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We recompute the recently derived two-loop five-point all-plus Yang-Mills amplitude using unitarity and
recursion. Recursion requires augmented recursion to determine the subleading pole. Using these methods,
the simplicity of this amplitude is understood.
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I. INTRODUCTION

Computing perturbative scattering amplitudes is a key
challenge in quantum field theory both for comparing
theories with experiment and for understanding the sym-
metries and consistency of theories. Explicit analytic
expressions for scattering amplitudes have proved to be
useful windows into the behavior of the underlying theory.
Technical developments have been crucial to computing
these amplitudes. Two key methods based upon unitarity
[1,2] and on-shell recursion [3] have produced a great many
spectacular results particularly for maximally supersym-
metric field theories.
Recently the two-loop all-plus five-point amplitude has

been computed in QCD [4,5] using d-dimensional unitarity
techniques. Subsequently this amplitude was presented in a
very elegant and compact form [6]. In this form, the
amplitude consists of a piece driven by the infrared (IR)
structure of the amplitude and a “remainder” piece. In this
article, we demonstrate how this form can be generated
using a combination of four-dimensional unitarity and
(augmented) recursion which provides an understanding
of the simplicity of the amplitude.
Following Gehrmann et al. [6], the all-plus amplitude at

leading color may be written1

A5ð1þ; 2þ; 3þ; 4þ; 5þÞjleading color

¼ g3
X
L≥1

ðg2NcΓÞL ×
X

σ∈S5=Z5

trðTaσð1ÞTaσð2ÞTaσð3ÞTaσð4ÞTaσð5Þ Þ

× AðLÞ
5 ðσð1Þþ;σð2Þþ; σð3Þþ; σð4Þþ;σð5ÞþÞ ð1:1Þ

and the object we wish to compute is the color-stripped
two-loop amplitude Að2Þ

5 ð1þ; 2þ; 3þ; 4þ; 5þÞ.
The IR and UV behavior of the amplitude are

well specified [7] and motivate a partition of the
amplitude:

Að2Þ
5 ¼ Að1Þ

5

�
−
X5
i¼1

1

ϵ2

�
μ2

−si;iþ1

�
ϵ

þ 5π2

12

�
þ Fð2Þ

5 þOðϵÞ:

ð1:2Þ

The leading term in Eq. (1.2) contains the necessary IR and
UV terms. In this equation, Að1Þ

5 is the all-ϵ form of the

one-loop amplitude. The remainder function Fð2Þ
5 is to be

determined. We further organize Fð2Þ
5 into cut-constructible

and rational pieces,

Fð2Þ
5 ¼ Fcc

5 þ Rð2Þ
5 : ð1:3Þ

II. CUT-CONSTRUCTIBLE PIECES

In [4], d-dimensional unitarity was used to compute a
master integral representation of the full two-loop five-

point all-plus amplitude Að2Þ
5 ð1þ; 2þ; 3þ; 4þ; 5þÞ. When

using d-dimensional unitarity the cuts of the amplitude
have cut legs defined in d ¼ 4 − 2ϵ dimensions. Given a
Feynman diagram expansion of an amplitude, polynomial
reduction [8–14] can be used to obtain a corresponding set
of master integrals. The reduction process involves cutting
each diagram and repeatedly isolating the irreducible
contribution on each cut. For example, the pentabox
diagram has all eight propagators in loops and has a
nonvanishing eightfold cut. The first step of the division
is to evaluate the numerator on the eightfold cut, thus
determining the nonvanishing contribution when all eight
propagators vanish. The remainder is then evaluated on all
possible sevenfold cuts and so on. This approach can also
be used in a similar manner to the one-loop unitarity
method. Each set of cuts determines a partition of the full
set of Feynman diagrams into blocks which must be of
lower loop order, in this case tree or one-loop blocks.
Summing over all diagrams yields an on-shell amplitude
for each block. The contribution from each cut is then
determined using the product of these amplitudes for
each block.
Here, alternatively, four-dimensional amplitudes will be

used to determine the cut-constructible pieces of the
remainder function and then the remaining rational pieces

1The factor cΓ is defined as Γð1þ ϵÞΓ2ð1 − ϵÞ=Γð1 − 2ϵÞ=
ð4πÞ2−ϵ. Note this gives a factor of 1=ð16π2Þ relative to other
normalizations in the literature.
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will be calculated recursively. For the all-plus amplitude,
considerable simplification arises when we restrict
ourselves to four-dimensional cuts because all four-
dimensional cuts of the one-loop all-plus amplitude vanish.
After discarding scale free cuts, the reduction process only
receives contributions from structures of the forms shown
in Fig. 1, where the solid disc denotes an uncut one-loop
all-plus amplitude. These contributions involving the all-
plus one-loop amplitude can be evaluated using one-loop
techniques with the one-loop subamplitude as a vertex. The
n-point all-plus one-loop amplitude is [15]

