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The nonlinear Breit-Wheeler process is studied in the presence of strong and short laser pulses. We show
that for a relativistically intense plane-wave laser field many features of the momentum distribution of the
produced electron-positron pair like its extension, region of highest probability and carrier-envelope phase
effects can be explained from the classical evolution of the created particles in the background field. To this
end an intuitive semiclassical picture based on the local constant-crossed field approximation applied on
the probability-amplitude level is established and compared with the standard approach used in QED-PIC
codes. The main difference is the substructure of the spectrum, which results from interference effects
between macroscopically separated formation regions. In order to compare the predictions of the
semiclassical approach with exact calculations, a very fast numerical scheme is introduced. It renders
the calculation of the fully differential spectrum on a grid which resolves all interference fringes feasible.
Finally, the difference between classical and quantum absorption of laser four-momentum in the process is
pointed out and the dominance of the former is proven. As a self-consistent treatment of the quantum
absorption is not feasible within existing QED-PIC approaches, our results provide reliable error estimates
relevant for regimes where the laser depletion due to a developing QED cascade becomes significant.
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I. INTRODUCTION

From a conceptual point of view the transformation of
light into matter is one of the most appealing physical
processes. The possibility to create an electron-positron
pair by merging two real photons (Breit-Wheeler process
[1]) is a direct manifestation of the equivalence of mass
and energy, postulated first by Einstein. Hitherto, however,
this process has not been observed in a laboratory.
Experimentally, electron-positron photoproduction was
studied only indirectly via the trident process, i.e. by
colliding a highly relativistic electron beam with an optical
laser in the SLAC E-144 experiment [2] (the experimental
findings could be explained within the two-step approxi-
mation, i.e. by the assumption that the electrons first radiate
real gamma photons which subsequently decay into pairs
via the Breit-Wheeler process). To understand the results
of the measurement theoretically, nonlinear effects (i.e. the
simultaneous absorption of several laser photons) must be
taken into account [2–5].
Due to the continuous improvement of laser technology

the experimental observation of the nonlinear generaliza-
tion of the Breit-Wheeler process (see Fig. 1) is now within
reach, e.g., at upcoming high-power laser facilities like the
APOLLON-10P laser [6], the Extreme Light Infrastructure
[7], the Vulcan 10 PW laser [8] at the Central Laser Facility
[9], and the Exawatt Center for Extreme Light Studies [10].

Therefore, this process has recently been considered by
several authors [11–27] (see also the reviews [28–35]).
The decay of a photon into an electron-positron pair is an

intrinsic quantum process, which has no classical analogue
and must be described in the realm of quantum field theory,
e.g., by calculating the corresponding S-matrix element.
This implies that we can only determine the total proba-
bility for the decay and the asymptotic momentum dis-
tribution for the final particles.
However, it is well known that in the case of a plane-

wave laser field with electric field amplitude E0 and central
angular frequency ω the formation region of the basic
QED processes nonlinear Compton scattering and non-
linear Breit-Wheeler pair production are ξ-times smaller
than the laser period in the ultrarelativistic regime ξ ≫ 1.
Here, ξ ¼ jejE0=ðmωcÞ is the classical intensity parameter,
with e < 0 and m denoting the electron charge and mass,
respectively [29,34]. Hence, the total probability for non-
linear Compton scattering and nonlinear Breit-Wheeler
pair production can be calculated by applying the local
constant-crossed field approximation, i.e. by averaging the
corresponding probability in a constant-crossed field over
the laser pulse [29,34,38–43].
As pointed out by Ritus [34], this procedure is justified

for the calculation of total probabilities but fails in general
for the momentum distribution of the final particles (this
has also been recently observed numerically in [44] for
nonlinear Compton scattering). The reason is interference
effects arising from processes occurring at macroscopically
separated space-time points, which are neglected from the
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beginning when the averaging procedure is applied to
the probabilities. As a laser field is oscillatory, each cycle
typically contains two formation regions where the elec-
tron-positron pair is created with the same asymptotic
quantum numbers. An interference between different path-
ways is therefore expected from general principles similar
to a multislit experiment.
The fact that the substructure of the spectrum can be

attributed to interference effects is well known from other
processes. For nonlinear Thomson (Compton) scattering
this was, e.g., reported in Refs. [45–49], for Schwinger
pair production interference effects are, e.g., discussed in
Refs. [50–53].
Nonetheless, the average over the laser pulse shape

on the probability level (incoherent summation of all
possible processes) rather than the amplitude level (coher-
ent summation of all possible processes) is the state-of-the-
art approach for the implementation of strong-field
QED processes in so-called particle-in-cell (PIC) codes
[54–81]. Therefore, it is desirable to revisit this approach
and show how it could be extended if a higher precision
becomes necessary. To this end we study here for the first
time the quantitative influence of interference effects on the
spectra for electron-positron photoproduction in the semi-
classical regime.
By applying a stationary-phase analysis to the leading-

orderS-matrix element for electron-positron photoproduction
it is shown below that in the strong-field regime ξ ≫ 1 all
qualitative features of the spectrum (including the substruc-
ture caused by interference effects) can be understood using
the following semiclassical description: at each laser phase
the pair-production probability amplitude is calculated by
employing the local constant-crossed field approximation. It
predicts the local momentum spectrum of the pair immedi-
ately after the particles are brought on shell. The latter is then
employed as an initial condition for the classical propagation
which provides the asymptotic momentum distribution.
Finally, the probability for the production of a pair with
given asymptotic momenta is obtained by squaring the
probability amplitude, taking the interference between pairs
which have the same asymptotic momenta but originating
from different formation regions into account.
This intuitive picture provides a clear physical reason for

many properties of the asymptotic momentum distribution
like its extension and the regions of highest probability.
Moreover, it explains the strong dependence of the spec-
trum on the carrier-envelope phase (CEP) for ultrashort
laser pulses reported in [19]. In the context of vacuum
pair production classical features have been identified in
[82]. Furthermore, a similar semiclassical analysis has been
carried out in [46,83,84] to explain various features of
the emission spectra for nonlinear Compton scattering and
has been exploited in [84] to put forward a scheme for
determining the CEP in ultrashort and ultraintense laser
beams via nonlinear single-Compton scattering.

We point out that electron-positron photoproduction
has a lot of commonalities with laser-induced ionization
processes. In fact, the procedure outlined above is closely
related to similar approaches used in atomic physics to
describe the time evolution of an electron after tunnel
ionization [85,86].
Interestingly, this semiclassical three-step model allows

us to distinguish between a “classical” and a “quantum”
absorption of laser four-momentum in the process. As the
decay of a photon into an electron-positron pair is forbidden
in vacuum, a certain amount of laser four-momentum
must be absorbed initially to bring the massive particles
on shell (this part will be called quantum absorption here,
see Sec. III E). Afterwards, the charged particles are further
accelerated by the laser field, which implies a classical
energy-momentum transfer. Below, these two processes
are distinguished for the first time and it is shown
that classical absorption dominates for ξ ≫ 1. Corres-
pondingly, the laser is predominantly depleted from the
classical energy-momentum transfer.
To establish the validity of the outlined semiclassical

approach, we compare its predictions with a full numerical
calculation of the leading-order S-matrix element (see
Fig. 1). In this way we show that already for ξ≳ 5 the
interference substructure obtained from the local constant-
crossed field approximation applied on the probability
amplitude level is in very good agreement with the full
numerical result.
As the S-matrix integrals are highly oscillating in the

regime ξ ≫ 1, the numerical calculation is, in principle, a
challenging task [18,19]. We present here a new scheme,
which is substantially more efficient than other employed
methods (see Sec. II C). Hence, it becomes feasible to
evaluate the three-dimensional differential probability on a
grid which is fine enough to completely resolve the
interference substructure of the spectrum. To obtain the
total pair-production probability, however, the numerical

