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Two-loop five-point all-plus helicity Yang-Mills amplitude
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We recompute the recently derived two-loop five-point all-plus Yang-Mills amplitude using unitarity and
recursion. Recursion requires augmented recursion to determine the subleading pole. Using these methods,

the simplicity of this amplitude is understood.
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I. INTRODUCTION

Computing perturbative scattering amplitudes is a key
challenge in quantum field theory both for comparing
theories with experiment and for understanding the sym-
metries and consistency of theories. Explicit analytic
expressions for scattering amplitudes have proved to be
useful windows into the behavior of the underlying theory.
Technical developments have been crucial to computing
these amplitudes. Two key methods based upon unitarity
[1,2] and on-shell recursion [3] have produced a great many
spectacular results particularly for maximally supersym-
metric field theories.

Recently the two-loop all-plus five-point amplitude has
been computed in QCD [4,5] using d-dimensional unitarity
techniques. Subsequently this amplitude was presented in a
very elegant and compact form [6]. In this form, the
amplitude consists of a piece driven by the infrared (IR)
structure of the amplitude and a “remainder” piece. In this
article, we demonstrate how this form can be generated
using a combination of four-dimensional unitarity and
(augmented) recursion which provides an understanding
of the simplicity of the amplitude.

Following Gehrmann et al. [6], the all-plus amplitude at
leading color may be written

A5(1+’ 2+v 3+a 4+v 5+)|leading color

- fZ(QZNCF)L > Z tr (T % T T%() T () )
L>1 o€Ss/Zs

x AP (6(1),6(2) . 0(3) T 0(4) T 0(5)")  (L.1)

and the object we wish to compute is the color-stripped
two-loop amplitude A (1+,2+,3+, 4+, 5%),

The IR and UV behavior of the amplitude are
well specified [7] and motivate a partition of the
amplitude:

'"The factor cr is defined as I'(1 4 e)I2(1 —¢€)/T(1 — 2¢)/
(47)?=¢. Note this gives a factor of 1/(16z%) relative to other
normalizations in the literature.
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The leading term in Eq. (1.2) contains the necessary IR and
UV terms. In this equation, Ag) is the all-e¢ form of the

one-loop amplitude. The remainder function F gz) is to be

determined. We further organize F gz)

and rational pieces,

into cut-constructible

F& = Fee 4 RY.

(1.3)

II. CUT-CONSTRUCTIBLE PIECES

In [4], d-dimensional unitarity was used to compute a
master integral representation of the full two-loop five-
point all-plus amplitude AL (1+,2+,3+, 4+, 5%). When
using d-dimensional unitarity the cuts of the amplitude
have cut legs defined in d = 4 — 2¢ dimensions. Given a
Feynman diagram expansion of an amplitude, polynomial
reduction [8—14] can be used to obtain a corresponding set
of master integrals. The reduction process involves cutting
each diagram and repeatedly isolating the irreducible
contribution on each cut. For example, the pentabox
diagram has all eight propagators in loops and has a
nonvanishing eightfold cut. The first step of the division
is to evaluate the numerator on the eightfold cut, thus
determining the nonvanishing contribution when all eight
propagators vanish. The remainder is then evaluated on all
possible sevenfold cuts and so on. This approach can also
be used in a similar manner to the one-loop unitarity
method. Each set of cuts determines a partition of the full
set of Feynman diagrams into blocks which must be of
lower loop order, in this case tree or one-loop blocks.
Summing over all diagrams yields an on-shell amplitude
for each block. The contribution from each cut is then
determined using the product of these amplitudes for
each block.

