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We construct a string-inspired model, motivated by the flavored Peccei-Quinn (PQ) axions, as a useful
bridge between flavor physics and string theory. The key feature is two anomalous gauged Uð1Þ
symmetries, responsible for both the fermion mass hierarchy problem of the standard model and the strong
CP problem, that combine string theory with flavor physics and severely constrain the form of the F- and
D-term contributions to the potential. In the context of supersymmetric moduli stabilization we stabilize the
size moduli with positive masses while leaving two axions massless and one axion massive. We
demonstrate that, while the massive gauge bosons eat the two axionic degrees of freedom, two axionic
directions survive to low energies as the flavored PQ axions.
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I. INTRODUCTION

The standard model (SM) as an effective theory has been
successful in describing phenomena until now, but it suffers
from theoretical problems (inclusion of gravity in gauge
theory, instability of the Higgs potential, the SM fermion
mass hierarchies and their mixing patterns with the CP
violating phases, the strong CP problem [1], etc.) and
cosmological issues (dark matter, inflation, cosmological
constant, etc.). It is widely believed that the SM should be
extended to a more fundamental underlying theory. If
nature is stringy, string theory should give insight into
all such fundamental problems. Therefore, we can antici-
pate that there may exist some correlation between string
theory as a fundamental theory and low energy flavor
physics.
Reference [2] used a superpotential for unifying flavor

and strong CP problems, the so-called flavored Peccei-
Quinn (PQ) symmetry model, in a way that no axionic
domain wall problem occurs. In this paper we construct an
explicit string-inspired model, motivated by the flavored
PQ axions, as a useful bridge between flavor physics and
string theory. The key features of the model can be present
in type IIB compactification. The crucial one is two
anomalous gauged Uð1Þ symmetries that combine string
theory with flavor physics, and severely constrain the form
of the F- and D-term contributions to the potential. We
show how supersymmetric moduli stabilization with three
fixed size moduli, one fixed axionic partner and two
unfixed axions can be realized. We illustrate that the model
admits metastable vacuum with spontaneously broken
supersymmetry (SUSY) and a nearly vanishing positive
vacuum energy, resulting from the positive contributions to
the potential associated with the gauge symmetry of the
theory, the so-called D-terms. In addition, we illustrate
how to achieve phenomenologically nontrivial vacuum

expectation value (VEV) directions of flavon fields.
Finally, we demonstrate that, while the massive gauge
bosons eat the axionic degree of freedoms, two axionic
directions survive to low energies as the flavored PQ
axions [2].

II. THE MODEL

Below the scale where the dilation and complex structure
moduli are stabilized through fluxes [3], we consider the
low-energy Kahler potential K and superpotential W for
the Kahler moduli and matter superfields invariant under
gauged Uð1ÞX symmetry

K ¼ −M2
P ln

�
ðT þ T̄Þ

Y2
i¼1

�
Ti þ T̄i −

δGSi
16π2

VXi

��

þ
X2
i¼1

ZiΦ
†
i e

−XiVXiΦi þ
X
k

Zkjφkj2 þ � � � ð1Þ

W ¼ WY þWv þW0 þWðTÞ ð2Þ

which is appropriate for toroidal orientifold, where MP ¼
mP=

ffiffiffiffiffiffi
8π

p ¼ 2.4 × 1018 GeV is the reduced Planck mass,
and dots stand for higher order terms. The first term in
Eq. (1) has a no-scale symmetry up to perturbative
corrections from string theory. Note that the Kahler moduli
do not appear in the superpotential at tree level, therefore
they are not fixed by the fluxes. From the Kahler potential
and superpotential, we schematically obtain the low-energy
effective Lagrangian

L ⊃
1

2
KTT̄∂μT∂μT̄ þ 1

2
KTiT̄i

∂μTi∂μT̄i − V

þ LðΦi;φi;…Þ: ð3Þ

Here the kinetic terms for the axionic and size moduli do
not mix in perturbation theory, due to the axionic shift*yhahn@ibs.re.kr
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symmetry, where any nonperturbative violations are small
enough to be irrelevant. The Kahler metric in Eq. (3) is
given by