Að1Þð1þ; 2þ;…; nþÞ

¼ −
i
3

X
1≤k1<k2<k3<k4≤n

hk1k2i½k2k3�hk3k4i½k4k1�
h1 2ih2 3i � � � hn1i þOðϵÞ:

ð2:1Þ

Note that for the four-point amplitude there are no box
functions with nonvanishing coefficients and the remainder
function for the four-point amplitude is purely rational [16].
The box contribution is readily evaluated using a

quadruple cut [17]. With the labeling of Fig. 2, the cut
momenta are

l1 ¼
hcdi
heci λ̄dλe; l2 ¼

hcjPdej
heci λe;

l3 ¼
hejPcdj
heci λc; l4 ¼

hedi
heci λ̄dλc; ð2:2Þ

giving the coefficient of the box function2

Cfa;bg;c;d;e ¼ Mð1Þ
4 ðaþ; bþ; lþ3 ; lþ2 Þ ×Mtree

3 ðl−3 ; cþ; lþ4 Þ
×Mtree

3 ðl−4 ; dþ; l−1 Þ ×Mtree
3 ðlþ1 ; eþ; l−2 Þ

¼ i
6

½ab�2½cd�½de�
hcei : ð2:3Þ

This is the coefficient of the integral function
I1m4 ðscd; sde; sabÞ, where [18]

I1m4 ðS; T;M2Þ ¼ −
2

ST

�
− 1

ϵ2
½ð−SÞ−ϵ þ ð−TÞ−ϵ − ð−M2Þ−ϵ�

þ Li2

�
1 −

M2

S

�
þ Li2

�
1 −

M2

T

�

þ 1

2
ln2

�
S
T

�
þ π2

6

�
ð2:4Þ

and overall factors of cΓ have been removed according to
the normalization of Eq. (1.2). This integral function splits
into singular terms plus a remainder I1m4 ¼ I1m∶IR

4 þ I1m∶F
4 ,

where

I1m∶IR
4 ðS; T;M2Þ

≡ −
2

ST

�
−

1

ϵ2
½ð−SÞ−ϵ þ ð−TÞ−ϵ − ð−M2Þ−ϵ�

�
: ð2:5Þ

The IR infinite terms, I1m∶IR
4 , in this combine with the IR

infinite terms in the triangle integral functions to produce
the correct IR infinite terms in the two-loop amplitude
while the finite pieces, I1m∶F

4 , contribute to the remainder
function.
The triangle contributions can be evaluated using triple

cuts [19–22] and a canonical basis [23]. Each one-mass
triangle I1m3 ðsedÞ has two helicity configurations which give
identical coefficients,

Cfa;b;cg;d;e ¼
i
6

sde
hedihabihbci

�
sba

� ½ea�
hdci −

½da�
heci

�

− sbc

� ½ec�
hdai −

½dc�
heai

�
− 2½de�½ac�

�
ð2:6Þ

FIG. 1. Contributions to the two-loop amplitudes involving an all-plus loop (indicated by the solid disc).

FIG. 2. The labeling and internal helicities of the quadruple cut.

2External legs attached to the one-loop corner are enclosed in
brackets thus f� � �g.
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and the integral function is

I1m3 ðK2Þ ¼ 1

ϵ2
ð−K2Þ−1−ϵ: ð2:7Þ

Similarly, the two mass triangle contributions are

Cfa;bg;c;ðd;eÞ ¼
i
6

½ab�2
hcdihdeiheci ½cjPdejciI2m3 ðsab;sdeÞ; ð2:8Þ

where the two-mass triangle function is,

I2m3 ðK2
1; K

2
2Þ ¼

1

ϵ2
ð−K2

1Þ−ϵ − ð−K2
2Þ−ϵ

ð−K2
1Þ − ð−K2

2Þ
: ð2:9Þ

The bubble contributions can be evaluated using double
cuts and a canonical basis [23]. The product of amplitudes

in each double cut is order l−2 and hence the bubble
coefficients vanish. This is consistent with the absence of
ϵ−1 singularities in the amplitude.
The boxes, one-mass and two-mass triangles all have IR

infinite terms of the form

1

ϵ2
ð−K2Þ−ϵ:

A specific choice of K2 ¼ sab arises from three box
functions,

I1m4 ðfa;bg;c;d;eÞ∶I1m4 ðfc;dg;e;a;bÞ∶I1m4 ðfd;eg;a;b;cÞ;

four two-mass triangle functions,

I2m3 ðfa; bg; c; ðd; eÞÞ∶I2m3 ðfa; bg; ðc; dÞ; eÞ∶I2m3 ðfc; dg; e; ða; bÞÞ∶I2m3 ðfd; eg; ða; bÞ; cÞ

and a single one-mass triangle function I1m3 ðfc; d; eg; a; bÞ. Summation over the box and triangle contributions gives an

overall coefficient of Að1Þ;ϵ0
5 ðaþ; bþ; cþ; dþ; eþÞ,
�X

Cfa;bg;c;d;eI1−mass
4 þ

X
Cfa;b;cg;d;eI1m3 þ

X
Cfa;bg;c;ðd;eÞI2m3

�
IR

¼ Að1Þ;ϵ0
5 ðaþ; bþ; cþ; dþ; eþÞ ×

X5
i¼1

1

ϵ2

�
μ2

−si;iþ1

�
ϵ

; ð2:10Þ

where Að1Þ;ϵ0
5 ðaþ; bþ; cþ; dþ; eþÞ is the order ϵ0 truncation of the one-loop amplitude. A key step is to promote the

coefficient of these terms to be the all-ϵ form of the one-loop amplitude which then gives the correct singular structure of the
amplitude.
The finite part of the one-mass boxes, I1m∶F

