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The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a
conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an
important model system for understanding astrophysical magnetism. Here, the mathematical correspon-
dence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of
the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free
framework to investigate SDEs. The correspondence reported here permits insights from the STS to be
applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of
no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for
the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry, and the
dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded
as the stochastic generalization of the concept of dynamical chaos. As this supersymmetry breaking
happens in both the diffusive and the nondiffusive cases, the necessity of the underlying SDE being chaotic
is given in either case. The observed exponentially growing and oscillating KDmodes prove physically that
dynamical spectra of the STS evolution operator that break the topological supersymmetry exist with both
real and complex ground state eigenvalues. Finally, we comment on the nonexistence of dynamos for scalar
quantities.
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I. INTRODUCTION

The magnetohydrodynamical dynamo has a long scien-
tific history, and many important theoretical insights on it
have already been provided (for example, Refs. [1–6] and
others). Roughly speaking, the magnetic dynamo phenome-
non is the ability of amoving conductingmedium to generate
and/or to sustain a magnetic field. This phenomenon
is widespread in astrophysical objects like galaxies
(Refs. [7–10], for example), galaxy clusters [11–14], stars
[15–21], and planets including Earth [1–3,17,22,23].
System-sized ordered fields can be observed in objects with
large-scale ordered flows such as those occurring in rotating
galaxies, stars, and planets and are usually attributed to the
action of the so-called large-scale, mean-field, or α − ω
dynamo. Systems without a large-scale flow pattern can also
harbor dynamos driven by turbulent fluidmotions. These are
called small-scale, fluctuating, or turbulent dynamos and are
believed to maintain the magnetic fields in galaxy clusters.
Although the theory of dynamos is relatively mature, it still
provides a field of active and interesting research.
Dynamo theory addresses two different regimes. The

first one is the kinematic dynamo (KD) [3,24–26]. In this
regime, the amplified magnetic field is too weak to affect

the flow of the conducting medium. This regime is realized,
for example, in the early stages of galaxy formation. The
other regime is the nonlinear dynamo. Here, the backaction
of a sufficiently strong field on the flow is not negligible
anymore. Such backactions lead eventually to a saturated
dynamo state, with an average stationary magnetic energy
linked to the kinetic energy of the flow. This regime seems
to be realized in the magnetic fields in developed galaxies
and galaxy clusters. This paper, however, focuses solely on
the KD limit.
It is known that the KD in the idealistic diffusionless case

requires chaotic underlying flows of matter (see, e.g.,
Ref. [27] and references therein). It was not known until
this work whether this relation also holds if magnetic
diffusivity is present. Establishing the chaos-KD relation
under diffusivity requires a rigorous mathematical generali-
zation of the concept of deterministic chaos to stochastic
flows, which has been missing so far. The recently found
supersymmetric theory of stochastics (STS) closes this
gap [28,29].
The STS is an approximation-free theory of stochastic

differential equations (SDEs). Instead of investigating the
ensemble of stochastic trajectories generated by an SDE,
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the STS analyzes the actions (or pullbacks) induced by
these trajectories on the elements of the exterior algebra of
the phase space—the differential forms of various degrees,
in the following called wave functions. These wave
functions can be averaged over the stochastic noise
configurations, as the exterior algebra, together with the
SDE-induced actions on it, is a linear space in which the
stochastic averaging is legitimate. In contrast, the concept
of the stochastically averaged trajectories themselves can-
not be straightforwardly defined for nonlinear phase
spaces. The stochastically averaged SDE-defined pullback,
i.e., the stochastic evolution operator, provides a complete
picture of all aspects of the stochastic dynamics. For
example, the temporal evolution of an initial δ-functional
probability distribution in the phase space can be explicitly
constructed from it.
The KD-STS correspondence that we want to highlight

here emerges from the identification of the fluid flow and
the magnetic fields of the KDs with the flow vector field of
an SDE and the (nonsupersymmetric) 2-forms (or 1-forms
in case one described the magnetic field in terms of the
magnetic vector potential), respectively. This connection
permits the transfer of insights obtained within the STS to
the KD theory and vice versa.
In the STS, all SDEs possess a topological (or De Rahm)

supersymmetry. This means that the stochastic evolution
operator commutes1 with the so-called exterior derivative
or De Rahm operator, d̂, of the exterior algebra (see Sec. II).
As a mathematical consequence of this (see Sec. III B),
all eigenstates of a time-independent stochastic evolution
operator of a stationary SDE are divided into the finite
number (one for each De Rahm cohomology class) of the
zero-eigenvalue (or steady-state) supersymmetric singlets
and the infinite number of the nonsupersymmetric doublets
with arbitrary but bounded from below eigenvalues.
If there are growing eigenstates, the fastest growing

eigenstate must be identified as the ground state of the
model. Indeed, if an initial wave function has a contribution
by such an eigenstate, this fastest growing eigenstate will
dominate over the initial wave function after a sufficiently
long period. The supersymmetry is said to be broken
spontaneously in such a situation because this ground state
has nonzero eigenvalue and thus is nonsupersymmetric.
KDs are known to show growing magnetic fields [27].