Here, alternatively, four-dimensional amplitudes will be
used to determine the cut-constructible pieces of the
remainder function and then the remaining rational pieces
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FIG. 1.

will be calculated recursively. For the all-plus amplitude,
considerable simplification arises when we restrict
ourselves to four-dimensional cuts because all four-
dimensional cuts of the one-loop all-plus amplitude vanish.
After discarding scale free cuts, the reduction process only
receives contributions from structures of the forms shown
in Fig. 1, where the solid disc denotes an uncut one-loop
all-plus amplitude. These contributions involving the all-
plus one-loop amplitude can be evaluated using one-loop
techniques with the one-loop subamplitude as a vertex. The
n-point all-plus one-loop amplitude is [15]

AW+ 2+, . nt)

_ i (kiky) [koks] (k3ky) [kyky] .
B 1§k|<k;k3<k45n <1 2> <2 3> e <n1> + O( )

(2.1)

Note that for the four-point amplitude there are no box
functions with nonvanishing coefficients and the remainder
function for the four-point amplitude is purely rational [16].

The box contribution is readily evaluated using a
quadruple cut [17]. With the labeling of Fig. 2, the cut
momenta are

- P
fl — <Cd> A’dﬂg, fz — <C| de|ﬂg,
(ec) ec)
(elPed {ed) -
{3 = Aes C4 = —Adhe, 2.2
3 <€C> c 4 <€C> d ( )
giving the coefficient of the box function’
Clapyede =M (@t b¥ 1 15) x Mye(l3. ¢t 1})
X M (17, d* I7) x ME=(I} e, 15)
i [ab)?[cd][de]
= 2.3
6 (ce) 23)
This is the coefficient of the integral function

Izltm(scd,sde,sab), where [18]

*External legs attached to the one-loop corner are enclosed in
brackets thus {---}.
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S

Contributions to the two-loop amplitudes involving an all-plus loop (indicated by the solid disc).

(S, T,M?) = _527[612 [(=8)=¢ + (=T)=¢ = (—-M?)~]

M? M?
Li)( 1 —— Li)( 1 ——
ra(1-55) ra(1 %)
1 S 7’
ZIn?2 = -
#5(7) +5)
and overall factors of ¢ have been removed according to
the normalization of Eq. (1.2). This integral function splits
into singular terms plus a remainder /}™ = [J™R 4 fim:F
where

(2.4)

[(=8) + (-T)* = (=M*)~]|. (2.5

The IR infinite terms, 7J™ R, in this combine with the IR
infinite terms in the triangle integral functions to produce
the correct IR infinite terms in the two-loop amplitude
while the finite pieces, 7J™F, contribute to the remainder
function.

The triangle contributions can be evaluated using triple
cuts [19-22] and a canonical basis [23]. Each one-mass
triangle 7™ (s,,) has two helicity configurations which give
identical coefficients,

i Sde

C{a,b,c}.d,e

-5 lec] _ ldely _ ellac
(- o) - daellacl) 29
a+

et _ by |

+

{1 4

& i ot

FIG. 2. The labeling and internal helicities of the quadruple cut.
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and the integral function is

1
1(K?) = — (=K)7'- (2.7)
€
Similarly, the two mass triangle contributions are
i [ab)?
C{a,b},c.(d,e) :EW[C|Pde|C>I§m(Sabvsde>v (2-8)
where the two-mass triangle function is,
1 _KZ —€ _ _KZ —€
Aot Ky = 5 TR IR o)

e’ (-K?) - (-K3)

The bubble contributions can be evaluated using double
cuts and a canonical basis [23]. The product of amplitudes
|
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in each double cut is order #~2 and hence the bubble
coefficients vanish. This is consistent with the absence of
¢! singularities in the amplitude.

The boxes, one-mass and two-mass triangles all have IR
infinite terms of the form

1

62

(_KZ)—e

A specific choice of K? =s,, arises from three box
functions,

II™({a,b},c.d,e): I[™({c,d},e,a,b): I}™({d,e},a,b,c),

four two-mass triangle functions,

13"({a, b}, c.(d. ) : B"({a. b}. (c.d). ): I"({c. d}. e. (a. b)) : B"({d. }. (a. b). c)

and a single one-mass triangle function I™({c,d, e}, a, b). Summation over the box and triangle contributions gives an
0
overall coefficient of Agl)-e (a*t,b*,ct.d, et),

(Z Cranteael ™+ Claberae ™ + D Crapyeiao! §m>
IR
(1).c0 1\
=Ag” (a*,b*,c*,d*,e*)x2—2< ) ,

=1 € \7Siit+1

(2.10)

where A( e (a*t,b*,ct,d",e") is the order € truncation of the one-loop amplitude. A key step is to promote the
coefﬁaent of these terms to be the all-e form of the one-loop amplitude which then gives the correct singular structure of the

amplitude.

