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We point out that the Cartan geometry known as the second-order conformal structure provides a natural
differential geometric framework underlying gauge theories of conformal gravity. We are concerned with
two theories: the first one is the associated Yang-Mills-like Lagrangian, while the second, inspired by [1], is
a slightly more general one that relaxes the conformal Cartan geometry. The corresponding gauge
symmetry is treated within the Becchi-Rouet-Stora-Tyutin language. We show that the Weyl gauge
potential is a spurious degree of freedom, analogous to a Stueckelberg field, that can be eliminated through
the dressing field method. We derive sets of field equations for both the studied Lagrangians. For the second
one, they constrain the gauge field to be the “normal conformal Cartan connection.’’Finally, we provide in a
Lagrangian framework a justification of the identification, in dimension 4, of the Bach tensor with the
Yang-Mills current of the normal conformal Cartan connection, as proved in [2].
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I. INTRODUCTION

In 1918–1919, H. Weyl, trying to devise a “truly infini-
tesimal geometry” that generalizes Riemann’s,1 came up
with a spacetime manifold equipped with what today we
would call a conformal class ofmetric: a metric defined up to
positive local rescalings. The natural scale-invariant
Lagrangian he proposed (of Yang-Mills type, as we could
say anachronistically) intended to unify gravity and electro-
magnetism [3,4]. The theory turned out to be incompatible
with the basic experimental fact of the stability of atomic
spectra. But still to this day, scale invariance retains theo-
retical interest, as witnessed by its importance e.g. in string
theory and conformal field theory, amongmany other topics.
In particular, the Lagrangian for Weyl gravity

LWeyl ¼ −TrðW ∧ �WÞ ¼ −
1

2
WμνρσWμνρσdV ð1Þ

introduced by Bach in 1921 [5] and constructed with the
Weyl tensor W is still actively investigated. Solutions of its
field equation, the Bach equation, are under study to
connect the theory to empirical data and see if it can rival
general relativity. In particular its viability as an alternative
to dark matter and dark energy is still under scrutiny, as is
its viability as a quantum gravity theory. See the reviews

[6,7] and references therein to get only a sample of the
significant literature on the subject.
After the 1956 pioneering work of Utiyama on the

gauging of an arbitrary Lie group and its first treatment of
gravitation as a gauge theory of the Lorentz group [8], in
the late 1970s, several authors investigated the question of
the gauge structure of gravity (and supergravity) [9–13].
During the same period, some of them studied the gauging
of the 15-parameter conformal group extending the
Poincaré group, and its supersymmetric counterpart as
well [14–18]. For a general review see e.g. [19].
Following a more abstract differential geometric

approach, authors [20–22] already gave a gauge formulation
of conformal gravity within the framework of higher-order
frame bundles [23]. The relevant geometry is known as the
second-order conformal structure. However, it is better to use
an equivalent formulation in terms of Cartan geometry
[23,24], which allows a matrix treatment much closer to
the usual gauge field framework familiar to physicists.
As is well known, the geometry of connections on

principal fiber bundles is an appropriate mathematical
setting for dealing with Yang-Mills gauge theories.
Because of its strong link to the spacetime manifold M,
Cartan geometry provides a natural framework that prop-
erly addresses the peculiarity of gravitation among the
other interactions. Thus, it would perfectly fit the geometry
underlying gauge theories of gravitation, in particular, that
of Weyl gravity. Accordingly, our aim is to show that the
second-order conformal structure is the Cartan geometry
underlying a genuine gauge formulation of conformal
gravity containing Weyl gravity as a special case.
Moreover, inspection of the explicit field equations

obtained in [1] raises the issue of whether the field variables

1H. Weyl did so by requiring that not only the directions of
vectors at distant points a manifold couldn’t be compared without
a non-canonical choice of connection, as in Riemann’s geometry,
but also that neither could be their lengths. This he called “scale
freedom” and then “gauge freedom”. He thereby originated the
notion of gauge symmetry, which would reveal its deepness
within quantum mechanics few years later, with the posterity we
know.
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could be pieced together into a single object, namely, the
conformal Cartan connection. Because of the possible
geometry underlying Weyl gravity, it may be relevant to
give an account of this aspect.
The paper is organized as follows. In Sec. I we give a

brief description of the second-order conformal structure.
In Sec. II we write the most natural Yang-Mills-like
Lagrangian, and a slightly generalized version. We show
why the Weyl gauge potential of dilation can be considered
as a spurious degree of freedom, and can be suppressed
thanks to the so-called dressing field method; the latter is
consistent with the locality principle. We also derive field
equations and show that they single out the normal
conformal Cartan connection as a gauge field. In Sec. III
we make contact with some papers in the literature, in
particular, with [1] and in addition we justify the equiv-
alence between the Bach equation and the Yang-Mills
current of the normal conformal Cartan connection as
found in [2]. Then we conclude. Appendixes give some
details on how gauge invariance restricts the choices of
Lagrangians, as well as a brief recap of the dressing field
method.