FIG. 1. Leading-order Feynman diagram for electron-positron
photoproduction inside a plane-wave background field (nonlinear
Breit-Wheeler process). The double lines represent Volkov states
(solutions of the interacting Dirac equation, which take the plane-
wave background field into account exactly [36,37]), the wiggly
line the incoming photon. As long as the total pair-production
probability is much smaller than unity, the spectrum for the final
particles is determined to a good accuracy by simply evaluating
this diagram and neglecting radiative corrections [38].
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evaluation of the compact expressions derived in [38] is still
much faster.
Note that for nonlinear Compton scattering the final

phase space has been studied in [87–90] for moderate
values of the parameter ξ (ξ≲ 10) and the computation of
total probabilities can also be significantly simplified by
employing the method proposed in [91].
The paper is organized as follows. In Sec. II our notation

is introduced and the well-known leading-order expression
for the pair-production probability [see Eq. (8)] is
expressed using Lorentz-invariant momentum parameters
(see Sec. II A for details). Furthermore, the numerical
scheme for the numerical evaluation of the pair-production
probability is described in Sec. II C. Afterward, the main
new result of the present paper, the disentanglement
between classical and quantum aspects of the pair-
production process, is presented in Sec. III.
From now on we use natural units ℏ ¼ c ¼ 1 and

Heaviside-Lorentz units for charge [α¼e2=ð4πÞ≈1=137
denotes the fine-structure constant], the notation agrees
with [38,92].

II. PAIR PRODUCTION PROBABILITY

In this paper we consider the decay of a photon with
four-momentum qμ (q2 ¼ 0) and polarization four-vector
ϵμ into an electron and a positron with four-momentum pμ

1

and pμ
2, respectively (p2

i ¼ m2). In vacuum, this transition
is forbidden by energy-momentum conservation (for all
photon energies). Inside an electromagnetic background
field, however, the so-called (nonlinear) Breit-Wheeler
process is in general allowed (see Fig. 1). Here, we focus
on plane-wave laser fields described by the classical field
tensor

FμνðϕÞ ¼
X
i¼1;2

fμνi ψ i
0ðϕÞ; fμνi ¼ kμaνi − kνaμi ; ð1Þ

where ϕ ¼ kx is the laser phase, xμ the position four-vector,
kμ the characteristic four-momentum of the laser photons
and aμi and jψ i

0ðϕÞj≲ 1 characterize the strength and the
shape of the field, respectively, along the two possible
polarization directions [i ¼ 1, 2; ψ ið�∞Þ ¼ ψ 0

ið�∞Þ ¼ 0;
the prime denotes the derivative of a function with respect
to the argument]. Furthermore, we introduce the classical
intensity parameters

ξi ¼
jej
m

ffiffiffiffiffiffiffiffi
−a2i

q
; ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ ξ22

q
ð2Þ

and the quantum-nonlinearity parameter χ ¼ ðkq=m2Þξ
(note that kq ≥ 0 as q2 ¼ 0 here).
If a laser field is sufficiently intense and depletion effects

are negligible, it can be considered as a classical back-
ground field. Correspondingly, the pair-production proba-
bility is obtainable using the formalism of strong-field QED

in the Furry picture [93] (for more details see, e.g., [28–35,
94–96] and the literature cited in the introduction).

A. Invariant momentum parameters

Using the canonical light-cone basis (see Appendix A for
more details), we introduce the Lorentz-invariant momen-
tum parameters r, t1 and t2

pμ
1 ¼ r0qμ þ s0kμ þ t01mΛμ

1 þ t02mΛμ
2; ð3aÞ

pμ
2 ¼ −rqμ − skμ − t1mΛμ

1 − t2mΛμ
2: ð3bÞ

Here, ti0 ¼ ti and r0 ¼ rþ 1 due to momentum conserva-
tion and the quantities

s ¼ 1

2r
m2

kq
ð1þ t21 þ t22Þ; s0 ¼ 1

2r0
m2

kq
ð1þ t21 þ t22Þ

ð4Þ

are determined by the on-shell conditions p2
1 ¼ p2

2 ¼ m2.
We point out that we consider only plane-wave fields with
a finite duration. Correspondingly, the four-momentum qμ

(pμ
1, p

μ
2) denotes the asymptotic four-momentum in vacuum

before (after) the interaction with the laser pulse. In
particular, we do not introduce dressed masses and
momenta for the electron and the positron [29,34].
For later convenience we also define the quantities [34]

R ¼ rþ 1

2
¼ kp1 − kp2

2kq
¼ kp1 − kp2

2ðkp1 þ kp2Þ
; ð5aÞ

w ¼ −
1

rðrþ 1Þ ¼
4

1 − 4R2
¼ ðkqÞ2

ðkp1Þðkp2Þ
ð5bÞ

to characterize how the initial photon four-momentum is
split between the outgoing particles (unlike r and r0 the
parameters R and w are antisymmetric and symmetric with
respect to the electron and the positron four-momentum,
respectively). As kq > 0, kpi > 0 and r0 ¼ rþ 1 we
conclude from Eq. (3) that r ∈ ð−1; 0Þ, r0 ∈ ð0; 1Þ, R ∈
ð−1=2;þ1=2Þ and w ∈ ½4;∞Þ.
Note that the map from R → w has no inverse (i.e. the

information about the sign of R is lost). Correspondingly,
the quantities kq and w [see Eq. (5)] specify kp1 and kp2

uniquely up to the sign of R. However, we will later see
that this sign does not influence the spin-summed pair-
production probability.
Using the Lorentz-invariant momentum parameters r

(R), t1 and t2 to describe the asymptotic momenta of the
created electron-positron pair has the advantage that they
characterize the process in a frame-independent way. In
particular, we do not have to work in a frame where the
collision is head on. However, in this frame the parameters
ti have a simple interpretation, as they measure the
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transverse momentum of the pair in units of the electron
rest mass, whereas R measures in general how the initial
photon four-momentum qμ is distributed between the
electron and the positron.
Note that in the seminal papers [34,39] the differential

pair-production rate inside a constant-crossed field is
expressed with respect to the two parameters u and τ,
which are related to the parameters w and t2 introduced here
as follows

w ¼ qf2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1f2p1Þðp2f2p2Þ

p ¼ 4u; ð6aÞ

t22 ¼ τ2; τ ¼ p1f�p2

m
ffiffiffiffiffiffiffiffiffiffi
qf2q

p ð6bÞ

(fμν ¼ fμν1 ). Therefore, the comparison between the results
obtained here for a laser pulse and those reported pre-
viously for a constant-crossed field is straightforward in
canonical light-cone coordinates.
The reason why the parameter t1 does not appear in the

final expression for the pair-production rate in a constant-
crossed field is related to the fact that t1 is not a constant of
motion (with respect to the classical equations of motion,
see Sec. III C). Correspondingly, the final (asymptotic)
value of t1 will depend on the subsequent classical
evolution of the charged particles and therefore on the
nonlocal properties of the background field (see also the
discussion in Sec. III F). To avoid this problem, t1 is not
specified for a constant-crossed background field and only
pair-production rates (not total probabilities) are calculated.
For a laser pulse with finite duration, however, one obtains
a total probability rather than a rate. Furthermore, as the
particles leave the background field at a certain point, it is
possible to specify the momentum distribution of the final
particles with respect to the parameter t1.
Finally, we note that the amount nkμ of absorbed laser

four-momentum is related to the introduced Lorentz invari-
ant momentum parameters as follows

pμ
1þpμ

2¼qμþnkμ; n¼1

2
w
m2

kq
ð1þ t21þ t22Þ: ð7Þ

We will later show that this (asymptotic) value contains
both a classical and a quantum contribution (see Sec. III E).
As the laser-photon energy is only well defined for
monochromatic fields, n is in general not an integer and
only nkμ is a meaningful quantity. Nevertheless, we will
call n the number of absorbed laser photons.