The finite part of the one-mass boxes, I}lm‘F, then gives the cut-constructible part of the remainder function,

i [ab)?[cd]| [ab]*[cd][de]
FCC —
Z 6 (ce) x

in agreement with Ref. [6]. This combination of dilogar-
ithms can either be viewed as a truncated box or, as
recognized in Ref. [6], the D = 8 dimensional box. This
combination arises in one-loop amplitudes without =2 IR
singularities [17,19].

ITII. RATIONAL PIECES

We obtain Rgz) using the on-shell recursion techniques
introduced by Britto-Cachazo-Feng and Witten (BCFW) to
compute tree amplitudes [3]. In this technique, the ampli-
tude is found by introducing a shift that transforms the
amplitude into an analytic function of a complex parameter,
Z, then using Cauchy’s theorem to reconstruct the rational
part from its poles:

(o) Il

Sab . Sab 1 2 Secd x?
1-— Li)(1—-—— -1 — — 2.11
scd) * 12( Sde) +2 ! (sde> * 6:|’ ( )
[
1 A( ) { }
— = A(0) + ) Res (3.1)
27l ;;) Z

Taking the contour to be the circle at infinity, the left hand
side of Eq. (3.1) vanishes provided the shifted amplitude
vanishes for large values of z. As the poles in the amplitude
are determined by its factorizations, the unshifted ampli-
tude is obtained in terms of lower point on-shell tree
amplitudes:
A0

Ageer_jl (zi)-

(3.2)

§ : treeﬂ
Ar+l

The usual shift involves a pair of spinors:
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/_1a—>/_1a:/_la—z/_1b, /1b—>/1l;:/1b+Z/1a.

We wish to apply on-shell recursion to Rgz); however,
there are some obstacles. Firstly the shift of Eq. (3.3) does
not produce an expression which has the correct cyclic
symmetry. This is usually a signature that the expression
does not vanish at infinity as may also be inferred from the
behavior of the cut-constructible terms. (This can be
checked a posteriori from the expressions in ref. [6].)

Instead, we use the shift [24,25]

(3.3)

Ae = Ap = Ao + 2Z]de]d,,
g = Ay = Aq + zlec]d,,

Ae = Ay = Ao + Z]cd]Ay, (3.4)
where 4, is an arbitrary spinor. Under this shift the cut-
constructible terms vanish as z — oo, an indication that the
rational part will also have well behaved asymptotics.

A further issue is the existence of double poles in the
amplitude. These arise beyond tree level. In principle, these
are not a barrier to computation since, if we have a function
whose expansion about z; is

a_p

_ a_
flz) = o) + - Z,) + finite, (3.5)
then
Residue <@ : z,-> =25 (36
Z Zi Z[

However, for loop amplitudes, only the leading singular-
ities have been determined in general and there are no
general theorems for the subleading terms. We overcome
this barrier by using axial gauge techniques to determine
the extra information required to perform recursion. This is
termed “augmented recursion”.