II. SECOND-ORDER CONFORMAL STRUCTURE

We refer to [24] and to [23,25] for a detailed math-
ematical presentation of Cartan geometry and higher-order
frame bundles respectively. Here we just sketch the
necessary material to follow our scheme.
The whole structure is modeled on the Klein pair

of Lie groups ðG;HÞ where G ¼ Oð2; mÞ=f�Imþ2g and
H is the isotropy group such that the corresponding
homogeneous space is the compactified Minkowski space
ðSm−1 × S1Þ=Z2 ≃G=H. The group H has the following
factorized matrix presentation,

H ¼ K0K1 ¼
8<
:
0
@

z 0 0

0 S 0

0 0 z−1

1
A
0
@

1 r 1
2
rrt

0 1 rt

0 0 1

1
A
9=
;; ð2Þ

where z ∈ W ¼ R�þ, S ∈ SOð1; m − 1Þ, and r ∈ Rm�. Here
t stands for the η-transposition; namely, for the row vector r
one has rt ¼ ðrη−1ÞT (the operation T being the usual
matrix transposition), and Rm� is the dual of Rm. We refer
to W as the Weyl group of rescaling. Obviously
K0 ≃ COð1; m − 1Þ, and K1 is the Abelian group of
inversions (or conformal boosts).
Infinitesimally we have the Klein pair ðg; hÞ of graded

Lie algebras [23]. They decompose respectively as g ¼
g−1 ⊕ g0 ⊕ g1 ≃Rm ⊕ co ⊕ Rm�, and h ¼ g0 ⊕ g1 ≃
co ⊕ Rm�. In matrix notation,

g ¼
8<
:
0
@

ϵ ι 0

τ v ιt

0 τt −ϵ

1
A
9=
; ⊃ h ¼

8<
:
0
@

ϵ ι 0

0 v ιt

0 0 −ϵ

1
A
9=
;;

with ðv − ϵ1Þ ∈ co, τ ∈ Rm, ι ∈ Rm�, and the η-transposi-
tion of the column vector τ is τt ¼ ðητÞT . The graded
structure of the Lie algebras, ½gi; gj� ⊆ giþj, i; j ¼ 0;�1

with theAbelianLie subalgebras ½g−1; g−1� ¼ 0 ¼ ½g1; g1�, is
automatically handled by the matrix commutator.
The second-order conformal structure is a Cartan geom-

etry ðP;ϖÞ where P ¼ PðM; HÞ is a principal bundle
over M with structure group H ¼ K0K1, and ϖ ∈
Ω1ðU; gÞ is a (local) Cartan connection 1-form on
U ⊂ M. The curvature of ϖ is given by the structure
equation,Ω ¼ dϖ þ 1

2
½ϖ;ϖ� ¼ dϖ þϖ2 ∈ Ω2ðU; gÞ (the

wedge product is tacit, ϖ2 ¼ ϖ ∧ ϖ). Both have matrix
representations,

ϖ¼

0
B@
a α 0

θ A αt

0 θt −a

1
CA and Ω¼

0
B@

f Π 0

Θ F Πt

0 Θt −f

1
CA: ð3Þ

One can single out the so-called normal conformal
Cartan connection (which is unique) by imposing the
constraints

Θ ¼ 0 ðtorsion freeÞ and Fa
bad ¼ 0: ð4Þ

Together with the g−1-sector of the Bianchi identity
dΩþ ½ϖ;Ω� ¼ 0, (4) implies f ¼ 0 (trace free), so that
the curvature of the normal Cartan connection reduces to

Ω ¼

0
B@

0 Π 0

0 F Πt

0 0 0

1
CA:

From the normality condition Fa
bad ¼ 0 in (4), it follows

that α has components [in the θ basis of Ω•ðUÞ]

αab ¼ −
1

ðm − 2Þ
�
Rab −

R
2ðm − 1Þ ηab

�
ð5Þ

where R and Rab are the Ricci scalar and Ricci tensor
associated with the 2-form R ¼ dAþ A2. In turn, from (5)
it follows that

F ≔ Rþ θαþ αtθt ¼ W

is the Weyl 2-form. By the way, in the gauge a ¼ 0, Π ≔
dαþ αA ¼ Dα looks like what we can call the Cotton
2-form.
The principal bundle PðM; HÞ is a second-order G-

structure, a reduction of the second-order frame bundle
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L2M; it is thus a “2-stage bundle.” The bundle PðM; HÞ
over M can also be seen as a principal bundle P1 ≔
PðP0; K1Þ with structure group K1 over P0 ≔ PðM; K0Þ.