KIJ̄ ¼ M2
P

0
B@

ðT þ T̄Þ−2 0 0

0 ðT1 þ T̄1Þ−2 0

0 0 ðT2 þ T̄2Þ−2

1
CA
ð4Þ

for VXi
¼ 0, in which I, J stand for T, T1, and T2. The

Kahler moduli in K of Eq. (1) control the overall size of the
compact space,

T ¼ τ

2
þ iθ; Ti ¼

τi
2
þ iθi with i ¼ 1; 2: ð5Þ

As can be seen from the Kahler potential above, the
relevant fields participating in the four-dimensional
Green-Schwarz (GS) mechanism are the Uð1ÞXi

charged
chiral matter superfields Φi, the vector fields VXi

of the
anomalous Uð1ÞXi

, and the Kahler moduli Ti. The matter
superfields in K consist of all the scalar fields Φi that are
not moduli and do not have Planck sized VEVs, and the
chiral matter fields φk are neutral under the Uð1ÞX
symmetry. δGSi stand for the coefficients of the mixed
Uð1ÞXi

-SUð3Þc-SUð3Þc color anomalies which are can-
celed by the GS mechanism, δGSi δab ¼ 2

P
ψ i
XiTr½tatb�,

where ta are the generators of the representation of SUð3Þ
to which ψ belongs and the sum runs over all Dirac
fermions ψ with X-charge. We take, for simplicity, the
normalization factors Zi ¼ Zk ¼ 1, and the holomorphic
gauge kinetic function on the Kahler moduli

Ti ¼
1

g2Xi

þ i
aTi

8π2
; ð6Þ

where gXi
are the four-dimensional gauge couplings of

Uð1ÞXi
. Actually, gaugino masses require a nontrivial

dependence of the holomorphic gauge kinetic function
on the Kahler moduli. This dependence is generic in most
of the models of N ¼ 1 SUGRA derived from extended
supergravity and string theory [4]. Vector multiplets VXi

in
Eq. (1) are the Uð1ÞXi

gauge superfields including gauge
bosons Aμ

i .
In the Kahler potential and superpotential in Eqs. (1) and

(2) we have introduced two anomalous gauged Uð1ÞX ≡
Uð1ÞX1

×Uð1ÞX2
with anomalies canceled via exchange of

two Kahler-axion fields θi and two kinds of scalar fields Φi
with charges Xi, in order to explain both the fermion mass
hierarchy problem of the SM and the strong CP problem
[5]. The model group SUð3Þc × SUð2ÞL × Uð1ÞY ×
Uð1ÞX ×Uð1ÞR we are interested in may be realized in a
four-stack model Uð3Þ×Uð2Þ×Uð1Þ×Uð1Þ on D-branes
where the gauged Uð1Þs are generically anomalous [6].

Hypercharge Uð1ÞY is the unique anomaly-free linear
combination of the four Uð1Þs. The other combinations
contribute toUð1ÞX and a gaugedUð1ÞR [7] which contains
an R-symmetry as a subgroup: fflavor matter fields →
eiξ=2 flavor matter fieldsg and fdriving fields → eiξ driving
fieldsg, with W → eiξW, whereas flavon and Higgs fields
remain invariant, and an axionic shift. In addition, one can
introduce a non-Abelian discrete flavor symmetry, such as
[8], to describe flavor mixing pattern, which can be realized
in field theories on orbifolds [9]. (We will not discuss them
here.) W0 is the constant value of the flux superpotential at
its minimum. WðTÞ is a certain nonperturbative term,
which is introduced to stabilize the Kahler moduli.
Although WðTÞ in Eq. (2) is absent at tree level, the
Kahler moduli appear nonperturbatively in the superpo-
tential through brane instantons or gaugino condensation
[10]. The superpotential Wv dependent on the driving
fields, invariant under SUð3Þc × SUð2ÞL ×Uð1ÞY×
Uð1ÞX × A4, is given at leading order by [2]

Wv ¼ ΦT
0 ð~μΦT þ ~gΦTΦTÞ þ ΦS

0ðg1ΦSΦS þ g2 ~ΘΦSÞ
þ Θ0ðg3ΦSΦS þ g4ΘΘþ g5Θ ~Θþ g6 ~Θ ~ΘÞ
þ g7Ψ0ðΨ ~Ψ − μ2ΨÞ; ð7Þ

where ~μ is a dimensionful parameter and ~g, g1;…;7 are
dimensionless coupling constants. The details of the A4

group are shown in the Appendix. The non-Abelian
discrete flavor symmetry A4 on Wv is properly imposed,
apart from the usual two Higgs doublets Hu;d responsible
for electroweak symmetry breaking, which are invariant
under A4 (i.e. flavor singlets), on two new types of scalar
multiplets: flavon fields, responsible for the spontaneous
breaking of the flavor symmetry, ΦT , ΦS, Θ, ~Θ, Ψ, ~Ψ that
are SUð2Þ-singlets; and driving fields ΦT