B. Total and differential probability

Using the parameters introduced in Sec. II A, the total
probability Wðq; ϵÞ for the decay of a gamma photon with
four-momentum qμ (q2 ¼ 0) and polarization four-vector

ϵμ (ϵq ¼ 0) into an electron-positron pair (see Fig. 1) can be
written as (see, e.g., [38] and the literature cited in the
introduction)

Wðq; ϵÞ ¼
Z þ1=2

−1=2
dR

Z þ∞

−∞
dt1dt2

d3W
dRdt1dt2

; ð8aÞ

d3W
dRdt1dt2

¼ m2

ðkqÞ2
w
8

1

ð2πÞ3
X
spin

jMðp1; p2;qÞj2; ð8bÞ

where iMðp1; p2; qÞ ¼ ϵμūp1
Gμðp1; q;−p2Þvp2

is the
reduced S-matrix element for the process [97] and we
sum with respect to the final spin quantum numbers of the
created particles (for simplicity they are not indicated).
Here, up1

and vp2
denote the Dirac spinors for the electron

and the positron, respectively, and Gμ the nonsingular part
of the laser-dressed vertex [see Eq. (10)].
In Eq. (8) the phase-space integrals are written in terms

of the invariant momentum parameters defined in Eqs. (3)
and (5) and d3W=ðdRdt1dt2Þ represents the differential
pair-creation probability with respect to those parameters.
In order to calculate it we note that

X
spin

jMðp1; p2; qÞj2 ¼ ϵμϵ
�
νtrGμðp1; q;−p2Þ

× ðp2 −mÞḠνðp1; q;−p2Þðp1 þmÞ:
ð9Þ

For on-shell momenta the nonsingular part of the dressed
vertex is given by (see [38,92] for more details)

Gρðp1; q;−p2Þ ¼ ð−ieÞ
�
γμ

�
G0gμρ þ

X
j¼1;2

ðG1Gj;1f
μρ
j

þG2Gj;2f
2μρ
j Þ

�
þ iγμγ5

X
j¼1;2

G3Gj;1f
�μρ
j

�
;

ð10Þ

where

G1ðR; kqÞ ¼ e
Rw
kq

;

G2ðR; kqÞ ¼ −
e2

2

w
ðkqÞ2 ;

G3ðR; kqÞ ¼ −
e
2

w
kq

: ð11Þ

Furthermore, the so-called master integrals G0 ¼
G0ðw; t1; t2Þ and Gj;l ¼ Gj;lðw; t1; t2Þ are given by (the
notation agrees with [94])
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G0 ¼
Z þ∞

−∞
dϕei ~SΓðw;t1;t2;ϕÞ; ð12aÞ

Gj;l ¼
Z þ∞

−∞
dϕ½ψ jðϕÞ�lei ~SΓðw;t1;t2;ϕÞ; ð12bÞ

with the nonlinear, field-dependent phase

~SΓðw; t1; t2;ϕÞ ¼
w
2

m2

kq
SΓðt1; t2;ϕÞ; ð13aÞ

SΓðt1; t2;ϕÞ ¼ ð1þ t21 þ t22Þϕ

þ
X
i¼1;2

Z
ϕ

−∞
dϕ0½ξ2iψ2

i ðϕ0Þ − 2tiξiψ iðϕ0Þ�:

ð13bÞ

From Eq. (10) we conclude that the pair-creation probability
can be calculated algebraically once the master integrals are
known. As the integration range ofGj;lðw; t1; t2Þ is naturally
bounded, a numerical calculation is readily accomplished
(for l ≠ 0, more details are provided in Sec. II C). To
determine G0ðw; t1; t2Þ we integrate by parts and after
neglecting the boundary terms we obtain the relation

G0ðw; t1; t2Þ ¼ −
1

2n
m2

kq
w
X
i¼1;2

½ξ2iGi;2ðw; t1; t2Þ

− 2tiξiGi;1ðw; t1; t2Þ� ð14Þ

[n > 0, see Eq. (7)].

C. Fourier-transformed master integrals

From Eq. (13) we infer that the dependence of the master
integrals Gj;lðw; t1; t2Þ on w is very simple. As a conse-

quence, their Fourier transforms ~Gj;lðz; t1; t2Þ [defined in
Eq. (15)] can be calculated analytically. To this end we have
to consider Gj;lðw; t1; t2Þ as a function of w ∈ ð−∞;þ∞Þ,
even though only the parameter range w ∈ ½4;∞Þ is
important from a physical point of view [the master
integrals are everywhere well defined, see Eq. (12)].
After interchanging the order of integration, we obtain
the following representation

~Gj;lðz; t1; t2Þ ¼
Z þ∞

−∞
dwe−i

1
2
wm2

kqzGj;lðw; t1; t2Þ

¼ 4π
kq
m2

½ψ jðϕzÞ�l
S0

Γðt1; t2;ϕzÞ
; ð15Þ

where the prime denotes the derivative with respect to the
laser phase ϕ [see Eq. (13)] and ϕz is the (unique) solution
of the equationSΓðw; t1; t2;ϕzÞ ¼ z. The uniqueness of ϕz
follows from the fact that

S0
Γðt1; t2;ϕÞ ¼ 1þ

X
i¼1;2

½ti − ξiψ iðϕÞ�2 ð16Þ

is always greater than zero on the real axis. Thus, the
calculation of the Fourier-transformed master integrals
~Gj;lðz; t1; t2Þ reduces to a root-finding problem (which is
solvable numerically with low computational costs).
Once ~Gj;lðz; t1; t2Þ is calculated on a grid in z with

sufficient resolution, the quantitiesGj;lðw; t1; t2Þ, which are
related to ~Gj;lðz; t1; t2Þ by an inverse Fourier transform [see
Eq. (15)], can be calculated numerically on a grid in w very
efficiently by means of a single Fast-Fourier Transform
(FFT) [98,99]. Therefore, this approach reduces the prob-
lem of calculating Gj;lðw; t1; t2Þ as a function of w, t1 and
t2 on a three-dimensional grid to an effectively two-
dimensional problem [from the viewpoint of computation
costs, assuming that the root-finding problem in Eq. (15)
causes no significant overhead with respect to the FFT]. In
comparison with a direct calculation of Gj;lðw; t1; t2Þ [see
Eq. (12)] using standard algorithms for highly, nonuni-
formly oscillating integrals, Eq. (15) reduces the required
computational effort substantially.
Alternatively, one could also perform the change of

variables ϕ → z ¼ SΓðw; t1; t2;ϕÞ in Eq. (12) and evaluate
the master integrals directly via FFT. The change of
variables is one-to-one as S0

Γðt1; t2;ϕÞ > 0, see Eq. (16).
This approach has been applied in [100] to the analogous
problem of nonlinear Thomson scattering.