There are two contributions to the factorization:

1

1 21 11
5 X AP — X A%,

AGe X 3 X AP and AP (3.7)

The full rational term is the sum of contributions from these
two channels,

RY = RS> + R (3.8)
R5? involves only single poles and is directly evaluated

using the rational part of the four-point two-loop
amplitude [16],

. 2
(2) S A l [Kb] [Cd} Shd
R,7(K",b",ct,d") =- 8]. (3.9
¢ K0T = by (edy \swasre T ) @)
Setting # = b, the shift excites this factorization channel
three times, giving
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1
—Rf‘z)(KJ’,é*,aJ“,b*')]

RS2 = [Ag(c+,d+,1<—)
Scd

(ed)=0

1
+ {Ag (d*, et K-)—RY (K+,a+,b+,e+)]

sde

(d2)=0

1 A
+ {A (et.a*,K™) R<2>(K+,b+,a+,d+)]

Sea

(éa):O'
(3.10)

The second channel, Ré‘l, has double poles associated
with the diagram shown in Fig. 3. The existence of double
poles means we must determine the subleading contribu-
tions which are not captured by the naive factorization.
These “pole under the pole” contributions have been
determined for a number of one-loop amplitudes using
augmented recursion [26-29]. The contribution from this
channel can be computed using axial gauge techniques
[30-32] by considering diagrams of the form shown in
Fig. 4, where 7! represents an approximation to the doubly
massive current. A key feature of the axial gauge is that the
internal legs have helicity assignments and vertices only
involve nullified momenta as defined in Eq. (A2). Using the
axial gauge three-point vertices, the contribution from
Fig. 4 with the indicated helicity assignment is

e[ (b [dAB)ellb)
= | G e

x ' (B, at,at,bt, ct),

(3.11)

et

d+

FIG. 3. The origin of the double poles in s,,. The diagram has
an explicit pole and an additional pole can arise from the triangle
integral.

FIG. 4. The nonfactorizing contribution to the pole. We must
also include the case with the helicities on « and S reversed.
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where a and f are the momenta
fp=¢+d and a=-¢+e. (3.12)

Within 7, # and «a are loop-momenta dependent; however,
the combination f + «a is not.

PHYSICAL REVIEW D 93, 085029 (2016)

As discussed in [29], 7! does not need to capture the full
off-shell behavior of the current, but it must satisfy two
conditions: it must reproduce the leading singularity as
Sqp — 0 with o, % # 0 (C1) and it must reproduce the
amplitude in the limit o?, f*> — 0, Sqp 70 (C2). The
current, as detailed in Appendix A, is

i laclled ([callaqlikq] + [aqPlck])
Canan b ) = Sy {‘ eAlpa 7 T kg lakg
+w4w¢ww2<mmWAMﬂ+mw>
bcP (b2 \ s lqlf Fala)
(bel ac) (b (b (ba) [alflb)  (Pa)’laa(ba)
+(<mv<wv (aa) Talf + ala) w&wwwwﬁy (3-13)

C*'7" is split up into five pieces: sl, sf, sk, dp and ap
corresponding to the terms in 7 given in (3.13),

Ca*ﬁ" _ Ca*ﬂ‘:sl + Ca*ﬂ‘:sf + Ca*ﬁ’:sk
+ Ca*/i‘:dp 4 Ca*[)":ap‘ (314)
The term C* 7 :9 contains the double pole and is

Ca*/f':dp — / d'¢ [d|?’ﬂ|b> [e|l’ﬂ|b>i 1 [bC] <ClC>
2a’B* (db)(eb) 3{ab)? (bc)?

 (b1paib) [glp + )

Spa  [q|P + ala)

i [bc|{ac)(b|delb) 1 [q|d+ e|b)

"9 (ab)*(bc)?  (de)[qld + ela)’ (3.15)

The final term does not contain [#g] and is labeled
Ca*ﬂ’:ap

e [ dlABelB) i 1
crrm= [ B ) STy

(Bl o it
b (aa) Talp+ala)

)|alalb)
(Be)(cb) )
(3.16)

As this term contains only a single pole, the approxi-
mation

_ =YY O(ad))  (3.17)

can be used to leading order, leaving cubic triangle
integrals:

C()ﬁr prap

ilde] 1 <[bc]<ac> (bd){ba) [q|2d + e|b)
9(de) (ab)*> \_ (bc)> (da) |[q|d+ e|a)

(da)|a|d + 2€|b>)
(dc)(cb) )

_|_

(3.18)

