation
that, in dimension 4, the Bach tensor can be identified with
the Yang-Mills current of the normal conformal Cartan
connection in what they refer to as the “natural gauge,” that
is, with a = 0 (in our notation). This observation receives a
clear meaning in the dressing field scheme and in a
Lagrangian field theory approach.

Indeed, starting with the normal subgeometry of the
second-order conformal structure P(M, H = KK ), and
after dressing (with respect to the K; direction), the normal
conformal Cartan connection associated to P(M, K;) and
its curvature read

0 a 0 0 H] 0
w| = 0 Al a’l y Ql = 0 F] Hl] ’
0 0 0 0O 0 O

with a; being the Schouten 1-form, A the spin connection,
I1; = Da; the Cotton 2-form, and F; the Weyl 2-form. The
natural Yang-Mills Lagrangian then reduces to

Lymi(w) =Tr(Q) A #Qp) =Tr(Fy A «Fy).  (19)

Varying of the action with respect to @w; gives
5TT/|SYM,1 = /Tr(&’lﬂl A Dl * Ql) + 60 A TQ] = O,

where the energy momentum 7** reduces to 77!, which
vanishes identically (m = 4). Then, the field equation is
just the Yang-Mills equation

Dl * Ql = O,
the Yang-Mills current of [2]. Unfolding it we get
oa . xFiANO=0,
6A;: DxFy +0 A Il —+I1) A 6" =0,

60: Dx1II; +a; A xF| =0.

After dualizing through the Hodge * and dropping out once
more the subscript 1 for convenience, one has
5&1 . Fca.cb = 0,
O0A;: DjF“b.rj + Hb,rﬂ?aj + ﬂajnj.br =0,
50: Dcl_la’bc =+ aCdFCa,bd =0.
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The first equation above is identically satisfied because it
gives back one of the two conditions of normality assumed
from the very beginning. Using the g,-sector of the Bianchi
identity D;Q; =0, which is the well-known result
D,F da,bc +I1, 5. = 0, one shows that the second equation
above is also identically satisfied. Thus, the only equation
giving information is that stemming from the variation of
the tetrad field,

DCD[bac],a + achca,bd =0. (20)

This is nothing but the Bach equation [in an alternative
form equivalent to (18) in dimension 4].

In other words, in dimension 4, the field equation for
Lym (19) is the Yang-Mills equation,

O D*Dal+a1A*F1 0
D]*Q]I 0 O * :0, (21)
0 0 0

and is equivalent to the Bach equation (20).

This was naturally expected since Ly (19) is nothing
but the Lagrangian Ly (1) of Weyl gravity, and as noted
above, the vielbein 6 is the only independent field in the
dressed normal conformal Cartan connection @w;. Thus,
variation of Lyy; under @, giving Dy * Q; =0 is the
same as variation of Ly.,; under ¢ giving the Bach equation
as usual.

V. CONCLUSION

In this paper we highlighted the second-order
conformal structure as the global geometrical framework
underlying gauge conformal theories of gravity,
and the conformal Cartan connection as the natural gauge
potential.

We have shown that the Weyl potential a for dilation is a
Stueckelberg-like field whose spurious degrees of freedom
can be absorbed through the dressing field method. This
provides an advantageous substitute to the gauge fixing
a =0 imposed in [1], and results in the effective local
reduction of the second-order conformal structure to the
first-order conformal structure.

We have discussed two choices of Lagrangians, a
Yang-Mills-type Lagrangian dictated by the conformal
geometry and a more generalized one, inspired by [1],
which relaxes the conformal geometry. In the latter case, we
have stressed that the field equations select the unique
(dressed) normal conformal Cartan connection as the gauge
potential.

Furthermore, in this geometrical setup, we have provided
a Yang-Mills theory that justifies [see Lagrangian (19) and
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Eq. (21)] the identification, in dimension 4 (see Sec. III in
[2]), of the Bach tensor with the Yang-Mills current of the
normal conformal Cartan connection.
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APPENDIX A: SYMMETRIES OF
THE LAGRANGIANS

Under the gauge group H:= {y:U C M — H}, the
curvature Q transforms by the adjoint, Q" = y~'Qy. This
is why the choice Lyy (@) = Tr(Q A Q) as the H-invari-
ant Lagrangian is natural. To consider other possibilities, it
is interesting to pay attention to the action of the subgroups
of H.