Thus, the supersymmetry of their corresponding SDEs is
spontaneously broken. In other words, the existence of the
growing modes of the KD is the physical proof that the
supersymmetry breaking spectra of the STS evolution
operator are realizable. Moreover, the well-established
existence of the oscillating fastest growing KD modes
[30–32] demonstrate that the STS spectra with complex
ground state eigenvalues are also realizable.

The concept of spontaneous supersymmetry breaking in
the STS, required for the existence of the growing KD
modes, can actually be identified with the stochastic
generalization of the concept of deterministic chaos [28].
For spontaneously broken symmetries, the Goldstone
theorem predicts2 the existence of gapless Goldstone-
Nambu excitations, which have infinite characteristic time
scales. This long-term dynamical behavior can be regarded
as the manifestation of the ubiquitously observed “chaotic
or dynamical long-range order” that reveals itself in such
phenomena as the butterfly effect [33], 1=f noise [34], and
the power-law statistics of various sudden (or instantonic)
processes like solar flares [35], earthquakes [36], and
neuronal avalanches [37]. Therefore, the long-range phe-
nomena associated with the presence of the dynamical
long-range order must also be present in the KD systems,
which is one of the interesting conclusions that can be
drawn from the KD-STS correspondence discussed in this
paper.
The structure of the paper is as follows. In Sec. II, it is

demonstrated that the dynamical (stochastic) equations
of the stationary KD possess topological supersymmetry.
In Sec. III, the SDE corresponding to the KD effect is
established, and the relation of STS to growing KD
modes, chaos, and supersymmetry breaking is elaborated.
Section IV concludes the paper.

II. SUPERSYMMETRY OF THE KINEMATIC
DYNAMO EQUATION

Temporal evolution of the magnetic field within the KD
effect is governed by the induction equation:

∂tB ¼ ∂ × ðv × BÞ þ ηΔB: ð1Þ

Here, ∂t≡∂=∂t, ∂¼f∂i≡∂=∂xi;xi ¼ x;y;z;i¼ 1;2;3g, is
the gradient operator; Δ ¼ ∂2 ¼ ∂i∂i,

3 is the Laplace
operator; × denotes the vector product of two vectors so
that ∂× is the curl of a vector; B ¼ fBi; i ¼ 1; 2; 3g is the
magnetic field; v ¼ fvi; i ¼ 1; 2; 3g is the vector field of
the underlying flow velocity of the conducting medium;
and η ¼ 1=ðσμÞ is the magnetic diffusivity with σ and μ
being the electrical conductivity and permeability. The first
term on the rhs of Eq. (1) represents the well-known
magnetohydrodynamical phenomenon of magnetic fields
being frozen into the conducting medium, whereas the
second term describes the magnetic field diffusion.

1The infinitesimal stochastic evolution operator is actually d̂
exact, which is stricter than a mere commutativity with d̂.

2This version of the Goldstone theorem applies to “spatially
extended” models with infinite-dimensional phase spaces. For
finite-dimensional phase spaces, the theorem reduces to the
statement of the protected degeneracy of the ground state so
that there is a “zero-energy” excitation that can remember
perturbations forever, i.e., the butterfly effect.

3The summation over repeated indices is assumed throughout
the paper.
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Our first goal is to translate Eq. (1) into the coordinate-
free language of exterior algebra used by the STS. Instead
of the vector B, we use differential forms of second degree
to describe magnetic fields. Such 2-forms provide the
coordinate-free representation of the same object,

F ¼ 1

2!
Fijdxi ∧ dxj ¼ d̂A: ð2Þ

Here, A ¼ Aidxi is the 1-form of the magnetic vector
potential, d̂ ¼ dxi ∧ ∂=∂xi is the exterior derivative or the
De Rahm operator, and ∧ is the wedge or antisymmetric
product of differentials. In components, the antisymmetric
contravariant tensor, Fij, called the magnetic field tensor, is
given as

Fij ¼ ∂iAj − ∂jAi ¼ ϵijkBk ¼

0
B@

0 Bz −By

−Bz 0 Bx

By −Bx 0

1
CA;

where ϵijk is the antisymmetric Levi-Cevitá tensor.
Equation (1) in components is

∂tBi ¼ ϵipq∂pϵqklvkBl þ ηΔBi:

We work in the Eulcidian metric. Thus, lowering and
raising the indices has no effect on the values of the
components of the antisymmetric tensor, e.g., ϵijk ¼ ϵijk.
With the use of the identity