4 , then gives the cut-constructible part of the remainder function,

Fcc
5 ¼

X i
6

½ab�2½cd�½de�
hcei ×

�
−

2

scdsde

��
Li2

�
1 −

sab
scd

�
þ Li2

�
1 −

sab
sde

�
þ 1

2
ln2

�
scd
sde

�
þ π2

6

�
; ð2:11Þ

in agreement with Ref. [6]. This combination of dilogar-
ithms can either be viewed as a truncated box or, as
recognized in Ref. [6], the D ¼ 8 dimensional box. This
combination arises in one-loop amplitudes without ϵ−2 IR
singularities [17,19].

III. RATIONAL PIECES

We obtain Rð2Þ
5 using the on-shell recursion techniques

introduced by Britto-Cachazo-Feng and Witten (BCFW) to
compute tree amplitudes [3]. In this technique, the ampli-
tude is found by introducing a shift that transforms the
amplitude into an analytic function of a complex parameter,
z, then using Cauchy’s theorem to reconstruct the rational
part from its poles:

1

2πi

I
AðzÞ
z

¼ Að0Þ þ
X
zj≠0

Res

�
AðzÞ
z

�����
zj

: ð3:1Þ

Taking the contour to be the circle at infinity, the left hand
side of Eq. (3.1) vanishes provided the shifted amplitude
vanishes for large values of z. As the poles in the amplitude
are determined by its factorizations, the unshifted ampli-
tude is obtained in terms of lower point on-shell tree
amplitudes:

Atree
n ð0Þ ¼

X
i;λ

Atree;λ
riþ1 ðziÞ

i
K2

Atree;−λ
n−riþ1ðziÞ: ð3:2Þ

The usual shift involves a pair of spinors:
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λ̄a → λ̄â ¼ λ̄a − zλ̄b; λb → λb̂ ¼ λb þ zλa: ð3:3Þ

We wish to apply on-shell recursion to Rð2Þ
5 ; however,

there are some obstacles. Firstly the shift of Eq. (3.3) does
not produce an expression which has the correct cyclic
symmetry. This is usually a signature that the expression
does not vanish at infinity as may also be inferred from the
behavior of the cut-constructible terms. (This can be
checked a posteriori from the expressions in ref. [6].)
Instead, we use the shift [24,25]

λc → λĉ ¼ λc þ z½de�λη;
λd → λd̂ ¼ λd þ z½ec�λη;
λe → λê ¼ λe þ z½cd�λη; ð3:4Þ

where λη is an arbitrary spinor. Under this shift the cut-
constructible terms vanish as z → ∞, an indication that the
rational part will also have well behaved asymptotics.
A further issue is the existence of double poles in the

amplitude. These arise beyond tree level. In principle, these
are not a barrier to computation since, if we have a function
whose expansion about zi is

fðzÞ ¼ a−2
ðz − ziÞ2

þ a−1
ðz − ziÞ

þ finite; ð3:5Þ

then

Residue

�
fðzÞ
z

; zi

�
¼ −

a−2
z2i

þ a−1
zi

: ð3:6Þ

However, for loop amplitudes, only the leading singular-
ities have been determined in general and there are no
general theorems for the subleading terms. We overcome
this barrier by using axial gauge techniques to determine
the extra information required to perform recursion. This is
termed “augmented recursion”.
There are two contributions to the factorization:

Atree
3 ×

1

K2
× A2 loop

4 and A1 loop
3 ×

1

K2
× A1 loop

4 : ð3:7Þ

The full rational term is the sum of contributions from these
two channels,

Rð2Þ
5 ¼ Rt−2

5 þ R1−1
5 : ð3:8Þ

Rt−2
5 involves only single poles and is directly evaluated

using the rational part of the four-point two-loop
amplitude [16],

Rð2Þ
4 ðKþ; bþ; cþ; dþÞ ¼ i

6

½Kb�
hKbi

½cd�
hcdi

�
s2bd

scdsbc
þ 8

�
: ð3:9Þ

Setting η ¼ b, the shift excites this factorization channel
three times, giving

Rt−2
5 ¼

�
At
3ðcþ;dþ;K−Þ 1

scd
Rð2Þ
4 ðKþ; êþ;aþ;bþÞ

�����
hĉ d̂i¼0

þ
�
At
3ðdþ; eþ;K−Þ 1

sde
Rð2Þ
4 ðKþ;aþ;bþ; ĉþÞ

�����
hd̂ êi¼0

þ
�
At
3ðeþ;aþ;K−Þ 1

sea
Rð2Þ
4 ðKþ;bþ; ĉþ; d̂þÞ

�����
hêai¼0

:

ð3:10Þ

The second channel, R1−1
5 , has double poles associated

with the diagram shown in Fig. 3. The existence of double
poles means we must determine the subleading contribu-
tions which are not captured by the naive factorization.
These “pole under the pole” contributions have been
determined for a number of one-loop amplitudes using
augmented recursion [26–29]. The contribution from this
channel can be computed using axial gauge techniques
[30–32] by considering diagrams of the form shown in
Fig. 4, where τ1 represents an approximation to the doubly
massive current. A key feature of the axial gauge is that the
internal legs have helicity assignments and vertices only
involve nullified momenta as defined in Eq. (A2). Using the
axial gauge three-point vertices, the contribution from
Fig. 4 with the indicated helicity assignment is

Cαþβ− ¼
Z

ddl
l2α2β2

hαbi2
hβbi2

½djljbi½ejljbi
hdbihebi

× τ1ðβ−; αþ; aþ; bþ; cþÞ; ð3:11Þ

FIG. 3. The origin of the double poles in sde. The diagram has
an explicit pole and an additional pole can arise from the triangle
integral.

FIG. 4. The nonfactorizing contribution to the pole. We must
also include the case with the helicities on α and β reversed.
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where α and β are the momenta

β ¼ lþ d and α ¼ −lþ e: ð3:12Þ

Within τ, β and α are loop-momenta dependent; however,
the combination β þ α is not.

As discussed in [29], τ1 does not need to capture the full
off-shell behavior of the current, but it must satisfy two
conditions: it must reproduce the leading singularity as
sαβ → 0 with α2, β2 ≠ 0 (C1) and it must reproduce the
amplitude in the limit α2, β2 → 0, sαβ ≠ 0 (C2). The
current, as detailed in Appendix A, is

τ1ðβ−; αþ; aþ; bþ; cþÞ ¼ i
3

1

habi2
�
−
½αc�2½qc�
½cβ�½βq� þ F þ ½cjqjβi ð½cα�½αq�½kq� þ ½αq�2½ck�Þ

½βq�½kq�2k:q

þ ½bc�haci
hbci2

hβbi2
hαbi2

�hbjβαjbi
sβα

½qjβ þ αjbi
½qjβ þ αjai

�

þ
�½bc�haci

hbci2
hβbi2
hαbi2

hbαihbai
hαai

½qjβjbi
½qjβ þ αjai −

hβai3½aα�hbαi
hβcihcbihaαi2

��
: ð3:13Þ

Cαþβ− is split up into five pieces: sl, sf, sk, dp and ap
corresponding to the terms in τ given in (3.13),

Cαþβ− ¼ Cαþβ−∶sl þ Cαþβ−∶sf þ Cαþβ−∶sk

þ Cαþβ−∶dp þ Cαþβ−∶ap: ð3:14Þ

The term Cαþβ−∶dp contains the double pole and is

Cαþβ−∶dp ¼
Z

ddl
l2α2β2

½djljbi½ejljbi
hdbihebi

i
3

1

habi2
½bc�haci
hbci2

×
hbjβαjbi

sβα

½qjβ þ αjbi
½qjβ þ αjai

¼ i
9

½bc�hacihbjdejbi
habi2hbci2

1

hdei2
½qjdþ ejbi
½qjdþ ejai : ð3:15Þ

The final term does not contain [βq] and is labeled
Cαþβ−∶ap:

Cαþβ−∶ap¼
Z

ddl
l2α2β2

½djljbi½ejljbi
hdbihebi

i
3

1

habi2

×

�½bc�haci
hbci2

hbαihbai
hαai

½qjβjbi
½qjβþαjaiþ

hβai½ajαjbi
hβcihcbi

�
:

ð3:16Þ
As this term contains only a single pole, the approxi-

mation

hXαi
hYαi ¼

hXαi
hYαi

hYdi
hYdi ¼

hXdi
hYdi þOðhαdiÞ ð3:17Þ

can be used to leading order, leaving cubic triangle
integrals:

Cαþβ−∶ap ¼ i
9

½de�
hdei

1

habi2
�½bc�haci

hbci2
hbdihbai
hdai

½qj2dþ ejbi
½qjdþ ejai

þ hdai½ajdþ 2ejbi
hdcihcbi

�
: ð3:18Þ

The term Cαþβ−∶sl is

Cαþβ−∶sl ¼
Z

ddl
l2α2β2

½djljbi½ejljbi
hdbihebi

hαbi2
hβbi2

×
i
3

1

habi2
�
−
½αc�2½qc�
½βq�½cβ�

�

¼ i
3

1

habi2
½qc�

hdbihebi
X
n¼0;2

Z
ddl

l2α2β2
½djljbi½ejljbi

×
½cjβjbi1−n½cjPdejbinκn

ðβ þ qÞ2 þ � � � ð3:19Þ

where κ2 ¼ κ0 ¼ 1, κ1 ¼ −2 and the þ… reflects the use
of a leading-order approximation based on