The term C*7 s jg

[ [dEBellD) ab)?
I

db)
i1 [ac]?[gc]
3 {ab)? ( Wq A )
i1 di¢
= SR > oz/fz 2 I8} el 1)

y [c|ﬂ|b>1‘”[CIPde|b> Kn o (3.19)

B+ q)*

where k, = kg = 1, k; = —2 and the +... reflects the use
of a leading-order approximation based on

I Vs
28-X  (B+X) 28-X(B+X)*

(3.20)

For n = 0, 1, this is readily reduced to triangles using

[e]|b)[d]|Z|b)
_ P(bltelb) + o?(b|¢d]b)
(ed)

= P BIC = e)Puclb)

(3.21)

As all of the numerator factors have # contracted with b,
only the scalar part of the shifted Feynman parameter
integral survives. This removes two of the triangles
completely. Quadratic numerators in the surviving triangle
give rational contributions, while linear numerators do not.
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at at at
A
— + _
g ¢ g
FIG. 5.

As the n = 2 case involves a linear box, rational contri-
butions are not expected from this term. Overall,

i 1 [gqc]lde][cle|b)

Ca*ﬁ’:sl _ - )
3{ab)* (de) 2s,,

(3.22)

The third term in (3.13) involves the terms with a k> / Sap
factor from F. These give the C%'# % contribution:

Ca*ﬂ’ sk

i [ aibian ey

3] 2 anen gy

el lecloallka) + faaPlek) 1

WO ket b
(3.23)

Using the same leading-order approximations as in the
previous case,

ey~ | leled <L Sllelple
+ 3(qld|b)lclels) + [qlelb)lcld]b)

[cq]led][c[K|D)
(ab)*(ed)(2k - q)°

[5[gle|b) + 4[qld|b)]|.

(3.24)

Finally there is the contribution from the second term in
(3.13). This term reproduces the factorizing contribution
shown in the second part of Fig. 5. The corresponding
integral

Ca+/s;sf:/ d'¢ _[d|Z|b)le|¢|b) (ab)* (k) [aq)?
2’ (db)(eb) (Bb)* [Bqllkq]

1
x — AWkt a*, bt ct)
Saﬁ

— i LA

(1>(k+, a+, b+, C-&-)’
Saﬂ

(3.25)

where the triangle integral,

Sources of s,4 poles in 7.

PHYSICAL REVIEW D 93, 085029 (2016)

1

A [d|£|b)]e|£|b) (ab

. 2 (Bk)ag)?
v [ 2L 2 (Pl

(db){eb) (pb)* [Bqllkq]
(3.26)

is closely related to the (4,4,—) one-loop splitting
function. Comparing with the one-loop splitting function
leads to

Ca*/i’ :sf 4 C(ﬁ/)” isf

ladllgelled) 1oy r oo,

1
3 kgl » (3.27)

Having determined the rational contributions arising
from Fig. 4, the corresponding residues can be obtained
by applying the shift (3.4) and extracting the coefficient of
the (z — zo)~! term in the Laurent expansion. The process
can be repeated for the other internal helicity configuration
of the triangle. A similar procedure can be applied to the

other two factorization channels: (¢ d) — 0 and (2a) — 0.
As 1, =4, the five-point single-minus amplitudes in
these cases need to written in a form where the terms
containing the (af) = 0 pole reproduce the axial gauge
factorization.

Summing over the various contributions yields a rational
term that has the correct cyclic symmetry and is indepen-
dent of /_14. These are highly nontrivial checks since these
symmetries are not manifest during the recursive calcu-
lation and are only restored at the final stage (provided all
terms have been correctly computed).

After some considerable algebra, these terms can be
reduced to match the form given in Ref. [6]3

@ _ i
ks = 6(12)(23)(34)(4

x (R¢+RY), (3.28)

5)(51)

where

*We find a perfect match provided we replace tr_ of Ref. [6] by
tr, in term R%. The tr, of R correctly gives the collinear limit as
demonstrated in Appendix B.
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+ +

« «

FIG. 6. Sources of s,; poles in contributions from z°.