III. SEMICLASSICAL PICTURE

By combining all relations presented in Sec. II, the
numerical evaluation of the leading-order S-matrix element
for the nonlinear Breit-Wheeler process and the determi-
nation of the momentum distribution for the created
particles is straightforward. However, we obtain no further
physical insights into the pair-production process in this
way, as the S-matrix does not reveal any details about the
dynamics taking place inside the interaction zone.
Therefore, an intuitive semiclassical picture is now devel-
oped, which is applicable for strong background fields
(ξ ≫ 1). Using optical lasers (photon energy ω ∼ 1 eV)
intensity parameters ξ≳ 100 are accessible at existing and
upcoming laser facilities [6–10,101]. In this regime the
actual transformation from light to matter (which happens
within a microscopically small formation region δϕ ∼ 1=ξ
in the laser phase) can be separated from the subsequent
classical propagation of the created particles.
In order to verify the reliability of the semiclassical

approach (which is to a large extend similar to the one
used in PIC codes), we compare its predictions with full
numerical calculations. To this end we consider a linearly
polarized laser field [ψ ¼ ψ1, ψ2 ¼ 0, ξ ¼ ξ1] with the
following pulse shape
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ψ 0ðϕÞ ¼ sin2½ϕ=ð2NÞ� sinðϕþ ϕ0Þ ð17Þ
for ϕ ∈ ½0; 2πN� and zero otherwise. Here, N denotes
the number of cycles and ϕ0 the CEP of the pulse (the
numerical values of the parameters used in the calculations
are given in the captions of the figures). Furthermore, we
assume that the incoming photon has parallel polarization
(ϵμ ¼ Λμ

1, see Appendix B). In this case the trace in Eq. (9)
is given by

− 1

e2
Λ1μΛ1νtr½…�μν

¼ 2m2ðw − 4Þ½−ξ2jG1;1j2 þ 2ξt1ℜðG�
0G1;1Þ�

þ 4m2jG0j2½2t21 − ðw=2Þð1þ t21 þ t22Þ� ð18Þ

and we denote the probability by W∥ðqÞ ¼ Wðq; ϵ ¼ Λ1Þ
[see Eq. (8)].

A. Stationary-phase analysis

To obtain an intuitive semiclassical picture, we apply
now a stationary-phase analysis to the master integrals
defined in Eq. (12). However, our calculation does not
precisely follow the method of steepest descent, which is
the standard approach (see, e.g., [34,43,49] and also [102]).
Instead, it is shown that the integral along the real line is
dominated by those points where the second derivative
of the phase vanishes. Of course, the final result agrees
with the one obtained using the method of steepest descent,
but the derivation is less complicated as it does not require
the deformation of the integration contour within the
complex plane.
From Eq. (13) we conclude that in the regime ξ ≫ 1 the

master integrals are in general highly oscillating. From the
derivative of the phase

~S0Γðw; t1; t2;ϕÞ ¼
w
2

m2

kq
S0

Γðt1; t2;ϕÞ ð19Þ

we infer that the master integrals have no stationary point
on the real integration line (the prime denotes the derivative
with respect to the laser phase ϕ). Focusing on the case of
linear polarization [see Eq. (16)]

S0
Γðt1; t2;ϕÞ ¼ 1þ t22 þ ½t1 − ξψðϕÞ�2; ð20Þ

we find that the stationary points φ�
k of the phase ~SΓðϕÞ ¼

~SΓðw; t1; t2;ϕÞ [defined by ~S0Γðφ�
k Þ ¼ 0] are complex and

given by

ψðφ�
k Þ ¼

1

ξ

�
t1 � i

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t22

q �
: ð21Þ

To obtain the leading-order approximation to the master
integrals in the regime ξ ≫ 1, one could apply the method

of steepest descent, i.e. deform the integration contour
inside the complex plane such that it passes through
the stationary points (see, e.g., [34,43,49]). However, the
desired result is derived much faster by noting that the
stationary points φ�

k are located pairwise very close to
the real line if jt2j ≲ 1 (analogously to nonlinear Compton
scattering and other processes [46,49,103] inside a plane-
wave field; for jt2j ≫ 1 the pair-production probability is
exponentially suppressed, see below). Mathematically, we
have to deal with two stationary points which coalesce in
the limit ξ → ∞. For ξ ≫ 1 the two stationary points nearly
coalesce, a situation which is discussed, e.g., in [104] (see
also [94], Appendix H and [105], Chap. 36).
Due to the presence of two stationary points φ�

k close to
each (quasi-) stationary point ϕk defined by

ψðϕkÞ ¼ t1=ξ; ð22Þ

we expect that the integral along the real line is dominated
by small formation regions δϕ around the points ϕk [for a
linearly polarized laser field; in general we obtain two
equations ψ iðϕkÞ ¼ ti=ξi (i ¼ 1, 2) which should be
fulfilled simultaneously]. From Eq. (20) we conclude that
the oscillation frequency of the phase is as small as possible
at these points (i.e. ~S00Γ ¼ 0) because the dominating
contribution to the oscillation frequency becomes station-
ary (an intuitive physical interpretation for this condition is
given in Sec. III C). In the following, we will call the points
ϕk (and not φ�

k ) stationary points for simplicity (to stress
the difference, the points φ�

k are called true stationary
points). Moreover, we assume that all stationary points ϕk
are located sufficiently far away from each other, i.e. we
ignore subtleties arising around the extremal points of ψðϕÞ
[note that pair production is ineffective in these regions, as
ψ 0ðϕÞ is small].
As the main contribution to the master integrals arises

from the regions around the phases ϕk where t1 ≈ ξψðϕkÞ,
we expand the phase ~SΓðϕÞ ¼ ~SΓðw; t1; t2;ϕÞ [see Eq. (13)]
around a stationary point ϕk up to cubic order

~SΓðϕÞ ≈ ~SΓðϕkÞ þ aðϕ − ϕkÞ þ
1

3
bðϕ − ϕkÞ3

a ¼ w
2

m2

kq
ð1þ t22Þ;

b ¼ w
2

m2

kq
½ξψ 0ðϕkÞ�2: ð23Þ

Here, we focus on the regime χ ≳ 1 (where the pair-
production probability is not exponentially suppressed,
see below) and define the formation region δϕ ¼ ϕ − ϕk
around ϕk by the requirement that the phase in Eq. (23)
remains of order one (see, e.g., [106,107]). As a ∼ ξ and
b ∼ ξ3, the formation region scales as δϕ ∼ 1=ξ (we always
assume ξ ≫ 1 in this section). Correspondingly, both the
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linear and the cubic term have to be taken into account.
Higher-order terms do not change the behavior of the phase
significantly (within the formation region) and can be
neglected to leading order. We will show in Sec. III E that
the scaling δϕ ∼ 1=ξ for the formation region is reasonable
from a physical point of view, as the energy absorbed
classically from the background field within δϕ is sufficient
to bring the particles on shell.
After the change of variables from ϕ to t ¼ ffiffiffi

b3
p ðϕ − ϕkÞ

the phase is approximately given by [see Eq. (23)]

~SΓðϕÞ ≈ ~SΓðϕkÞ þ xtþ 1

3
t3; ð24Þ

where

x ¼ affiffiffi
b3

p ¼
�

w=2
jχðϕkÞj

�
2=3

ð1þ t22Þ;

1ffiffiffi
b3

p ¼ 2

w
kq
m2

�
w=2

jχðϕkÞj
�
2=3

; ð25Þ

and the absolute value of χðϕÞ ¼ χψ 0ðϕÞ denotes the
local value of the quantum-nonlinearity parameter χ ¼
ðkq=m2Þξ [29,34].
Finally, we obtain from the stationary point ϕk [defined

by Eq. (22)] the following contribution to the master
integrals [in the case of a linearly polarized laser field,
see Eq. (12)]

G0ðw;t1;t2Þ≈
kq
m2

2

w

�
w=2

jχðϕkÞj
�
2=3

2πAiðρÞei ~SΓðϕkÞ; ð26aÞ

G1;1ðw; t1; t2Þ ≈
t1
ξ
G0ðw; t1; t2Þ − i

�
kq
m2

2

w

�
2

×

�
w=2

jχðϕkÞj
�
4=3

2πAi0ðρÞψ 0ðϕkÞei ~SΓðϕkÞ;

ð26bÞ

where ρ ¼ fw=½2jχðϕkÞj�g2=3ð1þ t22Þ, χðϕÞ ¼ χψ 0ðϕÞ, χ ¼
ðkq=m2Þξ and Ai denotes the Airy function [105].
As the properties of the Airy function imply that pair

production is exponentially suppressed for χ ≪ 1 and
jt2j; w ≫ 1 [29,38], wewill consider χ ¼ 1 in the numerical
calculations. Experimentally, the regime χ ≳ 1, ξ ≫ 1 is
accessible with presently available technology, i.e. by
colliding GeV photons (obtainable, e.g., via Compton
backscattering [108–115]) with strong optical laser pulses.