0 , Φ
S
0, Θ0, Ψ0 that

are associated to a nontrivial scalar potential in the
symmetry breaking sector. We take the flavon fields ΦT ,
ΦS to be A4 triplets, andΘ, ~Θ,Ψ, ~Ψ to be A4 flavor singlets,
respectively, that are SUð2Þ-singlets, and driving fields ΦT

0 ,
ΦS

0 to be A4 triplets and Θ0, Ψ0 to be an A4 singlet. In
addition, there is flavored PQ symmetry Uð1ÞX which is
mainly responsible for the fermion mass hierarchy of the
SM, which is composed of two anomalous gauged
symmetries Uð1ÞX1

× Uð1ÞX2
generated by the charges

X1 and X2: Φ1 ¼ fΦS;Θ; ~Θg, Φ2 ¼ fΨ; ~Ψg are Uð1ÞX1

and Uð1ÞX2
-charged chiral superfields, respectively. The

Yukawa superpotentialWY could be appropriately arranged
under the A4 ×Uð1ÞX as in Ref. [2], where the seesaw
mechanism [11] is embedded, and the fermion Yukawa
couplings are visualized as functions of the gauge singlet
flavon fields scaled by a cutoff proportional to string scale.
Under the Uð1ÞX gauge transformation VXi

→ VXi
þ

iðΛi − Λ̄iÞ, the matter and Kahler moduli superfields trans-
form as
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Φi → eiXiΛiΦi; Ti → Ti þ i
δGSi
16π2

Λi; ð8Þ

where ΛðΛ̄iÞ are (anti)chiral superfields parametrizing
Uð1ÞXi

transformations on the superspace. So the axionic
moduli θi and matter axions Ai have shift symmetries

θi → θi −
δGSi
16π2

ξi; Ai → Ai þ Xiviξi; ð9Þ

where ξi ¼ ReΛijθ¼θ̄¼0 and Φijθ¼θ̄¼0 ¼ 1ffiffi
2

p ei
Ai
vi ðvi þ hiÞ

(here vi and hi being the VEVs and Higgs bosons of
scalar components, respectively), with the gauge trans-
formation

Aμ
i → Aμ

i − ∂μξi: ð10Þ

Then the anomaly generated by the triangle graph is
canceled by the diagram in which the anomalous Uð1ÞX
mixes with the axionic moduli, which in turn couples to a
multiple of the QCD instanton density TrðGμν ~GμνÞ for the
gauge group in the compactification. So the axion decay
constant depends on the Kahler metric, and in particular on
where the moduli are stabilized, which will be shown
in Eq. (40).

III. A REALISTIC MODULI STABILIZATION

Since the three moduli appear in the Kahler potential
Eq. (2), by solving the F-term equations we are going to
stabilize three size moduli with positive masses while
leaving two axions massless and one axionic-partner
massive through an effective superpotential WðTÞ. The
two massless axion directions will be gauged by the Uð1Þ
gauge interactions associated with D-branes, and the
gauged flat directions of the F-term potential are removed
through the Stuckelberg mechanism. The F-term scalar
potential has the form

VF ¼ eK=M
2
P

�
KIJ̄DIWD̄J̄W̄ −

3

M2
P
jWj2 þ Kij̄DiWD̄j̄W̄

�
;

ð11Þ

where KIJ̄ (Kij̄) is the inverse Kahler metric, and I, J stand
for T, Ti, and i, j for the bosonic components of the
superfields Φi, φi, and the Kahler covariant derivative and
Kahler metric are defined as

DIW ≡ ∂IW þ W
M2

P
∂IK; KIJ̄ ≡ ∂I∂ J̄K: ð12Þ

To accomplish our purpose, we take a racetrack-type [12]
superpotential as an effective superpotential

WðTÞ ¼ AðΦiÞe−aðTþT1þT2Þ þ BðΦiÞe−bðTþT1þT2Þ; ð13Þ

where AðΦiÞ and BðΦiÞ are analytic functions of Φi
transforming under Uð1ÞXi

as

AðΦiÞ → AðΦiÞei
a

16π2
ðδGS

1
Λ1þδGS

2
Λ2Þ;