Consider the gauge transformations

yo:u—)KO and 7/11L{—>K1,
elements of the subgroup Xy and K;, respectively. Given
the matrix representation (2), one has

foZ'ms 0

Qo =1 S1'0z S'FS S7UI'z' | and
0 @S5  —f
f=r® MN—r(F-f1)—rOr+3rr'® 0
Q= (€] Or+ F - r'e’ *
0 e *

By inspection one sees that each term in the natural
Lagrangian (6),

EYM(’ID') = Tr(F VAN *F) +4H A *®—|—2f VAN *f,

is separately K, invariant. This means that even the more
general Lagrangian,

Loen = ¢/ Te(F A %F) + ¢TI A %0 + oo f A xf, (Al)

g
with ¢, ¢,, and c¢3 arbitrary constants, is Ky-
invariant. Thus, so is the Lagrangian (9) considered
in [1,31].

The K, invariance imposes more restrictions. For sim-
plicity, consider an infinitesimal conformal boost r = k (an
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. . . .. .4
inversion). The linear variation of Q is

—k® —x(F-f1) 0
5,Q = 0 Ok — k'O %
0 0 *

It is then easy to show that
51£YM = 4TI'<®K' VAN *F) —4kF A O =0,
as expected. But the general Lagrangian transforms as

51£gen = (401 - C3)TI'<®K A\ *F)

+ (c3 —2¢7)kO A xf. (A2)

This vanishes only if @ =0, or if 4c; = ¢3 = 2c2.5 The
latter case is Lyen = ¢ Ly, the natural choice dictated by
the geometry.

If one does not want to be restricted to a torsion free
geometry, and nevertheless wants to restore full gauge
invariance, then the so-called dressing field method is the
way forward. See [26-28] for details, and the following for
a brief recap.

APPENDIX B: THE DRESSING FIELD METHOD

The gauge group of a gauge field theory is defined as
H = {y:U - H} and acts on itself by y;> = y;ly,y, for
any y;,7» € H. It acts on the gauge potential and the field
strength according to

AY =y Ay + ydy, F' =y~ 'Fy. (B1)

Suppose the theory also contains a (Lie) group-valued
field u: U - G' defined by its transformation under
H ={y:U - H'}, where H' C H is a subgroup, given
by u” :=y~'u. One can then define the following
composite fields:

F=u"Fu.

A= u"Au+ u"du, (B2)

*Along with the linear variation of the Cartan connection ,
they can both be obtained by writing the C; sector of the BRST
algebra of the theory (the subscript i stands for inversion),

S = —d’l)l' - ['w, ,Ui}’ SiQ = [Q, 7.],'],

0
1 2
_E[Uiv vi] =-v; =0,

0 «
Siv; = with ;=10 0 «

0 0 O
where v; is the anticommuting ghost field associated with
infinitesimal conformal boosts. See [26] for an extensive treat-
ment of the BRST algebras associated with the second-order
conformal structure P(M, H).

These relations can also be found by requiring the nilpotency
of the BRST operator, §7 Ly, = 0.
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The Cartan structure equation holds for the dressed
curvature ' = dA + A%,

Despite the formal similarity with (B1), the composite
fields (B2) are not mere gauge transformations since
u ¢ H, as witnessed by its transformation property under
H' and the fact that in general G’ can be different from H.
This implies that the composite field A no longer belongs to
the space of local connections.

As is easily checked, the composite fields (B2) are H’
invariant and are only subject to residual gauge trans-
formation laws in H\H'. In the case H' = H, these
composite fields are H-gauge invariants.

It is easy to show that the BRST gauge algebra pertaining
to a pure gauge theory is modified by the dressing as

SA=-Db=—dv—[A D], sE=[F1),
and s? = —%[f) D] = -2, (B3)
upon defining the composite ghost
D= utou + usu. (B4)

It encodes the infinitesimal residual gauge symmetry, if
any. If » = 0, the BRST algebra (B3) becomes trivial, thus
expressing the gauge invariance of the composite fields.

As for the case of the second-order conformal structure,
the gauge group is H = Ky/C;, and it is possible to reduce
‘H down to K, by dressing in the XC;-direction. Consider the
field u,: U — K, with

a9’

~

1 ¢ 5
u=10 1 ¢

0 0 1
Imposing on the Cartan connection w the gaugelike
condition y(w"') = a"t = a — gl = 0 and solving for g,
one can check that u}' = y7'u; for y; € K;. Then u; is
indeed a KC;-dressing field which can be used to form the
ICy-invariant composite fields®

W, = u]_lwul + u]_ldul, and Q,:= ul_lﬂul

whose matrix forms are displayed in (10). These fields are
well behaved as KCy-gauge fields, so that the dressing
amounts to a (local) reduction of the second-order con-
formal structure P(M, H) to the first-order conformal
structure P(M, K;). See [26] for details.