B. Interference substructure of the spectrum

To compare the results derived in Sec. III A with those
already known in the literature, we consider first a constant-
crossed background field [ψðϕÞ ¼ ϕ]. In this case the
stationary-point equation t1 ¼ ξψðϕkÞ ¼ ξϕk [see Eq. (22)]
has only one solution and the approximations leading to

Eq. (26) are exact. Correspondingly, we obtain the prob-
abilities (rates) for pair creation inside a constant-crossed
background field given, e.g., in [34,39] by combining
Eq. (18) with Eq. (26).
For an oscillatory plane-wave background field, how-

ever, one finds in general more than one stationary point.
Physically, this implies that the electron-positron pair can
be created with the same asymptotic quantum numbers at
different laser phases (note that different formation regions
are usually separated on the macroscopic scale given by the
laser wavelength). In accordance with general principles we
expect that the existence of different pathways with the
same final state causes interference effects similar to those
in a multislit experiment (for the importance of interference
effects see also [45–53]).
The presence of interference fringes in the spectrum is

demonstrated in Fig. 2. The first subplot was obtained
using a full three-dimensional numerical calculation of the
spectrum based on the method introduced in Sec. II C [see
Eq. (15)]. As shown in the second subplot, the semi-
classical approximation introduced in Sec. III A is already
for ξ ¼ 5 in very good agreement with the exact result.
Due to the fact that the background field is approximated

locally around each stationary point as a constant-crossed
field during the derivation of Eq. (26), we call the semi-
classical approximation also local constant-crossed field
approximation. However, it is important that the local
constant-crossed field approximation is applied on the
level of the probability amplitude (i.e. we do not simply
average the spectrum of a constant-crossed field over the
laser pulse shape). The essential difference between both
approaches is the presence of the phase factor exp ½i ~SΓðϕkÞ�
in Eq. (26), which gives rise to the interference substructure
once the contribution of multiple stationary points is taken
into account. If the spectrum is calculated for each sta-
tionary point separately and the result is added on the
probability level, the interference fringes are lost (see inset
in Fig. 2; so far this approach was called local constant-
crossed field approximation in the literature).
As the interference pattern is determined by the phase

factor exp ½i ~SΓðϕkÞ�, we conclude from Eq. (13) that the
oscillation frequency of the interference fringes in the
spectrum scales as ∼ξ3 for w, ∼ξ2 for t1 and ∼ξ for t2.
Here, we define the oscillation frequency of the spectrum
with respect to a momentum parameter x as the inverse of
the change δx which is needed to advance from one local
maximum of the differential probability to an adjacent one.
The difference between the oscillation frequencies for t1
and t2 is clearly visible in Fig. 2.
In order to fully resolve the interference substructure of

the spectrum we used for ξ ∼ 10 a grid in momentum space
(w, t1, t2) with ∼105 × 104 × 103 ¼ 1012 data points (to
obtain the two-dimensional plots we integrated numerically
over the remaining momentum variable). From the above
scaling laws for the oscillation frequency we conclude that

SEMICLASSICAL PICTURE FOR ELECTRON-POSITRON … PHYSICAL REVIEW D 93, 085028 (2016)

085028-7



this choice ensures enough sampling points per oscillation
period of the interference fringes. As a cross-check we
ensured that the total pair-creation probability calculated
here by integrating numerically over the complete spectrum
agrees with the one obtained in [38] using the optical
theorem.
As the interference substructure is an intrinsic nonlocal

effect, it cannot be included easily into existing PIC
schemes. However, the exact resolution of the transverse
momentum components is beyond the achievable precision
of existing codes. Therefore, their overall precision should
be increased first before interference effects can be studied.

C. Classical interpretation of the stationary points

To obtain an intuitive interpretation of the stationary
points discussed in Sec. III A, we consider the classical
equations of motion for an electron (positron) inside a
plane-wave laser field. They predict that the time
evolution of the electron four-momentum PμðϕÞ is given
by [29,117–119]

PμðϕÞ ¼ Pμ
0 þ

e
kP0

Fμνðϕ;ϕ0ÞP0ν

þ e2

2ðkP0Þ2
F2μνðϕ;ϕ0ÞP0ν; ð27Þ

where Pμ
0 ¼ Pμðϕ0Þ denotes the four-momentum at the

laser phase ϕ0 and

Fμνðϕ;ϕ0Þ ¼
Z

ϕ

ϕ0

dϕ0Fμνðϕ0Þ ¼
X
i¼1;2

fμνi ½ψ iðϕÞ − ψ iðϕ0Þ�

ð28Þ

the integrated field tensor [compare with Eq. (1)]. To
obtain the corresponding result for a positron we have to
change the sign of the charge (e → −e) in Eq. (27). Note
that a laser field does not have a dc component
[ψ ið�∞Þ ¼ 0], which implies that the electron (positron)
four-momentum does not change asymptotically
[Pμð−∞Þ ¼ Pμðþ∞Þ]. This observation is in agreement
with the Lawson-Woodward theorem [120,121], which
states that a plane-wave laser field cannot accelerate
particles.
The classical time evolution becomes particularly trans-

parent if the four-momentum is expanded in the canonical
light-cone basis [see Eq. (A4)]

PμðϕÞ ¼ ρðϕÞqμ þ σðϕÞkμ þm
X
i¼1;2

τiðϕÞΛμ
i : ð29Þ

The conservation of kP ¼ kP0 implies that also ρðϕÞ ¼
ρðϕ0Þ ¼ kP=kq is conserved and

(a)

(b)

(c)

FIG. 2. Momentum distribution for the created electron-positron pair [see Eq. (8)] for the parameters χ ¼ 1, ξ ¼ 5, N ¼ 5 and
ϕ0 ¼ π=2 [the longitudinal momentum characterized by R is integrated numerically and the incoming photon has parallel polarization
(ϵμ ¼ Λμ

1)]. The parameters ξ ¼ 5 and χ ¼ 1 could be obtained by colliding 17 GeV photons head-on with optical (ω ¼ 1.55 eV) laser
pulses having an intensity of 1020 W=cm2 (note that few-cycle laser pulses are envisaged, e.g., at the petawatt field synthesizer (PFS) in
Garching [116]). (a) Full numerical calculation of the spectrum [see Eq. (15)]. (b) Local constant-crossed field approximation applied on
the amplitude level [see Eq. (26)]. The inset shows that the interference pattern is lost if the local constant-crossed field approximation is
applied on the probability level. (c) Outline for t2 ¼ 0. Solid line: full numerical calculation; dotted (dashed) line: local constant-crossed
field approximation applied on the amplitude (probability) level.
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σðϕÞ ¼ 1

2

m2

kP0

½1þ τ21ðϕÞ þ τ22ðϕÞ� ð30Þ

is determined by the on-shell condition P2ðϕÞ ¼ m2.
Therefore, the nontrivial dynamic is entirely described
by the transverse degrees of freedom