BðΦiÞ → BðΦiÞei
b

16π2
ðδGS

1
Λ1þδGS

2
Λ2Þ; ð14Þ

and invariant under the other gauge group. Then the scalar
potential of the fields ρðiÞð¼ τðiÞ=2Þ has local minimum at
σ0, σi which is supersymmetric, i.e.,

Wðσ0; σiÞ ¼ 0; DTWðσ0; σiÞ ¼ DTi
Wðσ0; σiÞ ¼ 0;

ð15Þ

and Minkowski, i.e., VFðσ0; σiÞ ¼ 0, where σ0 ¼ σi ¼
1

a−b lnðaA0

bB0
Þ. W0 is fine-tuned as

W0 ¼ −A0

�
aA0

bB0

�
−3 a

a−b
− B0

�
aA0

bB0

�
−3 b

a−b
; ð16Þ

where A0ðB0Þ are constant values of AðΦiÞðBðΦiÞÞ at a set
of VEVs hΦii that cancel all the D-terms, including the
anomalous Uð1ÞXi

. Here the constantsWðTÞ is not analytic
at the VEVs hΦii where the moduli are stabilized.
The F-term equations DTW ¼ DTi

W ¼ 0 provide
τ ¼ τi, and lead to

aAe−3
aτ
2 e−iaθ

st þ bBe−3
bτ
2 e−ibθ

st

þW0 þ Ae−3
aτ
2 e−iaθ

st þ Be−3
bτ
2 e−ibθ

st

τ
¼ 0 ð17Þ

for VXi
¼ 0, where θst ≡ θ þ θ1 þ θ2. This shows that the

three size moduli ðτ; τiÞ and one axionic direction θst are
fixed, while the two axionic directions (θst1 ≡ θ − θ1 and
θst2 ≡ θ − θ2) are independent of the above equation. So,
without loss of generality, we rebase the superfields T with
θst ¼ Im½T� and Ti with θsti ¼ Im½Ti� as

TðiÞ ¼ τðiÞ=2þ iθðiÞ → TðiÞ ¼ τðiÞ=2þ iθstðiÞ: ð18Þ

Then from the F-term scalar potential the masses of the
fields ρðiÞ and θst, m2

τðiÞ ¼ 1
2
KTT̄∂T∂ T̄VFjT¼T̄¼σ0

and

m2
θst ¼ 1

2
KTT̄∂θst∂θstVFjT¼T̄¼σ0

, respectively, are obtained
as follows:

m2
τðiÞ ¼

3 lnðaA0

bB0
Þ

M4
Pða − bÞ

×

�
A0a2

�
aA0

bB0

�
−3 a

a−b þ B0b2
�
aA0

bB0

�
−3 b

a−b
�

2

; ð19Þ
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m2
θst ¼

3W0

M4
P

�
−A0a3

�
aA0

bB0

�
−3 a

a−b
− B0b3

�
aA0

bB0

�
−3 b

a−b
�

þ
6 lnðaA0

bB0
Þ

M4
Pða − bÞ

×

�
−A0B0ða − bÞ2

�
aA0

bB0

�
−3aþb

a−b
�
a2 − b2

2 lnðaA0

bB0
Þ þ ab

��
:

ð20Þ

Here the mass squared of the size moduli fields ρðiÞ at the
minimum is simply given by m2

τðiÞ ¼ 3σ0jWTTðσ0Þj2=M4
P

where WTT ¼ ∂2W=ð∂TÞ2. Note that the gravitino mass in
this supersymmetric Minkowski minimum vanishes. With
the conditions a < 0, b > 0 (jaj < jbj) and A0 > 0, B0 < 0
we obtain positive values of masses. Here a, b are
constants, while A0, B0 are constants in M3

P units. For a
simple choice of parameters, A0 ¼ −B0 ¼ 0.01, a ¼
−2π=100 and b ¼ 2π=90, one has mτ ≃ 1.7 × 1014 GeV
and mθst ≃ 2.0 × 1014 GeV.