Furthermore, one can check not only that y((w"1)"') =
x(w"), which is the gaugelike condition’s C; invariance

®In order to stick to [26] the ~has been dropped out as in the
main text.
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that enforces the dressing transformation law for u, but
also that y((@”)") = y(w") for y € H, which means that
the condition a; := a*t =0 in the dressed field w; dis-
played in (10) is fully H invariant.

The BRST algebra of P(M, H) is modified. The initial
full ghost is

e ¥ O
v=vo+v;=vy+uv,+v,=|0 v, k' | €LieH
0 0 =—e

with vy = vy + v, € LieK, being the decomposition in
the Weyl and Lorentz sector, and v; € LiekC; the ghost of
conformal boost.

After dressing the composite ghost is

e Oe-e! 0
vy = uilvuy +uplsuy =0 vy (Oe-e ) |.
0 0 —€

(BS)

where Je - ™! = d,ee#, replaces the ghost of conformal
boost k. The associated modified BRST algebra is

51Q) = [91,7)1]
(B6)

_ )
s1ywy = —Dyvy, S101 = 0]

with s7 = 0. Now, since the composite ghost (B5) admits
the decomposition,

vy = v + vy

0 0 O e Oe-e! 0
=10 v, Of+]0 0 (e - el
0 0 O 0 0 —€

The algebra (B6) splits into two subalgebras,

_ .2
spwy = =Dy, $10p =~V

_ / 12
sywy; = —Dvy, $101 = —Vy

— _ /
(SLQI = [91’ UL]? sw&y = [91’ UW])

with s =0 and s3, = 0./

7 .
And 5.5y +sws, =0 since

SwvUp = —Vw0p.

s vy = —vy vy and
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In the Lorentz sector let us write explicitly

0 H]ﬂL 0

spQ = | —v® [Fr o] —odl
0 Oy 0
This readily gives s; Lyy; = O since each piece in (11) is

inert under s;. This also means that the more general
Lagrangian

‘Cgen.l = clTr(Fl AN *Fl) + C3H1 A *0 + C2f1 AN *fl
(B7)

enjoys Lorentz invariance, s; Lyen 1 = 0.
In the Weyl subalgebra, let us write explicitly

—(0e-e71)® —ell; = (De-e V) (F,—f11) O
swQ = Oc O(0e-e7')—(Je-e7 1)@  x
0 €0’ *

One can easily show that

Swlgen1 = (4¢1 — ¢3)Tr(©(9e - e7') A xF))
+ (€3 =2¢,)(9e- e 1O A xf1,
which is the analogue of (8) but where the infinitesimal
conformal boost x has been replaced by O -e~!. This
vanishes only if @ =0, or if 4¢; = c3 = 2c2.8 The latter

case is Lgen = ¢1Lym,» the natural choice for which
swLym = 0 is expected.

APPENDIX C: GENERAL FIELD EQUATIONS

For the sake of completeness, here we provide the field
equations for Ly, ; stemming from the variations éa;, 54,
and 06 respectively,

c3DxO® —4cy xFy ANO+2c,0 Axf) =0,

2¢,D % F, —%(*@ ANayp—a) A O

—|—%(9/\ «I1, — 11, A 0Y) = 0,
C3D * H] - 2C2 *fl A a +4C16¥1 A *Fl = —2TEM,

¥These relations are also found by requiring the nilpotency of
the BRST operator, 57, Lgen 1 = 0.
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where D = d + [A;,]. Applying the Hodge star operator to
get equations for 1-forms, and dropping the subscript “1”
for convenience, one has in components

;DO gy —4c1FCp oy +2¢2f up = 0,

C3 . .
2¢,DF?, ,, + 5 (M pent™ = 7T, 1)
C3

- 7 (®d,bcaa,enec - ndcaae@nbmr]narlem) = 0’

> > > d __ EM
262aa,cfbc - C3DLHa,bc - 4Clac,cha,b - 2Tab

with the symmetric energy-momentum tensor,

PHYSICAL REVIEW D 93, 085032 (2016)
| - o . o
T = ¢ (4 Fij caF7 M + Flj,th]i,Ld”/du>
1 J.cd J.cd
+c3 an,ch “Nap + 1 O g,

1 . X
+ e (4fcdfcd77ab + fbchdnda> .

Notice that the last term (which is similar to the energy-
momentum tensor of electromagnetism) exists even if the
gauge field of Weyl dilation a; vanishes.

Obviously, with the natural values 4c; = ¢3 = 2¢, the
above equations reduce to those of Ly ;. For ¢; = 0 they
provide the equations for Ly ;.
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