τiðϕÞ ¼ τiðϕ0Þ − ξi½ψ iðϕÞ − ψ iðϕ0Þ�: ð31Þ
Correspondingly, also τ2ðϕÞ ¼ τ2ðϕ0Þ is conserved for a
linearly polarized laser field [ψ2ðϕÞ ¼ 0].
Using the above results we consider now the classical

evolution of the electron and the positron four-momentum
pμ
1ðϕÞ and pμ

2ðϕÞ, respectively. Requiring the boundary
conditions pμ

i ð∞Þ ¼ pi [see Eq. (3)], we obtain

pμ
1ðϕÞ ¼ r0qμ þ s0ðϕÞkμ þm

X
i¼1;2

tiðϕÞΛμ
i ; ð32aÞ

pμ
2ðϕÞ ¼ −rqμ − sðϕÞkμ −m

X
i¼1;2

tiðϕÞΛμ
i ; ð32bÞ

where r0 ¼ rþ 1,

tiðϕÞ ¼ ti − ξiψ iðϕÞ ð33Þ
[note that ti ¼ tið∞Þ as ψ ið∞Þ ¼ 0] and [compare with
Eq. (4)]

sðϕÞ ¼ 1

2r
m2

kq
½1þ t21ðϕÞ þ t22ðϕÞ�; ð34aÞ

s0ðϕÞ ¼ 1

2r0
m2

kq
½1þ t21ðϕÞ þ t22ðϕÞ�: ð34bÞ

Furthermore, the following relation holds [compare with
Eq. (7)]

pμ
1ðϕÞ þ pμ

2ðϕÞ ¼ qμ þQμ; Qμ ¼ nðϕÞkμ; ð35Þ

where

nðϕÞ ¼ w
2

m2

kq
½1þ t21ðϕÞ þ t22ðϕÞ�: ð36Þ

Assuming that (a) the photon with four-momentum qμ

transforms within the short formation region δϕ ∼ 1=ξ
around a given laser phase ϕc into an electron-positron
pair [see Eq. (23) and the discussion below] and (b) the
charged particles subsequently obey the classical equations
of motion, we conclude from Eq. (35) that the four-
momentum Qμ

c ¼ nðϕcÞkμ must be absorbed “nonclassi-
cally” from the background field during the pair-creation
process itself (i.e. within the formation region). As the
direct transformation of a real photon into a real electron-
positron pair is kinematically forbidden, nðϕcÞ is always

greater than zero. Stated differently, the four-momentum
Qμ

c is needed to bring the massive particles on shell with
the right initial conditions pμ

1ðϕcÞ and pμ
2ðϕcÞ such that the

subsequent classical propagation results in the asymptotic
four-momenta pμ

1 ¼ pμ
1ð∞Þ and pμ

2 ¼ pμ
2ð∞Þ.

To verify the correctness of this semiclassical picture, we
demonstrate now that it is in perfect agreement with the
results obtained in Sec. III A (i.e. it is valid in the regime
ξ ≫ 1). To this end we note the following relation [see
Eqs. (33), (36) and (19)]

nðϕÞ ¼ w
2

m2

kq

�
1þ

X
i¼1;2

½ti − ξiψ iðϕÞ�2
�

¼ ~S0Γðw; t1; t2;ϕÞ: ð37Þ

Correspondingly, the quantity nðϕÞ, which is defined in
Eq. (36) based on the classical equations of motion,
corresponds exactly to the oscillation frequency of the
master integrals [ ~S0Γðw; t1; t2;ϕÞ, see Eq. (19)], which are
obtained from the full quantum calculation of the pair-
creation probability [see Eq. (12)].
As discussed in Sec. III A, the master integrals are

dominated by small formation regions δϕ ∼ 1=ξ around
the (quasi-) stationary points ϕk defined by ti ¼ ξiψ iðϕkÞ
[i.e. tiðϕkÞ ¼ 0; see Eq. (22) and Eq. (33)]. This result of
the stationary-phase analysis has a very intuitive explan-
ation within the semiclassical picture developed above.
According to Eq. (37) the stationary points correspond
exactly to those laser phases where nðϕÞ is minimal. As the
nonclassical absorption of the four-momentum Qμ can be
depicted as a tunneling process (see also [11]), it is natural
to interpret nðϕÞ as a measure of the effective tunneling
distance. Therefore, the above intuitive picture also predicts
that the pair-creation process happens predominantly at
those laser phases where nðϕÞ is minimal, in agreement
with the full quantum calculation.

D. Scaling laws for the spectrum

From the discussion in the previous section we expect
that many properties of the asymptotic momentum distri-
bution can be understood from the classical equations of
motion [see Eq. (29)]. As an example, they predict that the
spectrum extends up to ξi in the variables ti in the general
case of elliptical polarization.
This supposition is confirmed by the stationary-phase

analysis carried out in Sec. III A. For the special case
of a linearly polarized laser field [ψ2ðϕÞ ¼ 0] we obtain
jt1j≲ ξ, as for jt1j > ξ the stationary-point equation t1 ¼
ξψðϕkÞ has no solution [see Eq. (22)]. However, the
differential probability with respect to t2 is now entirely
determined by quantum effects during the pair-creation
process itself, which implies jt2j ≲ 1 [t2 is a constant of
motion if ψ2ðϕÞ ¼ 0]. The correctness of this bound can be
seen explicitly from the argument ρ of the Airy function
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[see Eq. (26) and the discussion below]. The observation
that pair production is exponentially suppressed for
jt2j ≫ 1 is in agreement with the fact that the true stationary
points φ�

k are located far away from the real axis in this case
[see Eq. (21)]. Both scaling laws are verified numerically
in Fig. 3.
Moreover, Fig. 3 shows that all qualitative features of the

spectrum in t1 except the interference substructure can be
understood from the classical acceleration of the charged
particles in the laser field. In particular, the position and
extension of the spectrum (solid lines) is predicted well by
the classical equations of motion. Furthermore, the highest
pair-creation probability is obtained for those momentum
parameters which require that the process happens around a
peak of the laser intensity (dashed lines).
We point out that for short laser pulses the classical

acceleration has a preferred direction, which depends
strongly on the CEP of the pulse. This can be seen from
the plot of ψðϕÞ in Fig. 3, which determines the final
momentum of the particles [see Eq. (31)]. Correspondingly,
the large CEP effects visible in the spectrum can be
understood from classical physics (for the nonlinear
Breit-Wheeler process they were first reported in [19]).
For a linearly polarized background field [ψ2ðϕÞ ¼ 0] R

and t2 are constants of motion [see Eqs. (5) and (32)].
Therefore, the differential probability distribution with
respect to R and t2 is entirely determined by the pair-
production process itself and remains invariant under the
subsequent classical propagation of the particles. This is

demonstrated in Fig. 4. After integrating over t1, the
spectrum looks very similar to the one obtained for a
constant-crossed field (after averaging over the laser pulse
shape). In particular, we observe no substructure due to
interference effects. For a fixed value of t1, however, the

(a)

(b)

(c)

(d)

FIG. 3. Left side: Numerically calculated differential pair-production probability as a function of the transversal momentum
parameters t1 and t2 (the longitudinal momentum characterized by R is integrated numerically). The incoming photon has parallel
polarization (ϵμ ¼ Λμ

1), the laser pulse N ¼ 2 cycles (such short pulses are envisaged, e.g., at the PFS in Garching [116]) and χ ¼ 1. We
compare two different CEPs and two different intensities: (a) ϕ0 ¼ 0, ξ ¼ 10; (b) ϕ0 ¼ 0, ξ ¼ 5; (c) ϕ0 ¼ π, ξ ¼ 10; (d) ϕ0 ¼ π, ξ ¼ 5.
The solid white lines confine the phase-space region where the pair can be produced at a phase ϕ with jψ 0ðϕÞj ≥ 0.5 and the dashed
white lines indicate the transverse momenta for which the pair can be produced at a local field peak. After integrating over t1 and t2 we
obtain for the total pair-production probabilityW∥ ¼ 0.09% (ξ ¼ 10) andW∥ ¼ 0.045% (ξ ¼ 5), up to this precision it is independent of
the CEP. Right side: Plot of the laser pulse shape [solid line: ψ 0ðϕÞ, dashed line: ψðϕÞ].

