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I. INTRODUCTION

The thermodynamics of strongly interacting matter at
nonvanishing isospin chemical potential, μI , is relevant in
different realms of physics since there are several systems
where the amounts of protons and neutrons are not the same.
In the formation process of neutron stars, the initial proton
fraction in supernovae is ∼0.4, which reduces with time to
values of less than 0.1 in cold neutron stars [1,2]. In the early
universe, shortly after the big bang, a large asymmetry in the
lepton sector that could shift the equilibrium conditions at
the cosmological quark-hadron transition is allowed [3].
And, of course, in high-energy heavy-ion collisions, the
proton-to-neutron ratio is ∼2=3 in Au or Pb beams.
The phase diagram of QCD at finite temperature and

isospin density is rich in phenomenology and has been
investigated for more than a decade [4,5]. During this time,
several studies have been performed within effective
models on the lattice and, most recently, even perturba-
tively [6–25]. Although Monte Carlo simulations do not
suffer from the sign problem since the fermion determinant
remains real at nonzero μI , lattice calculations at nonzero
isospin have been performed so far with unphysical quark
masses [7,8,10,11,13,14,24], which still limits their quan-
titative predictive power.
In this paper, we use next-to-leading order in perturbation

theory to investigate the effects of a finite isospin density on
the thermodynamics of cold (T¼0) strongly interactingmatter
which includes nonzero quark masses. Whenever possible,
our results are compared to lattice data from Ref. [26]. The
paper is organized as follows: Sec. II presents a brief
discussion of the physical scenario and our setup, Sec. III
shows and discusses our results for the thermodynamical
quantities computed, and Sec. IV contains our final remarks.

II. PHYSICAL SCENARIO AND SETUP

The phase diagram of QCD in the temperature versus
isospin chemical potential plane is illustrated in Fig. 1,

which should be seen as a cartoon. Along the temperature
axis (μI ¼ 0), there is no phase transition, according to
lattice calculations at physical quark masses [27]. At high
isospin density, for values of μI above the pion mass mπ ,
pion condensation takes place for not too large temper-
atures. At very high isospin density, a Fermi liquid with
Cooper pairing is formed as a consequence of an attractive
interaction between quarks in the isospin channel [4]. In
contrast to the temperature versus baryon chemical poten-
tial (μB) plane, there is a first-order deconfinement phase
transition for large μI within the condensed phase, as
indicated by the green line in Fig. 1. The authors of
Ref. [5] conjecture that the phase transition line ends at a
second-order point.1 According to Ref. [14], the chiral
phase transition is located along the purple line in Fig. 1.
Lattice calculations of Ref. [26] were run at nonzero μI

and at a fixed temperature of T ¼ 20 MeV. The values of
μI covered in the simulations are indicated by the horizontal
red line in Fig. 1. Our perturbative calculations were
performed for values of the isospin chemical potential
which are represented by the blue solid line, at T ¼ 0. This
difference should not be significant given the compara-
tively large values of μI , as was verified a posteriori.
The energy scale of the (de)confinement transition was

computed in Ref. [28] using an effective model description
and found to be quite low, ΛCon ≈ 15–50 MeV. Numerical
values for the (de)confinement scale were also computed in
Refs. [7,13,14].
The phenomenon of pairing mentioned above should not

be relevant for our perturbative study, in the same fashion
that happens at nonzero (large) baryon chemical potential.
The gap Δ is exponentially suppressed for small values of
g, in the domain of validity of perturbation theory [4,29],