III. CONFORMAL GAUGE THEORIES

A. Yang-Mills conformal Lagrangian

In this geometrical setting given by the above principal
bundle PðM; HÞ, consider the Cartan connection (3) ϖ as
the gauge field and its curvature Ω as the field strength. A
physical theory describing the dynamics of the gauge field is
given by a choice of H-invariant Lagrangian m-form, with
m ¼ dimM and H ≔ fγ∶U ⊂ M → Hg as the
gauge group.
The most obvious and natural choice is to write the

Yang-Mills prototype Lagrangian

LYMðϖÞ ¼ TrðΩ ∧ �ΩÞ;
¼ TrðF ∧ �FÞ þ 4Π ∧ �Θþ 2f ∧ �f: ð6Þ

At this stage some care is required. Indeed whenH acts, so
too does the Weyl gauge group of rescalings,
W ≔ fz∶U ⊂ M → Wg. In particular, its action on ϖ
implies θW ¼ zθ. Hence, given a p-form B, the Hodge
operator transforms under W according to

ð�BÞW ¼ zm−2p � B:

Therefore, the H invariance of the Lagrangian (6) requires
one to restrict oneself to a spacetime M of dimension
m ¼ 4

2; this is assumed throughout the rest of the paper.
Along the lines suggested by [1], one can also choose the

slightly more general Lagrangian, which relaxes the con-
formal Cartan geometry

LgenðϖÞ ¼c1TrðF ∧ �FÞ þ c3Π ∧ �Θþ c2f ∧ �f ð7Þ

with c1, c2, and c3 arbitrary constants.
Some remarks are in order. First, the discrepancy from

the case 4c1 ¼ c3 ¼ 2c2 is not quite natural with respect to
the underlying geometry. Second, let δ0 and δ1 be the
infinitesimal actions of the gauge subgroups K0 and K1,
respectively. One has (see Appendix A) δ0Lgen ¼ 0 since
each of the three terms in (7) is separately K0 invariant, but

δ1Lgen ¼ð4c1−c3ÞTrðΘκ∧ �FÞþðc3−2c2ÞκΘ∧ �f; ð8Þ

where κ is the infinitesimal K1 parameter (i.e., an infini-
tesimal conformal boost). This vanishes only if Θ ¼ 0, or if

4c1 ¼ c3 ¼ 2c2. The latter case is of courseLgen ¼ c1LYM,
the natural choice dictated by the conformal geometry.
Confronted with this problem one can adopt three
strategies.
First, one could restore fullH invariance by restricting to

a torsion free geometry Θ ¼ 0 from the very beginning.
This reduces the Lagrangian (7) to

LWðϖÞ ≔ c1TrðF ∧ �FÞ þ c2f ∧ �f: ð9Þ

In addition, if one is willing to allow for torsion, one
could state that the K1 gauge group of conformal boost
does not act, thus breaking by hand the gauge symmetry
from H to K0.
Finally, the third route consists in erasing the K1 gauge

symmetry by means of the so-called K1-valued dressing
field u1, as described in [26] (see Appendix B). This
amounts to a local reduction of PðM; HÞ to the sub-
bundle PðM; K0Þ. The dressing of ϖ and Ω respectively
gives

ϖ1 ≔ u−11 ϖu1 þ u−11 du1 ¼

0
B@

0 α1 0

θ A1 αt1
0 θt 0

1
CA;

Ω1 ≔ u−11 Ωu1 ¼ dϖ1 þϖ2
1 ¼

0
B@

f1 Π1 0

Θ F1 Πt
1

0 Θt −f1

1
CA: ð10Þ

These are not gauge transformations (see B and [26–28])
but K1-invariant composite fields. Nevertheless, they still
transform as K0-gauge fields. Thus, inϖ1, the 1-form A1 is
the genuine spin connection.
In the normal case, that is, imposing the condition (4), α1

is the Schouten 1-form with components given, mutadis
mutandis, by (5). Since the gauge invariance of the
condition a1 ¼ 0 is guaranteed, Π1 ¼ dα1 þ A1α1 is the
Cotton 2-form.
By the way, given that LYMðϖγ1Þ ¼ LYMðϖÞ, for

γ1∶ U → K1 ∈ K1. And using the formal resemblance
between gauge transformation and dressing, one has
LYMðϖÞ ¼ LYM;1ðϖ1Þ with

LYM;1ðϖ1Þ¼TrðΩ1 ∧ �Ω1Þ
¼TrðF1 ∧ �F1Þþ4Π1 ∧ �Θþ2f1 ∧ �f1: ð11Þ

This Lagrangian is K1 invariant because it is constructed
with K1-invariant fields, the only true residual gauge
symmetry being K0 (Lorentz ×Weyl). Furthermore, it
gives a field equation for the gauge field ϖ1 which unfolds
as three equations only, respectively for the vielbein field θ,
the spin connection A1, and α1. The Weyl gauge potential
of dilation, a in the previous writing of the theory, was a

2This peculiarity of dimension m ¼ 4 is very similar
to the requirement of the conformal invariance of the
Maxwell Lagrangian density LMaxwellðF; gÞ ¼ F �g F. Indeed,
LMaxwellðF;z2gÞ¼ zm−4LMaxwellðF;gÞ implies LMaxwellðF; z2gÞ ¼
LMaxwellðF; gÞ for all z ∈ W if m ¼ 4.
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spurious degree of freedom, compensated by an “artificial”
K1 gauge symmetry.3