FIG. 4. Differential probability with respect to the parameters
t2 and R for χ ¼ 1, ξ ¼ 10, N ¼ 5 and ϕ0 ¼ π=2 [full
numerical calculation, t1 is integrated numerically and the
incoming photon has parallel polarization (ϵμ ¼ Λμ

1)]. The inset
shows d3W∥=ðdRdt1dt2Þ for t1 ¼ 0 [in arb. units, see Eq. (8)].
The pronounced interference pattern vanishes after the integral in
t1 is taken. Note that the (spin-summed) differential probability
does not depend on the sign of R and t2.
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differential spectrum shows clear interference fringes (see
inset in Fig. 4).
Finally, we note that the scaling laws given above for the

momentum variables imply that the available phase-space
in R, t1 and t2 for the nonlinear Breit-Wheeler process is
proportional to ξ. Correspondingly, the linear increase of
the total pair-production probability as a function of ξ in the
regime ξ ≫ 1 [38] is a pure kinematic effect.

E. Classical vs. quantum absorption
of laser four-momentum

The results obtained in Sec. III C [in particular Eq. (36)]
allow us to distinguish theoretically between the four-
momentum which is absorbed quantum-mechanically
from the laser field during the pair-creation process itself
(quantum absorption)

nqkμ ¼ pμ
1ðϕkÞ þ pμ

2ðϕkÞ − qμ ð38aÞ

and the four-momentum which is transferred classically
from the laser to the charged particles during the accel-
eration of the particles (classical absorption)

nclkμ ¼ pμ
1 þ pμ

2 − ½pμ
1ðϕkÞ þ pμ

2ðϕkÞ�: ð38bÞ

Asymptotically, however, we observe only the sum of both
processes [see Eq. (7)]

n ¼ nq þ ncl: ð38cÞ

Here, pμ
1ðϕkÞ and pμ

2ðϕkÞ [p2
1;2ðϕkÞ ¼ m2] denote the initial

values for the classical propagation, which starts at the
laser phase ϕk once the real pair is already produced [see
Eq. (32) and Sec. III F]. Correspondingly, nqkμ represents
the four-momentum which must be transferred nonclassi-
cally to bring the particles on shell during the creation
process (see Sec. III C) and nclkμ denotes the four-
momentum which is transferred after the production until
the pair leaves the laser field with asymptotic four-
momenta pμ

1 and pμ
2, respectively. Note that the classical

acceleration of the particles (i.e. the absorption of ncl laser
photons) does not contradict the Lawson-Woodward theo-
rem [120,121], as the charged particles are created inside
the laser pulse.
In the case of linear polarization [ψ2ðϕÞ ¼ 0] t2 is a

constant of motion and the stationary points are determined
from t1 ¼ ξψðϕkÞ [see Eq. (22)]. Therefore,

nq ¼
1

2
w
m2

kq
ð1þ t22Þ; ncl ¼

1

2
w
m2

kq
t21: ð39Þ

Using the scaling laws discussed in Sec. III D we conclude
that the quantum and the classical absorption scale as
nq ∼ ξ=χ and ncl ∼ ξ3=χ, respectively.

An intuitive understanding of the scaling law for nq is
obtained by squaring Eq. (38), which shows that

nq ≥ 2
m2

kq
: ð40Þ

This lower bound becomes an equality at the pair-
production threshold, which is obtained for pμ

1ðϕkÞ ¼
pμ
2ðϕkÞ (i.e. for w ¼ 4 and t2 ¼ 0 in the case of linear

polarization).
Note that although we indicated nq as the number of

“quantum-absorbed” laser photons (referring to the fact that
the electron and the positron are virtual inside the formation
region), the scaling law nq ∼ ξ (for χ ≳ 1) can be under-
stood by noting that the four-momentum which is trans-
ferable classically during the formation region δϕ ∼ 1=ξ
[see Eq. (23) and the discussion below] scales as ∼ξkμ [see
Eq. (29) and Eq. (36)].
In conclusion, the classical energy transfer during the

propagation of the particles is much larger than the energy
transfer which takes place during the pair-creation process
itself in the regime ξ ≫ 1 (ncl ≫ nq). Correspondingly,
a possible depletion of the background field (e.g., due to
the development of a QED cascade) is dominated by the
classical energy transfer from the laser to the pairs.

F. Initial conditions for the classical propagation

The semiclassical picture established in Sec. III C
agrees with the basic principles used in PIC codes. In
order to include the Breit-Wheeler process into a PIC
code, the main difficulty is to determine the correct initial
conditions for the classical propagation of the charged
particles. To this end the spectrum obtained for a con-
stant-crossed field is usually employed (see Sec. III A).
As R and t2 are constants of motion [see Eqs. (5) and
(32)], the asymptotic momentum distribution in R and t2
obtained for a constant-crossed field using the S-matrix
approach agrees with the initial momentum distribution
in R and t2 immediately after the particles are brought on
shell. Therefore, this approach is reasonable for the two
parameters R and t2.
In contrast, the appropriate initial condition for t1ðϕkÞ is

far from clear, as t1ðϕkÞ is not conserved by the classical
equations of motion. At first sight one could expect the
existence of a distribution function which determines the
initial condition for t1 (similar as for R and t2). However,
we showed in Sec. III C that the fixed value t1ðϕkÞ ¼ 0
should be used. This condition defines the stationary
points [for linear polarization, see Eq. (22)] and therefore
leads to Eq. (26) which represent the probabilities inside a
locally constant-crossed field. Correspondingly, the usage
of Eq. (26) to determine the probability distributions for R
and t2 requires the initial condition t1ðϕkÞ ¼ 0 for the
classical propagation.
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IV. SUMMARY AND CONCLUSIONS

In the present paper the momentum distribution for
electron-positron pairs produced via the nonlinear Breit-
Wheeler process has been investigated for short laser
pulses. Using a newly developed numerical scheme (see
Sec. II C) we have calculated for the first time the spectrum
on a three-dimensional lattice which fully resolves the
interference substructure even in the ultrarelativistic regime
ξ ≫ 1. Furthermore, we have investigated the local con-
stant-crossed field approximation and showed that it
reproduces the spectrum (including the interference
fringes) for ξ ≫ 1 if it is applied on the probability-
amplitude level. Correspondingly, three effects determine
the final momentum distribution in the regime ξ ≫ 1: The
production of an electron and a positron with physical mass
m inside a constant-crossed field, their subsequent classical
acceleration by the laser field and the interference between
all production channels which lead to the same asymptotic
quantum numbers. Accordingly, we verified that the
produced electron and positron behave like classical
particles after they have left the formation region (see
Sec. III, in particular Sec. III C and Sec. III D) and that the
substructure of the spectrum can be attributed to interfer-
ences between the contributions of different formation
regions similar to those in a multislit experiment (see
Sec. III B). Furthermore, it is shown that one can distin-
guish between a classical and a quantum absorption of laser
photons (see in particular Sec. III E). As the former is
dominant in the regime ξ ≫ 1, a possible depletion of the
laser field during the development of a QED cascade is
mainly caused by the classical acceleration of the created
charged particles. In summary, the new findings presented
here allow a disentanglement between classical and quan-
tum aspects of the pair-production process.
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APPENDIX A: LIGHT-CONE COORDINATES