Δ ¼ bjμIjg−5e−c=g; ð1Þ

1Other investigations suggest different scenarios concerning
the existence of this critical point [28].
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where c ¼ 3π2=2 and g ¼ gðjμIjÞ is the running coupling.
We expect that the corresponding gap for nonzero isospin
chemical potential will stay below Δ ∼ 300–400 MeV and,
hence, will give a subleading contribution to the thermo-
dynamic potential ∼μ2IΔ2 [30].
Since the lattice calculations (red line in Fig. 1) might

cross the deconfinement transition (green line) as con-
jectured in Ref. [28], one can expect that perturbative
calculations could provide a reasonable description of
lattice results for large enough values of μI . With the help
of Fig. 2 in Ref. [28], a quantitative statement about the
scale of μI at which the deconfined phase appears can be
made: for μI ≃ 4 GeV, the deconfinement phase transi-
tion line crosses T ¼ 20 MeV, the value used in the
lattice simulations of Ref. [26] to which we compare our
findings.
For T ¼ 0, the expressions for the thermodynamic

potential are available in analytic form up to Oðα2sÞ.
The one massive flavor contribution (leading and next-
to-leading order) in the MS scheme is given by (see, e.g.,
Refs. [31–33])
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where u≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
and NC and NG are the numbers of

colors and gluons, respectively. For calculations with 2þ 1

massive quark flavors, we introduce the isospin chemical
potential in the following way:

μI ¼ μu − μd; μq ¼
μu þ μd

2
;

μu ¼ μq þ
1

2
μI; μd ¼ μq −

1

2
μI;

μs ¼ 0; ð4Þ

where μq is the quark chemical potential. We assume
μq ¼ 0 in what follows.

III. RESULTS

In order to compare our results with those from lattice
simulations presented in Ref. [26], we adjust our param-
eters accordingly. The strange quark chemical potential μs
is chosen to be zero, and the vacuum pion mass is taken to
bemπ ¼ 390 MeV. This corresponds to light quark masses
mu=d and a strange quark mass ms given by

mu=d ¼ 35 MeV and ms ¼ 875 MeV; ð5Þ

as extracted from the GOR relation [34]. Since μs ¼ 0, the
strange quark plays no role in our analysis.
Our calculations implement a running coupling αs

[35,36],

αsðΛÞ ¼
4π

β0L

�
1 − 2

β1
β20

lnL
L

�
; ð6Þ

where L ¼ 2 lnðΛ=ΛMSÞ, β0 ¼ 11 − 2Nf=3 and β1 ¼ 51−
19Nf=3. The scale ΛMS is fixed by requiring αs ≃ 0.3 at
Λ ¼ 2 GeV [36], and one obtains ΛMS ≃ 380 MeV.
See also Ref. [31] for details. With these conventions,
the only freedom left is the choice of the renormalization
scale Λ, which is set to Λ ¼ 2μI in all of our numerical
simulations.
From the thermodynamic potential, Eqs. (2) and (3), we

have full access to all thermodynamical quantities, such as
the pressure,

Ω ¼ −pV; ð7Þ
the isospin density ρI,

ρI ¼
∂p
∂μI ; ð8Þ

and the energy density ε (for T ¼ 0),

ε ¼ ∂p
∂μI μI − p: ð9Þ

In Figs. 2 and 3, we compare our results with lattice data
from Ref. [26]. In Fig. 2, the ratio of energy density to

Lattice Calculations

Chiral Transition

pQCD calculations

FIG. 1. Cartoon of the phase diagram of QCD at finite
temperature and isospin chemical potential based on results from
Refs. [14,28].
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ðisospin densityÞ4=3 is plotted against the isospin density.
One can see that, for increasing isospin density, the two
curves approach each other, as expected from asymptotic
freedom, although perturbation theory systematically over-
estimates this quantity within the range of available lattice
data extracted from Ref. [26]. We stress that the density
dependence with a power of 4=3 is characteristic for an
ultrarelativistic Fermi gas, the asymptotic limit at high
chemical potentials. Note that an isospin density of roughly
9 fm−3 corresponds to a value of μI ¼ 2 GeV. In Fig. 3, the
isospin chemical potential (subtracted by and normalized
by the pion mass) is displayed versus the isospin density.
The results from pQCD agree well with those that corre-
spond to a band of lattice results extracted from Ref. [26]
for values of the isospin chemical potential larger than
about a few times the pion mass.
In Fig. 4, we exhibit the energy density normalized by

the Stefan-Boltzmann (SB) form versus μI=mπ and also
compare with the corresponding band of lattice data

extracted from Ref. [26] which defines the SB limit via
the isospin chemical potential as