The analogue of (7) for the dressed variables,

Lgen;1¼ c1TrðF1 ∧ �F1Þþc3Π1 ∧ �Θþc2f1 ∧ �f1; ð12Þ

is invariant under the Lorentz gauge group SO ⊂ K0, but
not under the Weyl gauge group W (see Appendix B).
Indeed, if δW is the infinitesimal Weyl action with param-
eter ϵ ∈ LieW (z ¼ expðϵÞ), then

δWLgen;1 ¼ ð4c1 − c3ÞTrðΘð∂ϵ · e−1Þ ∧ �F1Þ
þ ðc3 − 2c2Þð∂ϵ · e−1ÞΘ ∧ �f1:

This vanishes only if Θ ¼ 0, or if 4c1 ¼ c3 ¼ 2c2,
that is, Lgen;1 ¼ c1LYM;1, the natural choice for which
δWLYM;1 ¼ 0 as expected.
But now we have no choice; we cannot freeze the action

of the Weyl gauge group W, neither by decree nor by
dressing. In order to preserve the W-invariance, one must
require Θ ¼ 0, the torsionless condition. Implementing the
latter in (12) restricts one to

LW;1ðϖ1Þ ¼ c1TrðF1 ∧ �F1Þ þ c2f1 ∧ �f1 ð13Þ

as a theory for the gauge potential and field strength

ϖ1 ¼

0
B@

0 α1 0

θ A1 αt1
0 θt 0

1
CA; Ω1 ¼

0
B@

f1 Π1 0

0 F1 Πt
1

0 0 −f1

1
CA:

B. Normality and field equations

The field equations deriving from LYM;1 (11) are
obtained by varying the corresponding action with respect
to the dressed Cartan connection ϖ1 [see (10)]. Two
contributions must be considered: one is the standard
Yang-Mills term; the other comes from variation of the
Hodge-� operator, defined with respect to the coframe basis
fθg for differential forms,

δϖ1
SYM;1 ¼

Z
ðTrðδϖ1 ∧ D1 �Ω1Þ þ δθ ∧ TΩ1Þ ¼ 0;

where D1 ≔ dþ ½ϖ1; � and TΩ1 is the energy-momentum
3-form of Ω1. Thanks to the nondegeneracy of the Killing
form and taking into account the various sectors of the Lie
algebra, one gets three equations with respect to the
respective three gauge fields

δα1∶ D � Θ − �F1 ∧ θ þ θ ∧ �f1 ¼ 0;

δA1∶ D � F1 − �Θ ∧ α1 þ αt1 ∧ �Θt

þ θ ∧ �Π1 − �Πt
1 ∧ θ ¼ 0;

δθ∶ D � Π1 − �f1 ∧ α1 þ α1 ∧ �F1 ¼ −
1

2
TΩ1 ;

where D ≔ dþ ½A1; �.
The field equations for LW;1 (13) are a special case of

those of Lgen;1 (12) (see Appendix C). They read

δα1∶ 2c1 � F1 ∧ θ − c2θ ∧ �f1 ¼ 0;

δA1∶ D � F1 ¼ 0;

δθ∶ c2 � f1 ∧ α1 − 2c1α1 ∧ �F1 ¼ c1TF1 þ c2Tf1 :

Dropping out the subscript “1” for convenience, one has in
components

2c1Fc
b;ca − c2fab ¼ 0; ð14Þ

DcFd
a;cb ¼ 0; ð15Þ

c2αa;cfbc − 2c1αc;dFc
a;b

d ¼ c1T
F1

ab þ c2T
f1
ab ð16Þ

with the two energy-momentum tensors,

TF1

ab ¼ 1

4
Fi

j;cdFj
i;
cdηab þ Fi

j;bcFj
i;
cdηda;

Tf1
ab ¼

1

4
fcdfcdηab þ fbcfcdηda:

A remarkable fact is that the field equations (14) select the
(dressed) normal conformal Cartan connection as the gauge
field, provided that c2 ≠ 2c1. Let us prove this.
From the Bianchi identity DΩ1 ¼ ½Ω1;ϖ1� which is

easily written in matrix form, the g−1-sector reads
dΘ ¼ ðF1 − f11Þθ − A1Θ. Since Θ ¼ 0 this reduces to
ðF1 − f11Þθ ¼ 0, or in components Fa½b;cd� ¼ f½cdδab�.
By contracting over a and b and remembering that
Fa

a;cd ¼ 0 since F ∈ soð1; 3Þ, one has

Fa
c;ad − Fa

d;ac ¼ −2fcd:

Now the antisymmetric part of (14) is

c1ðFc
a;cb − Fc

b;caÞ þ c2fab ¼ 0:

Combining these two equations, we end up with

ðc2 − 2c1Þfab ¼ 0:

Now the point in writing the linear combination (12), thus
(13), was to depart from the natural (and rigid) geometric
case c2 ¼ 2c1. So the above equation implies fab ¼ 0,
which in turn implies that (14) reduces to

3The dressing field method is shown to be here the inverse of
the Stueckelberg procedure, which aims at implementing a gauge
symmetry by adding the so-called Stueckelberg field. In the
situation at hand, a is such a Stueckelberg field indeed. See the
appendix in [28] for a discussion.
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Fc
acb ¼ 0: ð17Þ