ϵqklϵ
ipq ¼ det

�
δik δpk
δil δpl

�
; ð3Þ

where δij is the Kronecker delta and with ∂iBi ¼ 0, Eq. (1)
can be rewritten as

∂tBi ¼ −ð∂jvjÞBi þ Bjvi0j þ ηΔBi;

where vi0j ¼ ∂jvi. Using now

Bi ¼ 1

2
ϵiklFkl;

the induction equation can be further rewritten as

∂t
1

2
ϵiklFkl ¼ −∂jvj

1

2
ϵiklFkl þ

1

2
ϵjklFklvi0j

þ ηΔ
1

2
ϵiklFkl:

Multiplying both sides of this equation by ϵiab and
summing over index i, we get

∂tFab ¼ −∂jvjFab þ
1

2
ϵiabϵ

jklFklvi0j þ ηΔFab:

With the help of the identity

ϵiabϵ
jkl ¼ det

0
B@

δji δja δjb
δki δka δkb
δli δla δlb

1
CA;

one arrives at

∂tFab ¼ −∂jvjFab þ
1

2
ð2Fabv

j
0j − 2Fjbv

j
0a − 2Fajv

j
0bÞ

þ ηΔFab

or

∂tFab ¼ −ðvj∂jFab þ vj0aFjb þ Fajv
j
0bÞ þ ηΔFab:

Turning now to the coordinate-free object F in Eq. (2),
Eq. (1) takes the form

∂tF ¼ −ĤKDF; ĤKD ¼ L̂v − ηΔ̂; ð4Þ

where the Lie derivative along v is defined as

L̂v ¼ vi∂i þ vi0jdx
j ∧ ı̂i:

Here, ı̂i is the interior multiplication acting on a differential
form ψ ¼ 1

k!ψ i1…ikdx
i1 ∧ … ∧ dxik as

ı̂iψ ¼ 1

ðk − 1Þ!ψ ii2…ikdx
i2 ∧ … ∧ dxik :

The resulting Eq. (4) is rather natural. As we already
mentioned, the first term on the rhs of Eq. (1) describes
the infinitesimal temporal evolution of the magnetic field
“frozen” into the conducting medium. This freezing of the
magnetic field is the well-known magnetohydrodynamical
effect. In the coordinate-free setting, the frozen field
corresponds to the evolution solely due to the flow along
v, and this evolution is given by the Lie derivative, which is
also known as the physical derivative.
The next step toward STS is to establish the super-

symmetric structure of the KD evolution operator, ĤKD.
First, we recall the Cartan formula,

L̂v ¼ ½d̂; ı̂v�; ð5Þ

where ı̂v ¼ vi ı̂i denotes the interior multiplication with v
and the square brackets denote the bigraded commutator.
This is defined by

½X̂; Ŷ� ¼ X̂ Ŷ −ð−1Þdeg X̂·deg Ŷ Ŷ X̂;
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where deg is the degree of the operator, i.e., the number of
dx’s minus the number of ı̂’s. For example, deg d̂ ¼ 1 and
deg ı̂v ¼ −1 so that the bigraded commutator in Eq. (5) is
actually an anticommutator.
Second, the Laplace operator can be given by

Δ̂ ¼ −½d̂; d̂†�; ð6Þ

where d̂† ¼ −ı̂iδij∂j is the Hodge conjugate of the exterior
derivative with respect to the Euclidian metric.
Substituting Eqs. (6) and (5) into Eq. (4), one finds the

explicitly supersymmetric form of the KD evolution
operator,

ĤKD ¼ ½d̂; d̂�; ð7Þ

where

d̂ ¼ ı̂v þ ηd̂†:

The notational similarity of the exterior derivative d̂ and the

evolution-defining d̂ is motivated by the fact that for a
purely diffusive dynamics, with Ĥ ¼ −ηΔ̂, these operators
are the Hodge conjugates to each other (up to a diffusion

constant) with respect to the Euclidian metric, d̂ ¼ ηd̂†.
We now show the supersymmetry of ĤKD. We recall that

due to the nilpotency of the exterior derivative, d̂2 ¼ 0, one
has

½d̂; ½d̂; X̂�� ¼ 0 ð8Þ

for any X̂. Thus, an immediate consequence of Eq. (8) and
the “d̂-exactness” of the KD evolution operator in Eq. (7) is
that it commutes with d̂:

½d̂; ĤKD� ¼ 0: ð9Þ

This suggests that d̂ is a symmetry of the KD dynamics.
Since d̂ ¼ dxi ∧ ∂=∂xi removes a bosonic (commuting)
variable (an xi is removed by ∂=∂xi) and replaces it by a
fermionic one (an anticommuting dxi ∧ is added), it
converts bosonic variables into fermionic ones.
Therefore, the symmetry of the evolution operator ĤKD

with respect to d̂ can be regarded as a supersymmetry since
an exchange of a boson by a fermion in the wave function
does not change its dynamics.
As a consequence of its supersymmetry conserving

dynamics, the KD is described equivalently in terms of
the magnetic field tensor and in terms of the vector potential
in Eq. (2),