εSB ¼ NfNc

4π2
μ4I : ð10Þ

In terms of quark degrees of freedom, the SB limit is given
as a function of the quark chemical potential,

εSB ¼ NfNc

4π2
μ4 ¼ NfNc

4π2
μ4I
16

; ð11Þ

which gives, via the relation μ ¼ 1
2
μI, a factor of 16

difference in the corresponding SB limits. The latter one
would be the limit for a gas of quarks at zero temperature
and high chemical potentials and, hence, also the SB limit
for pQCD calculations.
One sees in Fig. 4 that, for μI > 2mπ, the pQCD results

are compatible with the ones from the lattice. The peak at
μI ≈mπ cannot be reproduced since it is caused by the pion
condensate which is not captured by perturbation theory.
Simulations that are based on chiral perturbation theory
(χPT) are indeed able to calculate this maximum [37]. By
maximizing the static chiral Lagrangian density, the authors
derive an analytic expression for the normalized energy
density at the peak at leading order. In general, lattice data
are well reproduced by χPT at leading order for low
densities, μI < 2mπ . However, for μI > 2mπ the results
of chiral perturbation theory asymptotically approach zero
as only pion degrees of freedom are incorporated. This is in
contrast to the lattice data which reach, at asymptotically
high isospin chemical potentials, our results from pQCD
which are based on quark degrees of freedom. In Fig. 5, the
same data as Fig. 4 are shown with regard to the SB limit
for a gas of quarks, i.e., rescaled by a factor of 16 which

FIG. 2. Comparison of the ratio of energy density to
ðisospin densityÞ4=3 versus the isospin density with lattice results
from Ref. [26].

FIG. 3. Comparison of the isospin chemical potential versus the
isospin density with lattice results from Ref. [26].

FIG. 4. Energy density normalized by the isospin-related
Stefan-Boltzmann (SB) form versus μI=mπ . Lattice results from
Ref. [26].
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appears when μ ¼ 1
2
μI . The SB limit for two flavors

(horizontal line) is also sketched in Fig. 5 because the
strange quark is not contributing in our calculations as μs ¼
0 so that this SB limit should be considered as the actual
limit of a free gas of quarks and gluons. In this sense, our
results (orange line) are obviously very close to this limit,
which is consistent with the notion of asymptotic freedom.
Finally, in Fig. 6, we plot the equation of state to exhibit

the deviations from ideality, i.e., ε ¼ 3p. The equation of

state follows closely the one for an ideal ultrarelativis-
tic gas.

IV. SUMMARY

We investigated thermodynamic properties of massive
cold quark matter at zero temperature and baryon chemical
potential and nonvanishing isospin density at next-to-
leading order in perturbation theory, and compared our
results with recent lattice data.
The ratio of energy density to ðisospin densityÞ4=3 versus

isospin density shows that lattice data and our pQCD
results get closer for high densities. Both seem to follow a
ρ4=3I scaling at high densities, which agrees with the limit
for an ultrarelativistic degenerate Fermi gas. The isospin
chemical potential plotted against the isospin density shows
that the pQCD results and lattice results converge for values
of μI ≳ 3mπ . This is also true for the comparison of the
normalized energy density as a function of the isospin
chemical potential. The normalized energy density is
essentially constant in the high-density limit, as expected.
We also verified that the energy density from the pQCD

calculation is not too far from the Stefan-Boltzmann limit
for two flavors since the strange quark does not appear in
the dense medium under consideration. Furthermore, the
deviations from an ideal equation of state are small.
In summary, the results from pQCD already seem to be

close to the lattice data for values of μI ≳ 3mπ , even in the
region of pion condensate. It seems that the effect from the
gap is suppressed for small values of the coupling constant,
as anticipated, and gives a small contribution to the
thermodynamic potential which is then dictated at high
chemical potentials by a nearly free gas of quarks.
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