1

2β · X
−

1

ðβ þ XÞ2 ¼
β2

2β · Xðβ þ XÞ2 : ð3:20Þ

For n ¼ 0, 1, this is readily reduced to triangles using

½ejljbi½djljbi

¼ β2hbjlejbi þ α2hbjldjbi − l2hbjðl − eÞPdejbi
hedi :

ð3:21Þ

As all of the numerator factors have l contracted with b,
only the scalar part of the shifted Feynman parameter
integral survives. This removes two of the triangles
completely. Quadratic numerators in the surviving triangle
give rational contributions, while linear numerators do not.
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As the n ¼ 2 case involves a linear box, rational contri-
butions are not expected from this term. Overall,

Cαþβ−∶sl ¼ i
3

1

habi2
½qc�½de�
hdei

½cjejbi
2seq

: ð3:22Þ

The third term in (3.13) involves the terms with a k2=sαβ
factor from F . These give the Cαþβ−∶sk contribution:

Cαþβ−∶sk ¼ i
3

Z
ddl

l2α2β2
½djljbi½ejljbi
hdbihebi

hαbi2
hβbi2

× ½cjqjβi ð½cα�½αq�½kq� þ ½αq�2½ck�Þ
½βq�½kq�2k · q

1

habi2 :

ð3:23Þ

Using the same leading-order approximations as in the
previous case,

Cαþβ−∶sk ¼ −
i
18

� ½cq�½ed�
habi2hedi2k · q

1

seq
½5½qjejbi½cjejbi

þ 3½qjdjbi½cjejbi þ ½qjejbi½cjdjbi�

þ ½cq�½ed�½cjkjbi
habi2hedið2k · qÞ2 ½5½qjejbi þ 4½qjdjbi�

�
:

ð3:24Þ

Finally there is the contribution from the second term in
(3.13). This term reproduces the factorizing contribution
shown in the second part of Fig. 5. The corresponding
integral

Cαþβ−∶sf ¼
Z

ddl
l2α2β2

½djljbi½ejljbi
hdbihebi

hαbi2
hβbi2

hβki½αq�2
½βq�½kq�

×
1

sαβ
Að1Þðkþ; aþ; bþ; cþÞ

¼ C−þ∶tri ×
1

sαβ
Að1Þðkþ; aþ; bþ; cþÞ; ð3:25Þ

where the triangle integral,

C−þ∶tri ¼
Z

ddl
l2α2β2

½djljbi½ejljbi
hdbihebi

hαbi2
hβbi2

hβki½αq�2
½βq�½kq� ;

ð3:26Þ

is closely related to the ðþ;þ;−Þ one-loop splitting
function. Comparing with the one-loop splitting function
leads to

Cαþβ−∶sf þ Cαþβ−∶sf

¼ 1

3

½qd�½qe�½ed�
½kq�2 ×

1

sαβ
Að1Þðkþ; aþ; bþ; cþÞ: ð3:27Þ

Having determined the rational contributions arising
from Fig. 4, the corresponding residues can be obtained
by applying the shift (3.4) and extracting the coefficient of
the ðz − z0Þ−1 term in the Laurent expansion. The process
can be repeated for the other internal helicity configuration
of the triangle. A similar procedure can be applied to the
other two factorization channels: hĉ d̂i → 0 and hêai → 0.
As λq ¼ λb the five-point single-minus amplitudes in
these cases need to written in a form where the terms
containing the hαβi → 0 pole reproduce the axial gauge
factorization.
Summing over the various contributions yields a rational

term that has the correct cyclic symmetry and is indepen-
dent of λ̄q. These are highly nontrivial checks since these
symmetries are not manifest during the recursive calcu-
lation and are only restored at the final stage (provided all
terms have been correctly computed).
After some considerable algebra, these terms can be

reduced to match the form given in Ref. [6]3

Rð2Þ
5 ¼ i

6h1 2ih2 3ih3 4ih4 5ih5 1i × ðRa
5 þ Rb

5Þ; ð3:28Þ

where

FIG. 5. Sources of sαβ poles in τ1.

3We find a perfect match provided we replace tr− of Ref. [6] by
trþ in term Rb

5 . The trþ of Rb
5 correctly gives the collinear limit as

demonstrated in Appendix B.
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Ra
5 ¼

2

3

X tr2þð4512Þ
s45s12

;

Rb
5 ¼

X�
10

3
s12s23 þ

2

3
s12s34

�
; ð3:29Þ

and the sum cycles the five indices.