In other words, the field equations of LW;1 single out the
dressed normal Cartan connection as the gauge field.
Since in this case α1 is the Schouten 1-form [a function

of A1 through solving (17)], it is not an independent field
variable. Furthermore, since A1 ∈ soð1; 3Þ and Θ ¼ 0, the
spin connection A1 is a function of the vielbein field
e ¼ eaμ. Thus, the only independent gauge field in ϖ1 is
the vielbein 1-form θ ¼ e · dx ¼ eaμdxμ.
It is quite easy to see that it induces a conformal class of

metrics fgg. Indeed from (B6) in Appendix B, one has that
the gauge BRST variation of ϖ1 provides

sLθ ¼ −vLθ; and sWθ ¼ ϵθ;

where vL ∈ soð1; 3Þ is the Lorentz ghost, and ϵ is the Weyl
ghost. So, defining a metric by g ≔ eTηe, one has the
infinitesimal gauge transformations,

sLg ¼ ðsLeÞTηeþ eTηsLe ¼ −eTðvTLηþ ηvLÞe ¼ 0;

sWg ¼ ðsWeÞTηeþ eTηsWe ¼ 2ϵðetηeÞ ¼ 2ϵg:

In other words, at the finite level, one has gγ0 ¼ z2g. This
means that the true degrees of freedom of the theory
described by LW;1 (13) are those of a conformal class of

metric fgg (mðmþ1Þ
2

− 1 ¼ 9 in dimension m ¼ 4).
Moreover, in dimension m ¼ 4, the tensor TF1

ab vanishes
identically; see [29,30]. It is then easily seen that while (14)
enforces the normality, combining (15) and (16) provides
particular solutions of the Bach equation,

2DdDcFd
a;bc þ αc;dFc

a;b
d ¼ 0; ð18Þ

but does not exhaust them.

IV. DISCUSSION

Aiming at finding the vacuum Einstein equations from
conformal gravity, the author of [1] (see also [31]) starts
with the Lagrangian LW (9), that is, setting c3 ¼ 0 in (7).
With this choice of Lagrangian he needs to assume, first
that K1 does not act (breaking of the gauge symmetry by
hand), and second that Θ ¼ 0 for the field equations to
enforce normality. Subsequently, he also requires the gauge
fixing condition a ¼ 0 (there referred to as the “Riemann
gauge’’) for the Cartan connection ϖ.
Obtaining the Lagrangian LW;1 (13) by redefining the

fields through the dressing field method has several advan-
tages. Indeed, the vanishing of the (dressed) Weyl potential
a1 and the K1 invariance are simultaneously guaranteed by
the dressing construction. Furthermore, LW;1 is SO invari-
ant, and requiring the invariance under W imposes Θ ¼ 0
right away. Then, the field equations forLW;1 directly select

the normal conformal Cartan connection as the gauge
field.
Suppose that the choice of the constants in LW;1 is taken

to be the natural one with respect to the underlying
geometry of the second-order conformal structure,
c2 ¼ 2c1. Then the field equations fail to select the
(dressed) normal conformal Cartan connection.
The authors of [2] made the mathematical observation

that, in dimension 4, the Bach tensor can be identified with
the Yang-Mills current of the normal conformal Cartan
connection in what they refer to as the “natural gauge,’’ that
is, with a ¼ 0 (in our notation). This observation receives a
clear meaning in the dressing field scheme and in a
Lagrangian field theory approach.
Indeed, starting with the normal subgeometry of the

second-order conformal structure PðM; H ¼ K0K1Þ, and
after dressing (with respect to the K1 direction), the normal
conformal Cartan connection associated to PðM; K0Þ and
its curvature read

ϖ1 ¼

0
B@

0 α1 0

θ A1 αt1
0 θt 0

1
CA; Ω1 ¼

0
B@

0 Π1 0

0 F1 Πt
1

0 0 0

1
CA;

with α1 being the Schouten 1-form, A1 the spin connection,
Π1 ¼ Dα1 the Cotton 2-form, and F1 the Weyl 2-form. The
natural Yang-Mills Lagrangian then reduces to

LYM;1ðϖ1Þ ¼ TrðΩ1 ∧ �Ω1Þ ¼ TrðF1 ∧ �F1Þ: ð19Þ

Varying of the action with respect to ϖ1 gives

δϖ1
SYM;1 ¼

Z
Trðδϖ1 ∧ D1 � Ω1Þ þ δθ ∧ TΩ1 ¼ 0;

where the energy momentum TΩ1 reduces to TF1 , which
vanishes identically (m ¼ 4). Then, the field equation is
just the Yang-Mills equation

D1 � Ω1 ¼ 0;

the Yang-Mills current of [2]. Unfolding it we get

δα1∶ � F1 ∧ θ ¼ 0;

δA1∶ D � F1 þ θ ∧ �Π1 − �Πt
1 ∧ θt ¼ 0;

δθ∶ D � Π1 þ α1 ∧ �F1 ¼ 0:

After dualizing through the Hodge � and dropping out once
more the subscript 1 for convenience, one has