IV. SUPERSYMMETRY BREAKING

As discussed in the Kallosh-Linde model [12], super-
symmetry is unbroken so far in the vacuum states
corresponding to the minimum of the potential with
V ¼ 0. As will be shown later, the existence of Fayet-
Iliopoulos (FI) terms ξFIi for the corresponding Uð1ÞXi

implies the existence of uplifting potential which makes a
nearly vanishing cosmological constant and induces
SUSY breaking. A small perturbation ΔW to the super-
potential [12,13] is introduced in order to determine
SUSY breaking scale. Then the minimum of the potential
is shifted from zero to a slightly negative value at
σ0 þ δρ, σi þ δρi by the small constant ΔW. The result-
ing F-term potential has a supersymmetric anti–de Sitter
(AdS) minimum and consequently the depth of this
minimum is given in terms of Wðσ0 þ δρ; σi þ δρiÞ≃
ΔW þOðΔWÞ2 by

VAdS ≃ −
3

M2
P

ðΔWÞ2
8σ0σ1σ2

¼ −
3

8M2
P

�
a − b

ln aA0

bB0

�
2

ðΔWÞ2; ð21Þ

where ΔW ¼ hWiAdS is the value of the superpotential
at the AdS minimum. At the shifted minimum SUSY is
preserved, i.e. DTWðσ0 þ δρÞ ¼ 0 and DTi

Wðσiþ
δρiÞ ¼ 0, leading to WTðσ0 þ δρÞ ¼ WTi

ðσ0 þ δρiÞ≃
3ΔW=2σ0. At this new minimum the displacements
δρ ¼ δρi are obtained as

δρðiÞ ≃ 3ΔW
2σ0WTTðσ0Þ

¼ 3ða − bÞΔW
2 lnðaA0

bB0
ÞfA0a2ðaA0

bB0
Þ−3aa−b þ B0b2ðaA0

bB0
Þ−3ba−bg : ð22Þ

After adding the uplifting potentials SUSY is broken and
then the gravitino in the uplifted minimum acquires a
mass

m3=2 ≃ jΔWj
M2

P

�
a − b

2 ln aA0

bB0

�3
2

: ð23Þ

The uplifting of the AdS minimum to the dS minimum
can be achieved by considering nontrivial fluxes for the
gauge fields living on the D7 branes [14] which can be
identified as field-dependent FI D-terms in the N ¼ 1,
4D effective action [15]. The uplifting terms can be
parametrized as ΔVi ¼ 1

2
ðξFIi Þ2g2Xi

≃ jVAdSjðσ0=ρiÞ3 [14]
such that the value of the potential at the new minimum
becomes equal to the observed value of the cosmological
constant. So, as will be shown later, the anomalous FI
terms cannot be canceled, and act as uplifting potential.
Expanding the Kahler potential K in components, the
term linear in VXi

produces the FI factors ξFIi ¼
∂K
∂VXi

jVXi
¼0Δρi as

ξFIi ¼ M2
P

δGSi
16π2τ

Δρi: ð24Þ

Here the displacements Δρi ≡ ρi − σ0 in the moduli
fields are induced by the uplifting terms,

Δρi ≃ 6M2
PjVAdSj

W2
TTðσ0Þ

; ð25Þ

which are achieved by ∂ρiðVF þ ΔViÞjσiþδρi
¼ 0. Since

the uplifting terms by Δρi making the dS minimum
induce SUSY breaking, all particles whose mass is
protected from supersymmetry become massive. With
our choice of parameters, the gravitino mass being of
order 10 TeV implies jΔWj≃ 10−14M3

P, and which in
turn means that the FI terms proportional to jVAdSj=m2

τ

are expected to be strongly suppressed.
Setting to zero from the beginning the SM matter

fields fqc;l; Hu;…g, with the almost vanishing cosmo-
logical constant for the remaining fields the gravitino
mass m3=2 is directly related to the scale of supersym-
metry breaking, jFj2 − 3m2

3=2M
2
P þD2

Xi
=2 ≈ 0, implying

that the F- and D-term potentials should vanish in the
limit m3=2 going to zero and some of them should scale
as m3=2 at the minimum. In the global SUSY limit, i.e.
MP → ∞, the relevant F-term potential is written as
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Vglobal
F ¼