IV. CONCLUSIONS

Using four-dimensional unitarity and recursion, we have
been able to reproduce the two-loop five-point all-plus
Yang-Mills amplitude. Key to this is the observation that
four-dimensional unitarity can be used to generate the IR
singular terms whose coefficient, the one-loop amplitude,
can be promoted to its all-ϵ form. With this identification
the finite remainder terms follow. Computation of the cut-
constructible terms is straightforward while computing the
rational terms is fairly complicated but only involves one-
loop integrals and avoids genuine two-loop integration. We
intend to apply these techniques to further “pseudo-one-
loop” amplitudes [33].
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APPENDIX A: OFF-SHELL CURRENT

In this appendix, we compute an effective current
τ1ðαþ; β−; cþ; dþ; eþÞ where α and β are the off-shell legs.
We will not generate the exact current but one which is
sufficient to determine the poles in the amplitude.
Specifically, as shown in [29], τ1 must satisfy two con-
ditions: (C1) it must reproduce the leading singularity as
sαβ → 0 with α2, β2 ≠ 0 and (C2) it must reproduce the
amplitude in the limit α2, β2 → 0, sαβ ≠ 0.
We use an axial gauge formalism [30–32] in which

helicity labels can be used for internal lines and off-shell
internal legs in the vertices are nullified using a reference
spinor: given a reference null momentum η, any off-shell
leg with momentum K can be nullified using

K♭ ¼ K −
K2

½ηjKjηi η; ðA1Þ

which gives spinors

λK ¼ αKjη�; λ̄K ¼ α−1
Kjηi

½ηjKjηi : ðA2Þ

For convenience, we will choose the reference spinor to be
q ¼ λ̄qλb leaving λ̄q arbitrary.
Our task is to identify the part of the current which will

generate s−1αβ poles. The diagrams which lead to these poles
are shown in Fig. 5.
The first diagram of Fig. 5 contains a hαβi−1 factor and

hence, after the integration within the diagram as in Fig. 4
generates the double pole piece of the rational terms. The
second diagram contains a ½αβ�−1 factor and so does not
enhance the order of the hdei pole.
The possible sources of sαβ poles in the third structure

are illustrated in Fig. 6. With this helicity configuration,
the ðtriangleÞ × ðtreeÞ factorizations with β− in the triangle
are absent as there are insufficient negative helicity legs to
form a nonvanishing tree. Also, any triangles involving β−

and αþ must be mixed (i.e. contain both ðþ þ −Þ
and ð− −þÞ corners) and are therefore finite. This
removes contributions of the form ðsingular triangleÞ×
ðon-shell propagatorÞ× ðcurrent with vanishing amplitudeÞ.
As there are no contributions with a 1=sαβ propagator, any
poles in sαβ must comes from the loop integration. Such
singularities arise from the integration region with the loop
momenta all proportional to αþ β, i.e. a specific null
momentum. For these contributions, the loop momenta can
be taken to be on-shell (hence the of thin lines for the
propagators in the third part of Fig. 6). While there is a
helicity configuration which gives a nonvanishing tree
amplitude for the third corner, this amplitude vanishes
when the propagators are collinear, i.e. the tree vanishes in
the region of interest and the contribution is finite as
sαβ → 0. Thus, there are no poles in sαβ arising from the
third structure in Fig. 5, and it can be neglected when
considering condition C1 (the finite contributions, of
course, are relevant for condition C2).

FIG. 6. Sources of sαβ poles in contributions from τ0.
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τ1 can be constructed from the five-point one-loop
amplitude [34]:

Að1Þ
5 ðβ−;αþ;aþ;bþ;cþÞ

¼ i
3

1

habi2
�
−

½αc�3
½βα�½cβ�þ

hβbi3½bc�haci
hβαihαaihbci2−

hβai3½aα�hbαi
hβcihcbihaαi2

�
:

ðA3Þ

To satisfy C1 without compromising C2, corrections of
order α2 and β2 are introduced to reproduce the factoriza-
tion channels in Fig. 5. Using axial gauge rules and the one-
loop amplitude [16]

Að1Þ
4 ðd−; aþ; bþ; cþÞ ¼ −

i
3

½ac�2sac
½da�habihbci½cd� ; ðA4Þ

the pole arising from the first structure is

½αk�hβqi2
hαqihkqi

1

sαβ
Að1Þðk−; aþ; bþ; cþÞ

¼ −
i
3

hβqi2
hαqi2

hqjαβjqi
sαβ

½ac�2sac
½ka�habihbci½ck�hkqi2 ; ðA5Þ

where k ¼ −ka − kb − kc which is null on the pole. With
λq → λb the four-point kinematics on the loop amplitude
allow this to be written as

−
i
3

hβbi2
hαbi2

hbjαβjbi
sαβ

½ac�2sac
½ka�habihbci½ck�hkbi2

¼ −
i
3

hβbi2
hαbi2

hbjαβjbi
sαβ

haci½bc�hkbi
habi2hbci2hkai : ðA6Þ

This factor can be built into τ1 by taking (A3) and making
the substitution

hβbi3
hβαihαai →

hβbi2
hαbi2

�hbjβαjbi
sβα

½qjβ þ αjbi
½qjβ þ αjai

þ hbαihbai
hαai

½qjβjbi
½qjβ þ αjai

�
ðA7Þ

in the second term. Equation (A7) is an identity in the limit
α2, β2 → 0, and so condition C2 is not compromised. The
leading term as sαβ → 0 then exactly reproduces the
contribution from (A6).
Similarly, the second structure gives