∂tA ¼ −ĤKDA

⇒ ∂td̂A ¼ −d̂ĤKDA

⇒ ∂td̂A ¼ −ĤKDd̂A

⇒ ∂tF ¼ −ĤKDF: ð10Þ
From the traditional KD perspective, it may look surprising
that the magnetic field tensor and magnetic vector potential
obey exactly the same equation, despite being mathemati-
cally different, although related objects. From a STS
perspective, this equivalence just shows the consistence
of our calculations. In fact, the descriptions
of the magnetic field evolution in terms of A and F must
be equivalent. This suggests on its own that the exterior
derivative (connecting A and F ¼ d̂A) must be commuta-
tive with the evolution operator. Thus, we could just as well
have guessed the existence of this supersymmetry from the
very outset.
Note, however, that Eq. (7) not only implies the

commutativity of the evolution operator with the exterior
derivative, Eq. (9), but it also implies that all the super-
symmetric eigenstates have zero eigenvalue, as we discuss
in the next section.
The close relation between supersymmetry, invariance

under the action of d̂, and algebraic topology, relations of
topological sets with their boundaries, which we mentioned
in the introduction, was first established in Ref. [38]. This
relation resulted in the discovery of Witten-type topological
or cohomological field theories (see, e.g., Refs. [39–42]
and references therein as well as Ref. [43] for a review).4

The STS that we are going to discuss next can be looked at
as a member of this class of theories.5

III. CONNECTION BETWEEN THE
KD THEORY AND

THE STS

A. Corresponding stochastic system

In this section, we will show that the stationary KD
equation including magnetic diffusivity is the STS stochas-
tic evolution operator of a certain SDE. To find this
corresponding SDE, let us address here a more general
SDE, establish its stochastic evolution operators, and
compare it with ĤKD. This general SDE can be thought
of as one describing the trajectory of a test particle

4In the path integral representation of cohomological field
theories, the d̂ supersymmetry is denoted asQ and is identified as
the topological supersymmetry or as the gauge-fixing Becchi-
Rouet-Stora-Tyutin symmetry.

5In a full-fledged cohomological field theory, one is interested
only in the supersymmetric ground states of the model. In the
STS, on the other hand, one is primarily interested in the ground
states, which for chaotic systems are nonsupersymmetric as we
will argue. From this point of view, the STS can be recognized as
a cohomological theory only in a generalized sense.
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propagating along the fluid flow while its velocity is also
subject to Gaussian white noise,

_xiðtÞ ¼ viðxðtÞÞ þ ð2ΘÞ1=2eiaðxðtÞÞξaðtÞ: ð11Þ

Here, x is the particle (or phase-space) position; v ¼ fvig is
the stationary part of the flow vector field; eaðxÞ ¼
feiaðxÞ; i; a ¼ 1; 2; 3g is a set of vector fields that can be
characterized as the “prime vectors” of flow fluctuations at
x and that are assumed position dependent for now; ξaðtÞ ∈
R1 with a ∈ f1; 2; 3g are the Gaussian white fluctuations
with the standard stochastic averages,

hξaðtÞinoise ¼ 0 and ð12Þ

hξaðtÞξbðt0Þinoise ¼ δabδðt − t0Þ; ð13Þ

and Θ is the intensity or temperature of these fluctuations.
Getting a bit ahead, the flow vector field of the SDE
corresponding to the KD equation will turn out to be the
same as in the original KD problem. This is the reason why
we do not introduce a new notation for the flow in
Eq. (11).
First, an evolution operator M�

t0t is defined, which
describes how the dynamics of the system acts on elements
of the exterior algebra of the position (or phase) space.
The elements of the exterior algebra form a Hilbert space,
the space of differential forms of all degrees, ΩðXÞ. We
recall that our magnetic field tensor and magnetic vector
potential are among such elements; they are 2- and 1-forms,
respectively. Mathematically, M�

t0t is the pullback of the
inverse, finite-time evolution diffeomorphism. For a fixed
noise configuration, this evolution operator is

M�
t0t ¼ T e−

R
t

t0 dτL̂vðτÞ ; ð14Þ

where T expresses chronological ordering of the terms to
its right (see below). The time-dependent flow vector field
is the entire rhs of Eq. (11),

vðtÞ ¼ vi þ ð2ΘÞ1=2eiaξaðtÞ;

and the corresponding time-dependent Lie derivative of
this flow is

L̂vðtÞ ¼ L̂v þ ð2ΘÞ1=2ξaðtÞL̂ea : ð15Þ

Since the Lie derivative is linear in its argument, a
stochastic term is just added to the time-independent Lie
derivative given by Eq. (5). The operator of the chrono-
logical ordering T is needed in Eq. (14) because in general
instances of L̂vðτÞ at different times do not commute with
each other. Equation (14) follows immediately from one of

the definitions of the Lie derivative, which is the infini-
tesimal pullback along a vector field.
Secondly, the finite-time evolution operator M�

t0t is
averaged over all the configurations of the stochastic
noise:

M̂tt0 ¼ hM�
t0tinoise: ð16Þ

As M�
t0t is a linear operator acting on ΩðXÞ, the Hilbert

space of all differential forms in which superpositions are
possible, M̂tt0 represents a mathematically meaningful
average. This averaged finite-time evolution operator
describes how wave functions evolve in time under the
action of a dynamical system:

ψðtÞ ¼ M̂tt0ψðt0Þ;
ψ ∈ ΩðXÞ: ð17Þ

The infinitesimal stochastic evolution of the wave
function can be given via the stochastic evolution
equation

∂tψðtÞ ¼ −ĤψðtÞ; ð18Þ

where the stochastic evolution operator (SEO) is
defined by

Ĥ ¼ lim
δt→0

1̂Ω − M̂ðtþδtÞt
δt

: ð19Þ

STS investigates the evolution of the complete set of
forms ψ ∈ ΩðXÞ, whereas in the KD theory usually only
the 2-forms F ∈ Ω2ðXÞ ⊂ ΩðXÞ are of interest [or 1-forms
A ∈ Ω1ðXÞ ⊂ ΩðXÞ if one chooses to work with the
vector potential].6 For example, the total probability density
3-form ψðtÞ ¼ ρðx; tÞdx1 ∧ dx2 ∧ dx3 ∈ Ω3ðXÞ to find the
system in a specific phase-space volume around location x
at time t evolves according to Eq. (18) restricted to Ω3ðXÞ.
The correspondingly restricted SEO is the conventional
Fokker-Planck operator and will be denoted here as
Ĥð3Þ∶ Ω3ðXÞ → Ω3ðXÞ.
We now work out the SEO of our SDE (11). Using

Eqs. (14), (15), (16), and (19); the formal definition of the
chronologically ordered exponentiation of the operator in
Eq. (14),

6In the STS, the wave functions have the meaning of
generalized probability distributions in the coordinate-free set-
ting; e.g., the top differential forms can be viewed as the total
probability distributions (when strictly positive and normalized to
1), whereas the lower-degree differential forms can be looked
upon as the conditional probability distributions (under the same
conditions).
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T e−
R

t

t0 dτL̂vðτÞ ¼ 1̂ −
Z

t

t0
dτL̂vðτÞ

þ
Z

t

t0
dτ1L̂vðτ1Þ

Z
τ1

t0
dτ2L̂vðτ2Þ − � � � ; ð20Þ

and the stochastic averages of the Gaussian white noise
from Eqs. (12) and (13), one readily finds7

Ĥ ¼ L̂v − ΘL̂eaL̂ea : ð21Þ

In order to establish the supersymmetric structure of the
SEO, we recall that the bigraded commutator with the
exterior derivative is a bigraded differentiation,

½d̂; X̂ Ŷ� ¼ ½d̂; X̂�Ŷ þ ð−1Þdeg X̂X̂½d̂; Ŷ�: ð22Þ

Thus, the bigraded commutator with d̂ and the Cartan
formula (5) imply that

L̂eaL̂ea ¼ ½d̂; ıeaL̂ea �: ð23Þ

Thus,

Ĥ ¼ ½d̂; d̂�; d̂ ¼ {̂v − Θ{eaL̂ea : ð24Þ

The SEO Ĥ of our SDE (11) is therefore the KD evolution
operator ĤKD from the previous section,

Ĥ ¼ ĤKD; for eiaðxÞ ¼ δia and Θ ¼ η: ð25Þ

In other words, the KD evolution operator is the SEO of the
following SDE,

_xi ¼ viðxÞ þ ð2ηÞ1=2ξiðtÞ; ð26Þ

where ξiðtÞ ¼ δiaξ
aðtÞ is additive Gaussian white noise.

B. Dynamical spectra in STS

STS investigates the eigenspectrum of wave functions of
the exterior algebra under the action of a SDE. As we have
seen, the KDmodes are a subset of these wave functions for

a suitably constructed SDE, and therefore the STS classi-
fication of dynamical systems directly applies to KDs.
The stochastic evolution equation (18) is linear. Thus, the

time evolution of any wave function, ψ , can be constructed
from the complete eigensystem of the SEO Ĥ,

ψðtÞ ¼
X
α

aααe−Eαt; with

Ĥα ¼ Eαα and

aα ¼ hαjψi ¼
Z
X
ψ ∧ α: ð27Þ

The set of eigenvectors fαg of Ĥ forms a complete
biorthogonal basis (see below), such that 1̂Ω ¼ P