R“ o Ztr+ 4512 ’
3 S45512

10 2
R = Z <§ S12523 + 5512S34>,

(3.29)

and the sum cycles the five indices.

IV. CONCLUSIONS

Using four-dimensional unitarity and recursion, we have
been able to reproduce the two-loop five-point all-plus
Yang-Mills amplitude. Key to this is the observation that
four-dimensional unitarity can be used to generate the IR
singular terms whose coefficient, the one-loop amplitude,
can be promoted to its all-¢ form. With this identification
the finite remainder terms follow. Computation of the cut-
constructible terms is straightforward while computing the
rational terms is fairly complicated but only involves one-
loop integrals and avoids genuine two-loop integration. We
intend to apply these techniques to further “pseudo-one-
loop” amplitudes [33].
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APPENDIX A: OFF-SHELL CURRENT

In this appendix, we compute an effective current
ti(at, p,cT,d", e") where a and 3 are the off-shell legs.
We will not generate the exact current but one which is
sufficient to determine the poles in the amplitude.
Specifically, as shown in [29], 7' must satisfy two con-
ditions: (C1) it must reproduce the leading singularity as
Sqp — 0 with o, % # 0 and (C2) it must reproduce the
amplitude in the limit o?, > — 0, Sap 7 0.

We use an axial gauge formalism [30-32] in which
helicity labels can be used for internal lines and off-shell
internal legs in the vertices are nullified using a reference
spinor: given a reference null momentum #, any off-shell
leg with momentum K can be nullified using

PHYSICAL REVIEW D 93, 085029 (2016)

0

K2
K =K -, (A1)
[l K|m)
which gives spinors
- K
te=akll,  dg=a A ()

[K|n)

For convenience, we will choose the reference spinor to be
q= /_1,1/1;, leaving Zq arbitrary.

Our task is to identify the part of the current which will
generate s, poles The diagrams which lead to these poles
are shown 1n Fig. 5.

The first diagram of Fig. 5 contains a {af)~! factor and
hence, after the integration within the diagram as in Fig. 4
generates the double pole piece of the rational terms. The
second diagram contains a [af]~! factor and so does not
enhance the order of the (de) pole.

The possible sources of 5,4 poles in the third structure
are illustrated in Fig. 6. With this helicity configuration,
the (triangle) x (tree) factorizations with 5~ in the triangle
are absent as there are insufficient negative helicity legs to
form a nonvanishing tree. Also, any triangles involving f~
and a' must be mixed (i.e. contain both (+ + —)
and (——+) corners) and are therefore finite. This
removes contributions of the form (singular triangle) x
(on-shell propagator) x (current with vanishing amplitude).
As there are no contributions with a 1/s,, propagator, any
poles in 5,5 must comes from the loop integration. Such
singularities arise from the integration region with the loop
momenta all proportional to a+ f, i.e. a specific null
momentum. For these contributions, the loop momenta can
be taken to be on-shell (hence the of thin lines for the
propagators in the third part of Fig. 6). While there is a
helicity configuration which gives a nonvanishing tree
amplitude for the third corner, this amplitude vanishes
when the propagators are collinear, i.e. the tree vanishes in
the region of interest and the contribution is finite as
sqp — 0. Thus, there are no poles in s, arising from the
third structure in Fig. 5, and it can be neglected when
considering condition C1 (the finite contributions, of
course, are relevant for condition C2).
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7! can be constructed from the five-point one-loop

amplitude [34]:

Ag”(ﬁ_,a*,a*,b*,c*)

_i b [ facP +<ﬁb>3[bC]<aC>_<ﬂa>3’[aa]<lm>}
3{ab)* | [pal[ch) ~ (pa){aa)(bc)® (pc){cb)(aa)?|
(A3)

To satisfy C1 without compromising C2, corrections of
order o> and f? are introduced to reproduce the factoriza-
tion channels in Fig. 5. Using axial gauge rules and the one-
loop amplitude [16]