F ¼ hβki½αq�2
½βq�½kq�

1

sαβ
A1−lðkþ; aþ; bþ; cþÞ

¼ −
i
3

hβki½αq�2
½βq�½kq�

1

sαβ

½ck�2
habi2 : ðA8Þ

Away from the pole, k is interpreted as its nullified form, so
that

F ¼ i
3

½αq�2
½βq�½kq�

1

sαβ

½ck�ð½cα�hαβi þ δ½cjqjβiÞ
habi2

¼ i
3

1

sαβ

ð½αq�½kq�½ck�½cα�hkβi þ δ½cjqjβi½αq�2½ck�Þ
½βq�½kq�habi2

¼ i
3

1

sαβ

�½cα�2½αq�hαβi
½βq�habi2

þ δ½cjqjβi ð½cα�½αq�½kq� þ ½αq�2½ck�Þ
½βq�½kq�habi2

�
; ðA9Þ

where

δ ¼ α2

2α · q
þ β2

2β · q
−

k2

2k · q
: ðA10Þ

Now,

hαβi
sαβ

−
1

½βα� ¼
hαβi½βα� − sαβ

sαβ½βα�

¼ ðα♭ þ β♭Þ2 − sαβ
sαβ½βα�

¼ −
�

α2

2α · q
þ β2

2β · q

�
2k · q
sαβ½βα�

ðA11Þ

and the first term in the amplitude is

−
i
3

1

habi2
½αc�3

½βα�½cβ� ¼−
i
3

1

habi2
½αc�3

½βα�½cβ�
½βq�
½βq�

¼−
i
3

1

habi2
½αc�2

½βα�½cβ�½βq� ½βq�½αc�

¼−
i
3

1

habi2
½αc�2½qc�
½cβ�½βq� −

i
3

1

habi2
½αc�2½qα�
½βα�½βq� :

ðA12Þ

Using (A11), the second term of (A12) matches the first
term of (A9) up to corrections of order α2 and β2. However,
in addition to terms of order α2 and β2, the second term of
(A9) contains a term of order k2=sαβ. This term does not
contribute to the s−1αβ pole in τ1 and is not present in the
amplitude when α2, β2 → 0. The current is therefore
obtained by replacing the second term of (A12) by F
with the order k2=sαβ term removed. The current is then
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τ1ðβ−; αþ; aþ; bþ; cþÞ ¼ i
3

1

habi2
�
−
½αc�2½qc�
½cβ�½βq� þ F þ ½cjqjβi ð½cα�½αq�½kq� þ ½αq�2½ck�Þ

½βq�½kq�2k · q

þ ½bc�haci
hbci2

hβbi2
hαbi2

�hbjβαjbi
sβα

½qjβ þ αjbi
½qjβ þ αjai þ

hbαihbai
hαai

½qjβjbi
½qjβ þ αjai

�
−
hβai3½aα�hbαi
hβcihcbihaαi2

�
; ðA13Þ

where, by construction, the third term exactly reproduces
the first structure in Fig. 5 and the second term gives the s−1αβ
pole in the second structure in Fig. 5. This expression
therefore satisfies condition C1. The modifications to the
amplitude are all Oðα2; β2Þ and, therefore, do not com-
promise condition C2.

APPENDIX B: COLLINEAR LIMITS

We consider the collinear limit of the amplitude as an
important consistency test and to illustrate some key
features. The collinear limit occurs when adjacent momenta
ka and kb become collinear,

ka → z × K; kb → ð1 − zÞ × K ¼ z̄K: ðB1Þ

In this limit, amplitudes factorize as

AðLÞ
n ð� � � ; kha; kh0b ; � � �Þ→

X
Ls;h00

Shh
0;ðLsÞ

−h00 × AðL−LsÞ
n−1 ð� � �Kh00 ; � � �Þ;

ðB2Þ

where Shh
0;ðLsÞ

−h00 are the various splitting functions. For our
amplitude, the tree amplitude vanishes for both choices of
h00 and

Að2Þ
5 ð� � � kþa ; kþb � � �Þ → Sþþ;tree

− × Að2Þ
4 ð� � �Kþ; � � �Þ

þ
X
h00¼�

Sþþ;ð1Þ
� × Að1Þ

4 ð� � �K∓; � � �Þ:

ðB3Þ

The first important result is that to all orders in ϵ,

Að1Þ
5 → Sþþ;tree

− × Að1Þ
4 : ðB4Þ

The all-ϵ forms of these amplitudes are [35]

Að1Þ
4 ð1þ; 2þ; 3þ; 4þÞ ¼ 2iϵð1 − ϵÞ

h1 2ih2 3ih3 4ih4 1i × s12s23ID¼8−2ϵ
4 ;