αjαihαj
permits the decomposition of anywave function inΩðXÞ into
the eigenmodes. The eigenvalues determinewhether eigenm-
odes are growing (ReEα < 0), decaying (ReEα > 0), oscil-
lating (ImEα ≠ 0), or stationary (Eα ¼ 0). As the evolution
of any wave function is fully determined by the behavior of
the eigenmodes it is composed of, it is sufficient to study the
eigensystem of the SEO to understand the properties of the
corresponding dynamical system.
Analogously, KD theory concentrates on the spectrum of

dynamo eigenmodes, which are just a subset of fαg.
The eigensystem of the SEO has the following proper-

ties.8 First of all, for nonzero temperatures, Θ ≥ 0, the SEO
is elliptic, and thus (the real part of) its spectrum is bounded
from below.9 Second, the SEO is real, and hence its
eigenvalues are either real or come in complex conjugate
pairs known in the dynamical systems theory as the Ruelle-
Pollicott resonances. This property of its spectra implies
that the SEO is pseudo-Hermitian [44]. As a pseudo-
Hermitian operator, the SEO’s eigensystem is complete
and biorthogonal:

Ĥα ¼ Eαα and α Ĥ ¼ αEα; with

hαjβi ¼
Z
X
β ∧ α ¼ δαβ:

Here, the kets jαi≡ α ∈ Ω ¼ ΩðXÞ and bras hαj≡ α ¼P
βηβα⋆ðβ�Þ ∈ Ω, with ⋆∶ Ωk → ΩD−k being the Hodge

7Note that on derivation of Eq. (21), the last term acquires the
factor

lim
δt→0

2δt−1
Z

tþδt

t
dτ1

Z
τ1

t
dτ2δðτ1 − τ2Þ

¼ lim
δt→0

δt−1
Z

tþδt

t
dτ1 ¼ 1:

The first equality here follows from
R τ1
t dτ2δðτ1 − τ2Þ ¼ 1=2,

which is a consequence of defining the δ distribution to be the
limit of a narrowing sequence of symmetric functions.

8We discuss the properties of the SEO under the assumption of
a compact phase space. This assumption is made for simplicity in
order to avoid complications of purely mathematical origin that
appear in the non-compact setting, in which the eigensystem will
depend on the choice of the class of functions that we believe
constitute the Hilbert space. From the physical point of view, this
assumption is not a restriction. For example, a classical model
related to the KD phenomenon is the ABC flow defined on a
3-torus and planetary, stellar, and galactic dynamos act within
finite volumes without flows reaching infinity.

9In fact, this must be true even for zero temperatures as follows
from the analysis of the spectra of transfer operators in the
dynamical systems theory.
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star operator, are the differential forms of the corresponding
right and left eigenfunctions of the SEO. The bras and kets
are related through the nontrivial Hilbert space metric ηβα,
which is the inverse of the overlap matrix of the
kets,

P
βηβα

R
x γ ∧ ⋆ðβ�Þ ¼ 1αγ.

The operator of the degree of a differential form
k̂ ¼ dxi ∧ ı̂i, with k̂ψ ¼ kψ and ψ ∈ ΩkðXÞ, commutes
with Ĥ,10 and thus the degree of an eigenstate of Ĥ is a
good quantum number, k̂jαi ¼ kαjαi. In other words, the
dynamics specified by Ĥ do not convert between different
k-forms but evolve separately within each Ωk subspace of
Ω. We denote as ĤðkÞ the projection of Ĥ on Ωk so that the
block diagonal structure of the SEO can be expressed
as Ĥ ¼ diagðĤðDÞ;…; Ĥð0ÞÞ.
Corresponding bras and kets have complimentary

degrees: if jαi≡ α ∈ Ωk, then hαj≡ α ∈ ΩD−k if D is
the dimension of the phase space. Otherwise, the norm of
this eigenstate, hαjαi, would vanish. Much like in quantum
theory, the bra-ket combination Pα ¼ α ∧ α ∈ ΩD has the
meaning of the total probability distribution associated
with this eigenstate, and its norm

R
X Pα ¼

R
X α ∧ α ¼

hαjαi should be strictly positive for nontrivial states.
Consequently, hαj≡ α ∈ ΩD−k.
The supersymmetric structure of the SEO separates all

eigenstates into two groups:
(i) Almost all eigenstates come in nonsupersymmetric

“bosonic-fermionic” pairs, jαi and jα0i ¼ d̂jαi,11
that have the same eigenvalue because Ĥ commutes
with d̂.12

(ii) Some of the eigenstates are the supersymmetric
singlets jθi that are nontrivial in the De Rahm
cohomology. Supersymmetry of a state jθi means
that it is d̂ closed, d̂jθi ¼ 0, but not d̂ exact, meaning
that no θ0 exists such that jθi ¼ d̂jθ0i.