δα1∶ Fc
a;cb ¼ 0;

δA1∶ DjFa
b;rj þ Πb;rjη

aj þ ηajΠj;br ¼ 0;

δθ∶ DcΠa;bc þ αcdFc
a;b

d ¼ 0:
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The first equation above is identically satisfied because it
gives back one of the two conditions of normality assumed
from the very beginning. Using the g0-sector of the Bianchi
identity D1Ω1 ¼ 0, which is the well-known result
DdFd

a;bc þ Πa;bc ¼ 0, one shows that the second equation
above is also identically satisfied. Thus, the only equation
giving information is that stemming from the variation of
the tetrad field,

DcD½bαc�;a þ αcdFc
a;b

d ¼ 0: ð20Þ

This is nothing but the Bach equation [in an alternative
form equivalent to (18) in dimension 4].
In other words, in dimension 4, the field equation for

LYM;1 (19) is the Yang-Mills equation,

D1 �Ω1 ¼

0
B@

0 D �Dα1 þ α1 ∧ �F1 0

0 0 �
0 0 0

1
CA ¼ 0; ð21Þ

and is equivalent to the Bach equation (20).
This was naturally expected since LYM;1 (19) is nothing

but the Lagrangian LWeyl (1) of Weyl gravity, and as noted
above, the vielbein θ is the only independent field in the
dressed normal conformal Cartan connection ϖ1. Thus,
variation of LYM;1 under ϖ1 giving D1 �Ω1 ¼ 0 is the
same as variation ofLWeyl under θ giving the Bach equation
as usual.

V. CONCLUSION

In this paper we highlighted the second-order
conformal structure as the global geometrical framework
underlying gauge conformal theories of gravity,
and the conformal Cartan connection as the natural gauge
potential.
We have shown that the Weyl potential a for dilation is a

Stueckelberg-like field whose spurious degrees of freedom
can be absorbed through the dressing field method. This
provides an advantageous substitute to the gauge fixing
a ¼ 0 imposed in [1], and results in the effective local
reduction of the second-order conformal structure to the
first-order conformal structure.
We have discussed two choices of Lagrangians, a

Yang-Mills-type Lagrangian dictated by the conformal
geometry and a more generalized one, inspired by [1],
which relaxes the conformal geometry. In the latter case, we
have stressed that the field equations select the unique
(dressed) normal conformal Cartan connection as the gauge
potential.
Furthermore, in this geometrical setup, we have provided

a Yang-Mills theory that justifies [see Lagrangian (19) and

Eq. (21)] the identification, in dimension 4 (see Sec. III in
[2]), of the Bach tensor with the Yang-Mills current of the
normal conformal Cartan connection.
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APPENDIX A: SYMMETRIES OF
THE LAGRANGIANS

Under the gauge group H ≔ fγ∶U ⊂ M → Hg, the
curvature Ω transforms by the adjoint, Ωγ ¼ γ−1Ωγ. This
is why the choice LYMðϖÞ ¼ TrðΩ ∧ ΩÞ as the H-invari-
ant Lagrangian is natural. To consider other possibilities, it
is interesting to pay attention to the action of the subgroups
of H.
Consider the gauge transformations

γ0∶ U → K0 and γ1∶ U → K1;

elements of the subgroup K0 and K1, respectively. Given
the matrix representation (2), one has

Ωγ0 ¼

0
B@

f z−1ΠS 0

S−1Θz S−1FS S−1Πtz−1

0 zΘtS −f

1
CA and

Ωγ1 ¼

0
B@

f − rΘ Π − rðF − f1Þ − rΘrþ 1
2
rrtΘt 0

Θ Θrþ F − rtΘt �
0 Θt �

1
CA:

By inspection one sees that each term in the natural
Lagrangian (6),

LYMðϖÞ ¼ TrðF ∧ �FÞ þ 4Π ∧ �Θþ 2f ∧ �f;

is separately K0 invariant. This means that even the more
general Lagrangian,

Lgen ¼ c1TrðF ∧ �FÞ þ c3Π ∧ �Θþ c2f ∧ �f; ðA1Þ

with c1, c2, and c3 arbitrary constants, is K0-
invariant. Thus, so is the Lagrangian (9) considered
in [1,31].
The K1 invariance imposes more restrictions. For sim-

plicity, consider an infinitesimal conformal boost r ¼ κ (an
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inversion). The linear variation of Ω is4

δ1Ω ¼

0
B@

−κΘ −κðF − f1Þ 0

0 Θκ − κtΘt �
0 0 �

1
CA:

It is then easy to show that

δ1LYM ¼ 4TrðΘκ ∧ �FÞ − 4κF ∧ Θ ¼ 0;

as expected. But the general Lagrangian transforms as

δ1Lgen ¼ ð4c1 − c3ÞTrðΘκ ∧ �FÞ
þ ðc3 − 2c2ÞκΘ ∧ �f: ðA2Þ

This vanishes only if Θ ¼ 0, or if 4c1 ¼ c3 ¼ 2c2.
5 The

latter case is Lgen ¼ c1LYM, the natural choice dictated by
the geometry.
If one does not want to be restricted to a torsion free

geometry, and nevertheless wants to restore full gauge
invariance, then the so-called dressing field method is the
way forward. See [26–28] for details, and the following for
a brief recap.