Að1Þ
5 ð1þ; 2þ; 3þ; 4þ; 5þÞ ¼ iϵð1 − ϵÞ

h1 2ih2 3ih3 4ih4 5ih5 1i
× ½s23s34Ið1Þ;D¼8−2ϵ

4 þ s34s45I
ð2Þ;D¼8−2ϵ
4 þ s45s51I

ð3Þ;D¼8−2ϵ
4

þ s51s12I
ð4Þ;D¼8−2ϵ
4 þ s12s23I

ð5Þ;D¼8−2ϵ
4 þ ð4 − 2ϵÞεð1; 2; 3; 4ÞID¼10−2ϵ

5 �: ðB5Þ

In the collinear limit, the pentagon ID¼10−2ϵ
5 does not

contribute since its coefficient vanishes for four-point
kinematics. The one-mass boxes do not individually
become the massless box; however, by examining the

hypergeometric representation of these functions [18],
we see that they combine to all orders in ϵ to yield the
massless box. This is quite important because the expan-
sion in ϵ of the boxes, e.g. the massless box

ID¼8−2ϵ
4 ¼ −1

2ϵð3 − 2ϵÞð1 − 2ϵÞ
�
st
u2

��
u2

st
þ ϵ

�
−
u2

st
þ Log2½s=t�=2

�
ðB6Þ

þ ϵ2
�
−
u2

st
þ Li3ð1þ s=tÞ þ Li3ð1þ t=sÞ

�
; ðB7Þ

involves more complex functions including polylogarithms. These, when multiplied by the IR singular terms, contribute to
the amplitude.
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Next, consider the IR singular factor,

F0
n ¼

X
i

−
1

ϵ2
ð−siiþ1Þ−ϵ: ðB8Þ

In the collinear limit,

F0
n → F0

n−1 þ rþþ
− þ Δ; ðB9Þ

where [1]

rþþ
− ¼ −

1

ϵ2

�
μ2

zð1 − zÞð−sabÞ
�

ϵ

þ 2 ln z lnð1 − zÞ

þ 1

3
zð1 − zÞ − π2

6
ðB10Þ

and

Δ ¼ logðsabÞ logðzz̄Þ − logðsa−1;aÞ logðzÞ
− logðsb;bþ1Þ logðz̄Þ − logðzÞ logðz̄Þ

−
1

3
zz̄þ π2

4
: ðB11Þ

The combination Sþþ;tree
− × rþþ

− is the one-loop splitting
function.
Consequently,

Að1Þ
5 × F0

5 → Sþþ;tree
− Að1Þ

4 ðF0
4 þ rþþ

− þ ΔÞ
¼ Sþþ;tree

− ðAð1Þ
4 F0

4Þ þ ðSþþ;tree
− rþþ

− ÞAð1Þ
4 þ Sþþ;tree

− Að1Þ
4 Δ:

ðB12Þ

In the last term, Sþþ;tree
− Að1Þ

4 Δ, we need only keep the
one-loop amplitude to order ϵ0.

When we consider the remainder function of Eq. (2.11)
in the collinear limit, we find

Fcc
5 → −Sþþ;tree

− Að1Þ
4 Δþ rational terms: ðB13Þ

This is consistent with the absence of a Fcc
4 term in the four-

point amplitude.
The rational terms Rð2Þ

5 must satisfy

Rð2Þ
5 → Sþþ;tree

− ×Rð2Þ
4 ðþþþþÞþ Sþþ;ð1Þ

þ ×Að1Þ
4 ðþþþ−Þ

þ Sþþ;ð1Þ
− jrat ×Að1Þ

4 ðþþþþÞ; ðB14Þ

where Sþþ;ð1Þ
− jrat is the rational part of the splitting function.

Sþþ
þ Að1Þ

4 ðþ þ þ−Þ arises as a ½ab�=habi2 pole which is a
double pole for complex momenta. If we consider a ¼ 4,
b ¼ 5, for example, two of the terms in Ra

5 contribute.
These terms are (using the terms of Eq. (3.29) rather than
the form in Ref. [6])

i
9

½1 2�½4 5�
h1 2i2h4 5i2

h2 4i2h5 1i
h2 3ih3 4i þ i

9

½4 5�½2 3�
h4 5i2h2 3i2

h5 2i2h3 4i
h5 1ih1 2i :

ðB15Þ

The 45 collinear limit of this is then (with some algebraic
manipulation)

i
9
×

ffiffiffiffiffi
zz̄

p ½45�
h45i2 ×

� ½12�
h12i2

h24i2h41i
h23ih34i þ ½23�

h23i2
h42i2h34i
h41ih12i

�

¼ −
ffiffiffiffiffi
zz̄

p ½4 5�
3h4 5i2 ×

�
−i½1 3�2u

3½K1�h1 2ih2 3i½3K�
�

¼ Sþþ;ð1Þ
þ × Að1Þ

4 ðþ þ þ−Þ ðB16Þ

as required.
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