The d̂-exact form of the SEO, i.e., Ĥ ¼ ½d̂; d̂�, implies that
all eigenstates with nonzero eigenvalue are nonsupersym-
metric. Indeed, for Ĥjαi ¼ Eαjαi and Eα ≠ 0, we have two
possibilities:
(1) The first possibility is that d̂jαi ≠ 0. In this case, the

statement is trivial because Ĥ commutes with d̂, and
consequently the state jα0i ¼ d̂jαi ≠ 0 has the same
eigenvalue, Ĥjα0i ¼ Eαjα0i, and we have a non-
supersymmetric boson-fermion pair, jαi and jα0i.

(2) The other possibility is that d̂jαi ¼ 0. Then, using

Ĥ ¼ d̂ d̂þd̂ d̂ and the fact that d̂jαi ¼ 0, we have

Eαjαi¼ ðd̂ d̂þd̂ d̂Þjαi¼ d̂ d̂ jαi, and thus jαi ¼ d̂j ~αi,
with j ~αi ¼ d̂jαi=Eα. Up to a “gauge,” i.e., up to a
d̂-closed piece, j ~αi ¼ j ~α0i þ j ~α00i with d̂j ~α00i ¼ 0 is
an eigenstate of the SEO with the same eigenvalue
as jαi.13 Again, we have a boson-fermion pair of
eigenstates jαi ¼ d̂j ~α0i ∈ Ωk and j ~α0i ∈ Ωk−1 of the
same eigenvalue.

In this manner, all eigenstates with nonzero eigenvalues are
non-d̂-symmetric boson-fermion pairs of states. Thus, we
just came to an important conclusion—all supersymmetric
singlet states have vanishing eigenvalues.
This implies that any growing mode of a KD cannot be a

supersymmetric state of the corresponding SEO.
Operational KDs must exhibit a broken supersymmetry.

C. Nonmagnetic modes

Let us now investigate whether the dynamo phenomenon
must be intrinsic to magnetic fields or whether other
quantities described by 0- or 3-forms could be amplified
exponentially by the Lie action of a stationary flow
field.
Any physically meaningful stochastic model must have

the steady-state (zero-eigenvalue) total probability distri-
bution,14 ψTE ¼ PTEd3x ∈ Ω3 with

R
x ψTE ¼ 1. This state

can be recognized as the state of thermodynamic equilib-
rium (TE). This eigenstate is supersymmetric because
d̂ψTE ¼ 0, which is true for all 3-forms, and it is not d̂
exact because otherwise its integral over X would vanish.
This state is always the “ground state” for Ω3. In other
words, among all the eigenstates in Ω3, the state of
thermodynamic equilibrium has the least real part of its
eigenvalue, and this is zero. This can be seen from the
following qualitative, yet robust argument.

10This is the trivial consequence of the fact that the degree of
the stochastic evolution operator is zero, deg Ĥ ¼ 0.

11The attempt to continue this construction of eigenstates of
the form d̂njαi terminates because of the nilpotency of the
exterior derivative, d̂2 ¼ 0.

12In the KD context, the vector potential A and the magnetic
field tensor F ¼ d̂A are an example of the bosonic-fermionic
relation between pairs of nonsupersymmetric eigenstates.

13To see this, one resolves j ~αi in the eigenstates of Ĥðk−1Þ, with
k being the degree of jαi, j ~αi ¼ P

~α1
C ~α1 j ~α1i þ

P
~α2
C ~α2 j ~α2i,

where the labels ~α1 and ~α2 run over the eigenstates such that
d̂j ~α1i ≠ 0 and d̂j ~α2i ¼ 0, respectively. Applying d̂ to the above
resolution of j ~αi yields jαi ¼ P

~α1
C ~α1 d̂j ~α1i. By the supersym-

metry of Ĥ, any d̂j ~α1i is an eigenstate of ĤðkÞ with the same
eigenvalue as j ~α1i. Furthermore, in the above resolution of jαi,
only eigenstates with the same eigenvalue as jαi has itself can
appear. This is because each eigenstate of a complete basis is
linearly independent of the other eigenstates and in particular
cannot be given as a linear combination of other eigenstates with
different eigenvalues. Thus, in the most general situation, when
there are no additional degeneracies, one eigenstate j ~α0i of Ĥðk−1Þ

must exist such that jαi ¼ d̂j ~α0i and j ~αi ¼ j ~α0i þ j ~α00i, with
d̂j ~α00i ¼ 0.

14In the theory of deterministic dynamics, the counterpart of
this state is known as invariant measure, and the Krylov–
Bogolyubov theorem states that it always exists.
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All non-d̂-symmetric eigenstates α from Ω3 are d̂ exact,
i.e., of the form jαi ¼ d̂jα0i.15 The integral of the kets of
these states is zero,