APPENDIX B: THE DRESSING FIELD METHOD

The gauge group of a gauge field theory is defined as
H ≔ fγ∶U → Hg and acts on itself by γγ21 ¼ γ−12 γ1γ2 for
any γ1; γ2 ∈ H. It acts on the gauge potential and the field
strength according to

Aγ ¼ γ−1Aγ þ γdγ; Fγ ¼ γ−1Fγ: ðB1Þ

Suppose the theory also contains a (Lie) group-valued
field u∶ U → G0 defined by its transformation under
H0 ¼ fγ0∶U → H0g, where H0 ⊆ H is a subgroup, given
by uγ

0 ≔ γ0−1u. One can then define the following
composite fields:

Â ≔ u−1Auþ u−1du; F̂ ≔ u−1Fu: ðB2Þ

The Cartan structure equation holds for the dressed
curvature F̂ ¼ dÂþ Â2.
Despite the formal similarity with (B1), the composite

fields (B2) are not mere gauge transformations since
u ∉ H, as witnessed by its transformation property under
H0 and the fact that in general G0 can be different from H.
This implies that the composite field Â no longer belongs to
the space of local connections.
As is easily checked, the composite fields (B2) are H0

invariant and are only subject to residual gauge trans-
formation laws in HnH0. In the case H0 ¼ H, these
composite fields are H-gauge invariants.
It is easy to show that the BRST gauge algebra pertaining

to a pure gauge theory is modified by the dressing as

sÂ ¼ −D̂ v̂ ¼ −dv̂ − ½Â; v̂�; sF̂ ¼ ½F̂; v̂�;

and sv̂ ¼ −
1

2
½v̂; v̂� ¼ −v̂2; ðB3Þ

upon defining the composite ghost

v̂ ≔ u−1vuþ u−1su: ðB4Þ

It encodes the infinitesimal residual gauge symmetry, if
any. If v̂ ¼ 0, the BRST algebra (B3) becomes trivial, thus
expressing the gauge invariance of the composite fields.
As for the case of the second-order conformal structure,

the gauge group is H ¼ K0K1, and it is possible to reduce
H down toK0 by dressing in theK1-direction. Consider the
field u1∶ U → K1 with

u1 ¼

0
B@

1 q qqt

2

0 1 qt

0 0 1

1
CA:

Imposing on the Cartan connection ϖ the gaugelike
condition χðϖu1Þ ¼ au1 ¼ a − qθ ¼ 0 and solving for q,
one can check that uγ11 ¼ γ−11 u1 for γ1 ∈ K1. Then u1 is
indeed a K1-dressing field which can be used to form the
K1-invariant composite fields6

ϖ1 ≔ u−11 ϖu1 þ u−11 du1; and Ω1 ≔ u−11 Ωu1

whose matrix forms are displayed in (10). These fields are
well behaved as K0-gauge fields, so that the dressing
amounts to a (local) reduction of the second-order con-
formal structure PðM; HÞ to the first-order conformal
structure PðM; K0Þ. See [26] for details.
Furthermore, one can check not only that χððϖγ1Þuγ11 Þ ¼

χðϖu1Þ, which is the gaugelike condition’s K1 invariance

4Along with the linear variation of the Cartan connection ϖ,
they can both be obtained by writing the K1 sector of the BRST
algebra of the theory (the subscript i stands for inversion),

siϖ ¼ −dvi − ½ϖ; vi�; siΩ ¼ ½Ω; vi�;

sivi ¼ −
1

2
½vi; vi� ¼ −v2i ¼ 0; with vi ¼

0
B@

0 κ 0

0 0 κt

0 0 0

1
CA;

where vi is the anticommuting ghost field associated with
infinitesimal conformal boosts. See [26] for an extensive treat-
ment of the BRST algebras associated with the second-order
conformal structure PðM; HÞ.

5These relations can also be found by requiring the nilpotency
of the BRST operator, s2iLgen ¼ 0.

6In order to stick to [26] the ^ has been dropped out as in the
main text.
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that enforces the dressing transformation law for u1, but
also that χððϖγÞuγ1Þ ¼ χðϖu1Þ for γ ∈ H, which means that
the condition a1 ≔ au1 ¼ 0 in the dressed field ϖ1 dis-
played in (10) is fully H invariant.
The BRST algebra of PðM; HÞ is modified. The initial

full ghost is

v ¼ v0 þ vi ¼ vW þ vL þ vi ¼

0
B@

ϵ κ 0

0 vL κt

0 0 −ϵ

1
CA ∈ LieH

with v0 ¼ vW þ vL ∈ LieK0 being the decomposition in
the Weyl and Lorentz sector, and vi ∈ LieK1 the ghost of
conformal boost.
After dressing the composite ghost is