W= + pt ) — L [ac]zsac
Ajldnan bt = s beed MY
the pole arising from the first structure is
[0KBa)? 1 40y ot bt ot
faq) (kg 5,
_i <ﬂq>2 {alopla) [ac]s
 3{aq)® s, [kal(ab)(bc)[ck](kq)?’ (A5)

where k = —k, — k;, — k. which is null on the pole. With
Aq = Ay the four-point kinematics on the loop amplitude
allow this to be written as

_ 1(pb)* (blap|b) [ac]sac
3(ab)? 54y [kal(ab){bc)[ck](kb)?
i (Bb)* (blap|b) (ac)[be]{kb)

T T 3(ab)? s, (ab)2(be)*(ka) (46)

This factor can be built into 7! by taking (A3) and making
the substitution

(p)* _ (pb)* <<b|ﬂalb> 918 + alb)
(pa)(aa) ~ (ab)* \  sp  lqlp+ ala)
(ba)(ba) _q|p|b) >
(aa) qlf + ala)

(A7)

in the second term. Equation (A7) is an identity in the limit
a?, = 0, and so condition C2 is not compromised. The
leading term as s,; — 0 then exactly reproduces the
contribution from (A6).

Similarly, the second structure gives

PRI 1 i oo e o

T = ol 5™ KT
i [aq]g ek
= 73 Pallka] 5up (ab)" (A8)
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Away from the pole, & is interpreted as its nullified form, so
that

F_ i lagl? 1 [ckl([cal(ap) + 5c|q|f))
3 [Ballkq] sap (ab)?
_ i 1 ([aq][kq][ck][cal(kp) + 5[c|q|B)[aq]*[ck])
R Bqllkq)(ab)?
il {[Ca]z[aqwﬁ)
 3su | [Pal(ab)?
([callag][kq] + [aq]*[ck])
R 77
where
0!2 ﬁ2 k2
:2a-q+2ﬁ-q_2k-q' (A10)
Now,
(ap) _ 1 _ (aB)lpod —sqp
Sap P Saplfal
_ (ab +ﬂb)2 - Saﬂ
saﬁwa]
(@ B\ 2k-q
- <2a‘q+2ﬁ'q> Saplpe] (A1)
and the first term in the amplitude is
_it facf i 1 [acf [fq)
3(ab)*[pal[cp]  3(ab)?[Bal[ch][fq]
_ i1 [ac)? e
=3 a alepllp P
_i 1 facPlge] i 1 [ac’[qa]
3(ab)* [cBlpq] 3 ({ab)* [Ba]lpq]
(A12)

Using (A11), the second term of (A12) matches the first
term of (A9) up to corrections of order a® and >. However,
in addition to terms of order o’ and $°, the second term of
(A9) contains a term of order k2 /Sqp- This term does not
contribute to the s, pole in 7! and is not present in the
amplitude when a?, > — 0. The current is therefore
obtained by replacing the second term of (Al2) by F
with the order k*/ sqp term removed. The current is then
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gt e o i L [_lacPlad | o ((ealag]ika) + [agPlek])
st = [~ o + 2+ e
[be]{ac) (pb)* ((blpalb) [q|p + alb) | (ba){ba) [qlBlb) \ _ (Ba)’|aal(ba)
BTSE <ab>2( Sie alf+ala) | (aa) [q|ﬂ+a|a>> (ﬂc}(cb)(aa)z]’ (A13)
I
where, by construction, the third term exactly reproduces where § h”(L.f) are the various splitting functions. For our

the first structure in Fig. 5 and the second term gives the Saﬂ
pole in the second structure in Fig. 5. This expression
therefore satisfies condition C1. The modifications to the
amplitude are all O(a?, #*) and, therefore, do not com-
promise condition C2.