We call the four four-vectors kμ, k̄μ, eμi (i ∈ 1; 2) a light-
cone basis if they obey [92]

k2¼ k̄2¼0; kei¼ k̄ei¼0;kk̄¼1; eiej¼−δij: ðA1Þ

Using the above properties and the determinant identity for
ϵμνρσϵαβγδ one finds that any such light-cone basis obeys
Ω2 ¼ 1, where

Ω ¼ ϵμνρσkμk̄νe
ρ
1e

σ
2 ðA2Þ

is called the orientation of the basis. In light-cone coor-
dinates the metric gμν ¼ diagðþ1;−1;−1;−1Þ is given by

gμν ¼ kμk̄ν þ k̄μkν − eμ1e
ν
1 − eμ2e

ν
2: ðA3Þ

Intrinsically, the photon decay inside a plane-wave
field [see Sec. II, in particular Eq. (1)] is characterized
by the two light-like four-vectors kμ and qμ and the constant
field tensors fμνi . Therefore, it is natural to expand the
four-momenta of the created electron-positron pair in the
following light-cone basis

kμ; qμ; Λμ
1 ¼

fμν1 qν
kq

ffiffiffiffiffiffiffiffi
−a21

p ; Λμ
2 ¼

fμν2 qν
kq

ffiffiffiffiffiffiffiffi
−a22

p
ðA4Þ

(we will always excluded the trivial case kq ¼ 0where pair
production is forbidden and assume that kq ≠ 0), which
fulfills the completeness relation

gμν ¼ 1

kq
ðkμqν þ qμkνÞ − Λμ

1Λ
ν
1 − Λμ

2Λ
ν
2 ðA5Þ

(the two four-vectors Λμ
1;2 have been used previously by

several authors to analyze processes within strong plane-
wave background fields, see, e.g., [129,130]). To distin-
guish the set of four four-vectors given in Eq. (A4) from
other light-cone bases we will call it the canonical light-
cone basis.
As any set of four four-vectors eμi (i ∈ 1; 2), k̄μ and kμ

which obeys the relations given in Eq. (A1) represents a
light-cone basis, it is natural to ask which expressions are
invariant under a change of the underlying light-cone basis.
To this end we consider two different bases k̄μ, eμi and k̄0μ,
ei0μ and denote the corresponding components of a four-
vector vμ by

vþ ¼ k̄μvμ; vI ¼ eμ1vμ; vII ¼ eμ2vμ;

v0þ ¼ k̄0μvμ; v0I ¼ e10μvμ; v0II ¼ e20μvμ; ðA6Þ

(v− ¼ v0− ¼ kv). The three coordinates ð−;⊥ ¼ I; IIÞ
define a closed subspace and we obtain the relation

0
B@

v0−

v0I

v0II

1
CA ¼

0
B@

1 0 0

e01k̄ −e01e1 −e01e2
e02k̄ −e02e1 −e02e2

1
CA ·

0
B@

v−

vI

vII

1
CA: ðA7Þ
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In order to show that its determinant has magnitude one,
we write

e0μ1 ¼ aeμ1 þ beμ2 þ λkμ;

e0μ2 ¼ ceμ1 þ deμ2 þ μkμ: ðA8Þ

As e021 ¼ e022 ¼ −1 and e01e
0
2 ¼ 0, we obtain a2 þ b2 ¼

c2 þ d2 ¼ 1 and acþ bd ¼ 0. Without restricting
generality, we set a ¼ cosφ, b ¼ sinφ and d ¼ cos θ,
c ¼ sin θ. Finally, we obtain the two solutions θ ¼ −φ
and θ ¼ −φþ π, which correspond to ad − bc ¼ �1.
Therefore, the measure dv−dv⊥ ¼ dv0−dv0⊥ and the delta
function

δð−;⊥ÞðvÞ ¼ δðv−ÞδðvIÞδðvIIÞ
¼ δðv0−Þδðv0IÞδðv0IIÞ
¼ δð−;⊥Þðv0Þ ðA9Þ

are invariant under a change of the light-cone basis. If
v− ¼ v⊥ ¼ 0 also the component vþ ¼ k̄μvμ is invariant.

APPENDIX B: PHOTON POLARIZATION
DENSITY MATRIX

The (complex) polarization four-vector ϵμ of a photon
with four-momentum qμ (q2 ¼ 0) must obey ϵ�μϵμ ¼ −1
and qϵ ¼ 0. In the light-cone basis kμ, qμ, Λμ

i [see Eq. (A4)]
we obtain for the metric [see Eq. (A5)]

gμν ¼ 1

kq
ðkμqν þ qμkνÞ − Λμ

1Λ
ν
1 − Λμ

2Λ
ν
2 ðB1Þ

and thus the polarization four-vector is given by

ϵμ ¼ c1Λ
μ
1 þ c2Λ

μ
2 þ c3qμ; c1 ¼ −ðϵΛ1Þ;

c2 ¼ −ðϵΛ2Þ; c3 ¼
kϵ
kq

ðB2Þ

with the normalization condition jc1j2 þ jc2j2 ¼ 1. As the
contraction of the matrix element with the four-momentum
qμ must vanish due to gauge symmetry, we can restrict us to
the vectors Λμ

i and replace the density matrix by

ρμν ¼ ϵμϵ�ν →
X

i;j¼1;2

ρijΛ
μ
iΛ

ν
j ; ðB3aÞ

ρ11 ¼ jc1j2; ρ22 ¼ jc2j2;
ρ12 ¼ c1c�2; ρ21 ¼ c�1c2: ðB3bÞ

The 2 × 2 density matrix ρij is Hermitian and has unit trace

ρij ¼ ΛiμΛjνρ
μν; ρ†ij ¼ ρ�ji ¼ ρij;

trρ ¼
X
i¼1;2

ρii ¼ 1: ðB4Þ

Any Hermitian 2 × 2 matrix can be expanded using the
Pauli matrices σi and the identity 1 (with real parameters).
Since trσi ¼ 0, we obtain (see [36], Eq. 8.9)

ρ ¼ 1

2
ð1þ siσiÞ

¼ 1

2

�
1þ s3 s1 − is2
s1 þ is2 1 − s3

�

¼
� jc1j2 c1c�2
c�1c2 jc2j2

�
; ðB5Þ

where si are called Stokes parameters. The Stokes vector
s ¼ ðs1; s2; s3Þ is a unit vector, which can be seen from

det ρ ¼ 0 ¼ 1

4
ð1 − s2Þ: ðB6Þ

Correspondingly, it can be described by two Stokes angles

s1¼ cosðφÞsinðθÞ; s2¼ sinðφÞsinðθÞ; s3¼ cosðθÞ:
ðB7Þ

Using the trigonometric identities

1

2
ð1þ cos θÞ ¼ cos2ðθ=2Þ;

1

2
ð1 − cos θÞ ¼ sin2ðθ=2Þ;

2 cosðθ=2Þ sinðθ=2Þ ¼ sinðθÞ ðB8Þ

we conclude that the complex coefficients c1 and c2 can be
expressed in terms of the Stokes angles as

c1 ¼ cosðθ=2Þe−iφ=2; c2 ¼ sinðθ=2Þeþiφ=2; ðB9Þ

implying the representations

jc1j2 ¼ cos2ðθ=2Þ;
jc2j2 ¼ sin2ðθ=2Þ;

c1c�2 ¼
1

2
sinðθÞ½cosðφÞ − i sinðφÞ� ðB10Þ

[note that we can always multiply by a total phase
in Eq. (B9)].
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