���� 2g1ffiffiffi
3

p ðΦS1ΦS1 − ΦS2ΦS3Þ þ g2ΦS1
~Θ
����2

þ
���� 2g1ffiffiffi

3
p ðΦS2ΦS2 − ΦS1ΦS3Þ þ g2ΦS3

~Θ
����2

þ
���� 2g1ffiffiffi

3
p ðΦS3ΦS3 − ΦS1ΦS2Þ þ g2ΦS2

~Θ
����2

þ jg3ðΦS1ΦS1 þ 2ΦS2ΦS3Þ þ g4Θ2 þ g5Θ ~Θþ g6 ~Θ2j2

þ jg7ðΨ ~Ψ − μ2ΨÞj2 þ jg7j2jΨ0j2ðjΨj2 þ j ~Ψj2Þ þ
X

i¼the others

���� ∂Wv

∂zi
����2; ð26Þ

and the D-term potential, obtained by the introduction of
two FI D-terms LFI

i ¼ −gXi
ξFIi DXi

, is given by

Vglobal
D ¼ jX1j2g2X1

2

�
ξFI1
jX1j

− jΦSj2 − jΘj2 − j ~Θj2
�

2

þ jX2j2g2X2

2

�
ξFI2
jX2j

− jΨj2 þ j ~Ψj2
�

2

ð27Þ

with DXi
¼ gXi

ðξFIi −
P

iXijΦij2Þ, where ξFIi ¼ 2Ei=τi are
constant parameters with dimensions of mass squared and
here Ei are measure of the strength of the fluxes for the
gauge fields living on the D7 branes [14]. Since SUSY is
preserved after the spontaneous symmetry breaking of
Uð1ÞX × A4, the scalar potential in the limit MP → ∞
vanishes at its ground states, i.e., vanishing F-terms must
have also vanishing D-terms. Consequently, the VEVs of
the flavon fields are from the minimization conditions of
the F-term scalar potential: the phenomenologically non-
trivial solutions [2]

hΦSi ¼
1ffiffiffi
2

p ðvS; vS; vSÞ; hΘi ¼ vΘffiffiffi
2

p ;

hΨi ¼ h ~Ψi ¼ vΨffiffiffi
2

p ; ð28Þ

as well as a set of trivial solutions

hΦSi ¼ ð0; 0; 0Þ; hΘi ¼ 0; hΨi ¼ h ~Ψi ¼ vΨffiffiffi
2

p :

ð29Þ

Then the two supersymmetric solutions are taken by the
D-flatness conditions, respectively, for (i) the phenomeno-
logically viable case

ξFI1 ¼ jX1jðhjΦSj2i þ hjΘj2iÞ; ξFI2 ¼ 0; hΨi ¼ h ~Ψi;
ð30Þ

and (ii) the phenomenologically trivial case

ξFI1 ¼ hΦSi ¼ hΘi ¼ 0; ξFI2 ¼ 0; hΨi ¼ h ~Ψi; ð31Þ

both of which indicate that the VEVs of the flavon fields
strictly depend on the moduli stabilization, particularly on
the VEVs of the fluxes Ei in the FI terms [14]. So it seems
hard for the first case (i) to stabilize jΦij at large
VEVs ∼Oð1012Þ GeV. There is a tension between hΦii ¼
0 and hξFIi i ≠ 0 which is possible as long as Ei are below
the string scale. Therefore it is imperative that, in order for
the D-terms to act as uplifting potential, the F-terms have to
necessarily break SUSY. In order for the solution in
Eq. (29) to be phenomenologically nontrivial, we destabi-
lize Φ1 ¼ fΦS;Θg and Φ2 ¼ fΨ; ~Ψg by their tachyonic
SUSY masses to develop vS, vΘ, vΨðv ~ΨÞ comparable with
seesaw and QCD axion window scales [2], while keeping
h ~Θi ¼ 0 for the scalar field ~Θ with m2

~Θ
> 0. The phenom-

enologically viable VEVs of the flavon fields can be
determined by considering both the SUSY breaking effect
which lift up the flat directions and supersymmetric next-
to-leading order terms (see the origin of this argument [16])
invariant under A4 ×Uð1ÞX. The supersymmetric next-to-
leading order terms are given by

ΔWv ≃ α

mP
Ψ ~ΨðΦTΦT

0 Þ1 þ
β

mP
ðΦS

0ΦTÞ1ΘΘ

þ 1

mP
fγ1ðΦSΦSÞ1ðΦTΦS

0Þ1 þ γ2ðΦSΦSÞ10 ðΦTΦS
0Þ100

þ γ3ðΦSΦSÞ100 ðΦTΦS
0Þ10 g; ð32Þ

where α, β, and γ1;2;3 are real-valued constants being of
order unities. Note that here, since we are considering
the phenomenologically nontrivial solutions as in Eq. (28),
operators including ~Θ, ðΦSΦSÞ3s, ðΦSΦTÞ3s, and ðΦSΦTÞ3a
are neglected in ΔWv. Since soft SUSY-breaking terms are
already present at the scale relevant to flavor dynamics, the
scalar potentials for Ψð ~ΨÞ and ΦSðΘÞ at leading order read
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VðΦS;ΘÞ≃ β1m2
3=2jΦSj2 þ β2m2