v1 ≔ u−11 vu1 þ u−11 su1 ¼

0
B@

ϵ ∂ϵ · e−1 0

0 vL ð∂ϵ · e−1Þt
0 0 −ϵ

1
CA;

ðB5Þ

where ∂ϵ · e−1 ¼ ∂μϵeμa replaces the ghost of conformal
boost κ. The associated modified BRST algebra is

s1ϖ1 ¼ −D1v1; s1v1 ¼ −v21 s1Ω1 ¼ ½Ω1; v1�
ðB6Þ

with s21 ¼ 0. Now, since the composite ghost (B5) admits
the decomposition,

v1 ¼ vL þ v0W

¼

0
B@

0 0 0

0 vL 0

0 0 0

1
CAþ

0
B@

ϵ ∂ϵ · e−1 0

0 0 ð∂ϵ · e−1Þt
0 0 −ϵ

1
CA:

The algebra (B6) splits into two subalgebras,

sLϖ1 ¼ −D1vL; s1vL ¼ −v2L;

sWϖ1 ¼ −D1v0W; s1v1 ¼ −v0W2

ðsLΩ1 ¼ ½Ω1; vL�; sWΩ1 ¼ ½Ω1; v0W �Þ

with s2L ¼ 0 and s2W ¼ 0.7

In the Lorentz sector let us write explicitly

sLΩ1 ¼

0
B@

0 Π1vL 0

−vLΘ ½F1; v1� −vLΠt
1

0 ΘtvL 0

1
CA:

This readily gives sLLYM;1 ¼ 0 since each piece in (11) is
inert under sL. This also means that the more general
Lagrangian

Lgen;1 ¼ c1TrðF1 ∧ �F1Þ þ c3Π1 ∧ �Θþ c2f1 ∧ �f1
ðB7Þ

enjoys Lorentz invariance, sLLgen;1 ¼ 0.
In the Weyl subalgebra, let us write explicitly

sWΩ1 ¼

0
B@
−ð∂ϵ ·e−1ÞΘ −ϵΠ1− ð∂ϵ ·e−1ÞðF1−f11Þ 0

Θϵ Θð∂ϵ ·e−1Þ− ð∂ϵ ·e−1ÞtΘt �
0 ϵΘt �

1
CA:

One can easily show that

sWLgen;1 ¼ ð4c1 − c3ÞTrðΘð∂ϵ · e−1Þ ∧ �F1Þ
þ ðc3 − 2c2Þð∂ϵ · e−1ÞΘ ∧ �f1;

which is the analogue of (8) but where the infinitesimal
conformal boost κ has been replaced by ∂ϵ · e−1. This
vanishes only if Θ ¼ 0, or if 4c1 ¼ c3 ¼ 2c2.

8 The latter
case is Lgen;1 ¼ c1LYM;1, the natural choice for which
sWLYM;1 ¼ 0 is expected.

APPENDIX C: GENERAL FIELD EQUATIONS

For the sake of completeness, here we provide the field
equations for Lgen;1 stemming from the variations δα1, δA1,
and δθ respectively,

c3D � Θ − 4c1 � F1 ∧ θ þ 2c2θ ∧ �f1 ¼ 0;

2c2D � F1 −
c3
2
ð�Θ ∧ α1 − αt1 ∧ ΘtÞ

þ c3
2
ðθ ∧ �Π1 − �Π1 ∧ θtÞ ¼ 0;

c3D � Π1 − 2c2 � f1 ∧ α1 þ 4c1α1 ∧ �F1 ¼ −2TEM;

7And sLsW þ sWsL ¼ 0 since sLvW ¼ −vLvW and
sWvL ¼ −vWvL.

8These relations are also found by requiring the nilpotency of
the BRST operator, s2WLgen;1 ¼ 0.
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where D ≔ dþ ½A1; �. Applying the Hodge star operator to
get equations for 1-forms, and dropping the subscript “1”
for convenience, one has in components

c3DcΘd
;acηdb − 4c1Fc

b;ca þ 2c2fab ¼ 0;

2c1DcFd
a;bc þ

c3
2
ðΠa;bcη

cd − ηdcΠc;baÞ

−
c3
2
ðΘd

;bcαa;eη
ec − ηdcαc;eΘn

bmηnaη
emÞ ¼ 0;

2c2αa;cfbc − c3DcΠa;bc − 4c1αc;dFc
a;b

d ¼ 2TEM
ab

with the symmetric energy-momentum tensor,

TEM
ab ¼ c1

�
1

4
Fi

j;cdFj
i;
cdηab þ Fi

j;bcFj
i;
cdηda

�

þ c3

�
1

4
Πj;cdΘj;cdηab þ Πj;bcΘj;cdηda

�

þ c2

�
1

4
fcdfcdηab þ fbcfcdηda

�
:

Notice that the last term (which is similar to the energy-
momentum tensor of electromagnetism) exists even if the
gauge field of Weyl dilation a1 vanishes.
Obviously, with the natural values 4c1 ¼ c3 ¼ 2c2 the

above equations reduce to those of LYM;1. For c3 ¼ 0 they
provide the equations for LW;1.
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