APPENDIX B: COLLINEAR LIMITS

We consider the collinear limit of the amplitude as an

amplitude, the tree amplitude vanishes for both choices of
K" and

) — §titree XA(Z)(--

+ ZS**

W=

Kt

)

KF, .-

ALYk -

important consistency test and to illustrate some key (B3)
features. The collinear limit occurs when adjacent momenta
k, and k;, become collinear,
k, > zx K, ky » (1—z)x K =zK. (B1) The first important result is that to all orders in €,
In this limit, amplitudes factorize as
<1) ++,tree (1)
, , Ay’ — ST ALY B4
ASlL)(--~,kZ,kﬁ,-~- ZShZ”(L -)(...Kh ), 5 4 (B4)
L h//
(B2) The all-e forms of these amplitudes are [35]
|
D1+ 2t 3+ g4+ 2ie(1 —¢) 2e
Ay (17,27,37.4%) = X 1280310757,
) (12)(23)(34)(4 1) !
M1+ 2+ 3+ 4+ 5+ ie(l —¢)
A/ (10,217,317 47, 5%) =
’ (12)(23)(3 > >< 1)
X 5938341 E;U 1 4S451( D82 +S45S5115;3)’D=8_2€
sl P s I P 4 (4= 26)6(1,2, 3, 4) 10102, (B5)

In the collinear limit, the pentagon I2=1972¢ does not
contribute since its coefficient vanishes for four-point
kinematics. The one-mass boxes do not individually
become the massless box; however, by examining the

|

-1
2¢(3 —2¢)(1 - 2¢)

D=8-2¢ __
Iy

2

involves more complex functions including polylogarithms.

the amplitude.

(%

[
hypergeometric representation of these functions [18],

we see that they combine to all orders in € to yield the
massless box. This is quite important because the expan-
sion in € of the boxes, e.g. the massless box

)G

2

€<—%+L0g2[s/t]/2>

)

These, when multiplied by the IR singular terms, contribute to

st (B6)

u

(B7)
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Next, consider the IR singular factor,

1
Fy = Z 2 (=Siip1) ™" (B8)
In the collinear limit,
FO— FO_ 4+ rtt + A, (B9)
where [1]
1 ”2 €
rft=——|—————) +2Inzln(l —¢
=(5ew) (=3
+ia-2 G (B10)
3V TY T
and
A= log(sah) IOg(ZZ) - log(sa—],a) log(z)
—log(sp.p41)log(Z) —log(z) log(z)
1 s
——z7+—. Bl1
3 77+ 1 ( )

The combination ST x r¥* is the one-loop splitting
function.
Consequently,
AV x FO — strteeg V(R0 4 ptt 4 A)
— Sttitree (Agl)Fg) + (Sir+,treerir+ )Agl) + SJ_rJr.treeAé(‘l)A'
(B12)

In the last term, Si’““"feeAil)A, we need only keep the
one-loop amplitude to order €.

PHYSICAL REVIEW D 93, 085029 (2016)

When we consider the remainder function of Eq. (2.11)
in the collinear limit, we find

F& - —Si*'“eeAf‘l)A + rational terms.  (B13)

This is consistent with the absence of a F'§¢ term in the four-
point amplitude. 5
The rational terms Rg ) must satisfy

+ SO x ALY (4 +), (B14)

where ST+ ()| is the rational part of the splitting function.

Si*Ail)(—i— + +—) arises as a [ab]/{ab)? pole which is a
double pole for complex momenta. If we consider a = 4,
b =5, for example, two of the terms in R¢ contribute.
These terms are (using the terms of Eq. (3.29) rather than
the form in Ref. [6])

i [12][45] (24)2(51)
9(12)2(45)2 (23)(34)

i [45][23] (52)2(34)
9(45)2(23)2 (51)(12)
(B15)

The 45 collinear limit of this is then (with some algebraic
manipulation)

i \/2Z[45] ([12] (24)*(41)

9" s \(12)2 (23)(34)
_—\/z—2[45]x< —i[13)%u >
C3(45)2 3[K1](12)(23)[3K]
=57 Al ()

[23] (42)2<34>>
(23)% (41)(12)

(B16)

as required.
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