3=2jΘj2 þ
v2T jβΘ2 þ γΦ2

Sj2
2m2

P
;

VðΨ; ~ΨÞ≃ α1m2
3=2jΨj2 þ α2m2

3=2j ~Ψj2 þ jαj2 v
2
T jΨj2j ~Ψj2
2m2

P
;

ð33Þ

leading to the PQ breaking scales

μ2Ψ ¼ vΨv ~Ψ

2
¼ 2

ffiffiffiffiffiffiffiffiffiffi
α1α2

p
jαj2

�
m3=2

vT
mP

�
2

; ð34Þ

v2S ¼
2β1κ

2

γðβ þ γÞ
�
m3=2

vT
mP

�
2

¼ κ2v2Θ; ð35Þ

where γ ¼ 3ðγ1 þ γ2 þ γ3Þ, β1β ¼ γβ2, and κ ¼
ð−3g3=g4Þ−1

2. It indicates that the gravitino mass (or SUSY
breaking mass) strongly depends on the scale of PQ fields
as well as ΦT ; for example, for μΨ ∼ 1013 GeV and vT ∼
1011 GeV satisfying the SM fermion mass hierarchies [2]
one can obtain m3=2 ∼Oð10Þ TeV, and/or subsequently
vS ∼ vΘ ∼ 1011 GeV. With the soft SUSY-breaking poten-
tial, the radial components of the fields Ψ and ~Ψ are
stabilized at

vΨ ≃ μΨ
ffiffiffi
2

p �
α2
α1

�
1=4

; v ~Ψ ≃ μΨ
ffiffiffi
2

p �
α1
α2

�
1=4

; ð36Þ

respectively.

V. STRING INSPIRED QCD AXIONS

Finally, we consider the four-dimensional effective
Lagrangian of the axions, θsti and Ai, and the Uð1ÞX gauge
fields, Aμ

i , which contains the following:

KTiT̄i

�
∂μθsti −

δGSi
16π2

Aμ
i

�
2

−
1

4g2Xi

Fμν
i Fiμν − gXi

ξFIi DXi

þ jDμΦij2 þ θsti TrðGμν ~GμνÞ þ
Ai

Xivi

δGSi
16π2

TrðGμν ~GμνÞ;

ð37Þ

where Fμν
i are the Uð1ÞXi

gauge field strengths
Fμν
i ¼ ∂μAν

i − ∂νAμ
i , and the QCD gauge couplings are

absorbed into the gluon field strengths. In jDμΦij2 the
scalar fields Φi couple to the Uð1ÞXi

gauge bosons, where
the gauge couplings gXi

are absorbed into the gauge
bosons Aμ

i in the Uð1ÞX gauge covariant derivative
Dμ ≡ ∂μ þ iXiA

μ
i . As mentioned before, the introduction

of FI terms LFI ¼ −ξFIi
R
d2θVXi

¼ −ξFIi gXi
DXi

leads to the
D-term potentials in Eq. (27) where the FI factors ξFIi
depend on the closed string moduli ρi ¼ τi=2. The first,
third and fourth terms of Eq. (37) stem from expanding the

Kahler potential of Eq. (1). Under the anomalous Uð1ÞX
gauge transformation in Eqs. (8) and (9), the first and fifth
terms together, and similarly the fourth and sixth terms in
Eq. (37), are gauge invariant, that is, the interaction
Lagrangians,

Lint
Xi

¼ Aμ
i J

Xi
μ −

Ai

Xivi

δGSi
16π2

TrðGμν ~GμνÞ;

Lint
θsti

¼ Aμ
i J

Xi
μ þ θsti TrðGμν ~GμνÞ; ð38Þ

are invariant. There are anomalous currents JXi
μ coupling to

the gauge bosons Aμ
i , that is, ∂μJ

μ
Xi

¼ δGSi
16π2

TrðGμν ~GμνÞ:

JXi
μ ¼ KTiT̄i

δGSi
8π2

∂μθ
st
i − iXiΦ�

i ∂μ

↔
Φi þ

1

2

X
ψ i

Xiψ̄ iγμγ5ψ i:

ð39Þ

Expanding Lagrangian (37) and using θsti ¼ aTi
=8π2 it

reads

1

2
ð∂μ ~aTi

Þ2 þ ~aTi

fsti

1

8π2
TrðGμν ~GμνÞ

þ 1

2
ð∂μAiÞ2 þ

Ai

Xivi

δGSi
16π2

TrðGμν ~GμνÞ

− JXi
μ Aμ

i þ
1

2g2Xi

m2
Xi
Aμ
i Aiμ −

1

4g2Xi

Fμν
i Fiμν

−
g2Xi

2

�
ξFIi −

X
i

XijΦij2
�

2

; ð40Þ

where ~aTi
¼ fsti aTi

is the canonically normalized Kahler

axions with fsti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KTiT̄i

=ð8π2Þ2
q

. Clearly it indicates that

the values of fsti depend on the Kahler metric and where on
the moduli are stabilized. The gauge boson masses obtained
by the Higgs mechanism are given by

mXi
¼ gXi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KTiT̄i

�
δGSi
16π2

�
2

þ 2f2Φi

s
: ð41Þ

Then the open string axions Ai are linearly mixed with the
closed string axions ~aTi

with decay constants fsti and
fΦi

¼ Xivi:

~Ai ¼
Ai

δGSi
2
fsti − ~aTi

fΦiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2Φi

þ ðδGSi
2
fsti Þ2

q ; Gi ¼
~aTi

δGSi
2
fsti þ AifΦiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2Φi
þ ðδGSi

2
fsti Þ2

q :

ð42Þ

Since the Uð1ÞX is gauged, two linear combinations Gi of
the fields Ai and ~aTi

are eaten by the Uð1ÞX gauge bosons
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and obtain string scale masses, while the other combina-
tions ~Ai survive to low energies and contribute to the QCD
axion. With the given parameters we obtain mX1

∼
1016 GeV and mX2

∼ 1017 GeV for τi=2 ∼ 1, δGS1 ¼ 3,

and δGS2 ¼ 17. For fsti ≫ vi, the axions ~Ai as would-be
QCD axion are approximated to Ai. Below the scalemXi

the
gauge bosons decouple, leaving behind low-energy sym-
metries which are anomalous global Uð1ÞXi

. One linear
combination of the global Uð1ÞXi

is broken explicitly by
instantons. The rigid example of such would-be QCD
axions, and some of its consequences were studied in
Ref. [2]. See also Ref. [17].

VI. CONCLUSION

We constructed a string-inspired model as a useful bridge
between flavor physics and string theory by introducing
two anomalous gauged Uð1Þ symmetries responsible for
both the fermion mass hierarchy problem of the SM and the
strong CP problem. In the context of supersymmetric
moduli stabilization we strongly stabilized the size moduli
with positive masses while leaving two axions massless and
one axion massive. We showed that, while the massive
gauge bosons eat the two axionic degrees of freedom, two
axionic directions survive to low energies as the flavored
PQ axions.
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APPENDIX: NON-ABELIAN DISCRETE
SYMMETRY A4

The group A4 is the symmetry group of the tetrahedron
and the finite groups of the even permutation of four objects
having four irreducible representations: its irreducible
representations are one triplet 3 and three singlets 1, 10,
100 with the multiplication rules 3 ⊗ 3 ¼ 3s ⊕ 3a ⊕ 1 ⊕
10 ⊕ 100, 10 ⊗ 100 ¼ 1, 10 ⊗ 10 ¼ 100 and 100 ⊗ 100 ¼ 10. Let
ða1; a2; a3Þ and ðb1; b2; b3Þ denote the basis vectors for two
3’s. Then, we have

ða ⊗ bÞ3s ¼
1ffiffiffi
3

p ð2a1b1 − a2b3 − a3b2; 2a3b3 − a2b1

− a1b2; 2a2b2 − a3b1 − a1b3Þ;
ða ⊗ bcÞ3a ¼ iða3b2 − a2b3; a2b1 − a1b2; a1b3 − a3b1Þ;
ða ⊗ bÞ1 ¼ a1b1 þ a2b3 þ a3b2;

ða ⊗ bÞ10 ¼ a1b2 þ a2b1 þ a3b3;

ða ⊗ bÞ100 ¼ a1b3 þ a2b2 þ a3b1: ðA1Þ
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