R
X α ¼ R

X d̂α
0 ¼ 0, which means that

their wave functions must be negative at least somewhere
on X.
Imagine now that the ground state on Ω3 is a non-d̂-

symmetric eigenstate with a real negative eigenvalue. An
arbitrary total probability distribution will have nonzero
contribution from such an eigenstate. Its temporal evolution
according to Eq. (27) will lead to a state dominated by this
eigenstate after a sufficiently long time of evolution as this
state is an exponentially growing mode. Consequently, the
total probability distribution will become negative some-
where on the phase space, since this state must be negative
in some regions of the phase space as discussed in the
previous paragraph.
A negative probability distribution is of course illogical

and therefore in contradiction to the above assumption that
a non-d̂-symmetric state with negative eigenvalue exists in
Ω3. Using similar reasoning, one can also rule out the
possibility of a pair of Ruelle-Pollicott resonances with a
negative real part of their eigenvalues being the ground
states on Ω3. Thus, one arrives at the conclusion that the
supersymmetric state of thermodynamic equilibrium is
always the ground state of Ω3. It can be said that the
conventional Focker-Planck operator Ĥð3Þ never breaks
supersymmetry spontaneously; i.e., its ground state is
always supersymmetric.
This means that density modes do not grow infinitely

under a stationary flow but saturate in this supersymmetric
state.16

It can also be shown that Ĥð0Þ is related by a similarity

transformation to Ĥð3Þ
T , where ĤT is the SEO of the time-

reversed SDE, i.e., the SDE with the opposite flow vector

field, and the above argumentation also applies to Ĥð3Þ
T .

Operators related by a similarity transformation are iso-
spectral so that Ĥð0Þ must also never break the supersym-
metry on its own, just as Ĥð3Þ.17 In conclusion, in three
dimensions, only nonsupersymmetric 1-forms and 2-forms
can spontaneously break the overall supersymmetry of the

SEO. For this reason, a dynamo mechanism is only known
for the vector potential of the magnetic fields, but not for
the scalar potential of the electric field.
The above discussion leads to the conclusion that there

are only three possible forms of spectra of SEO (see Fig. 1),
with the 1- and 2-forms being the eigenstates of the KD
operator. The first type in Fig. 1(a) corresponds to the
unbroken topological supersymmetry because the ground

k=0

k=1

k=2

(c)(b)

Re
n

(a) Im
n

k=3

d

FIG. 1. The three possible spectra of the stochastic evolution
operator of the STS of a model with the phase space being a three-
dimentional compact sphere. Such models have only two super-
symmetric eigenstates (big dots at the origin) in one-to-one
correspondence with the two De Rahm cohomology classes of the
3D sphere in the zeroth (k ¼ 0) and the third (k ¼ 3) degrees.
Spectrum (a) corresponds to the unbroken topological supersym-
metry because both ground states are supersymmetric with one of
them (for k ¼ 3) being the state of thermodynamic equilibrium.
The other two spectra (b and c) correspond to the “chaotic”
dynamics, i.e., to the situations when the ground states (big
leftmost dots) are nonsupersymmetric because they have nonzero
eigenvalues. The eigenstates of the stochastic evolution operator
that represent the modes of the magnetic field in the KD theory
are the non-d̂-symmetric pairs of 1- and 2-forms connected by the
dashed lines representing the action of the d operator. Note that
the SEO spectra for 1- and 2-forms may also have other
eigenstates (with positive real parts of their eigenvalues) that
cannot be associated with the magnetic field. Those from Ω0 can
be though of as the eigenstates of the gauge potential φ ∈ Ω0

with which one can perform the gauge-invariance transformation
of the vector potential, A → Aþ d̂φ, without changing the
magnetic field. The additional non-d̂-closed eigenmodes in Ω2

are unphysical because they correspond to the magnetic field
configurations such that d̂F ¼ ðdivBÞd3x ≠ 0; i.e., they contain
magnetic monopoles.

15All non-d̂-symmetric pairs of states are of the form jα0i
and jαi ¼ d̂jα0i ≠ 0. Since all 3-forms are d̂ closed, the non-d̂-
symmetric 3-forms can only be of the type jαi ¼ d̂jα0i.

16The cosmologically educated reader might wonder whether
the growing modes of cosmic structure formation are not a
counterexample. They are not, as these appear in a linearized
description of the transport of cosmic matter. Once all matter is
swept into cosmic structures (in a nonexpanding universe, to
make the mathematical analogy fit), it will stay there. These
structures cannot grow further once their supply regions are
empty. The merging of structures would require a temporal
change of the velocity field, which is outside the class of systems
investigated in this work.

17The supersymmetric ground state of Ĥð0Þ is a constant
function on X.
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states of the model are supersymmetric.18 The other two
types of spectra correspond to the spontaneously broken
topological supersymmetry because the ground states have
nonzero eigenvalues and therefore are nonsupersymmetric.
These correspond to growing KD modes, either just
exponentially growing, or with a superimposed oscillation.

D. Stochastic chaos

It is known that nondiffusive KDs require some non-
integrability of the underlying flow, which is a signature of
(deterministic) chaos [27]. The centerpiece of the theory of
deterministic chaos is the butterfly effect (BE), which is a
high sensitivity of the subsequent evolution of a system to
perturbations and/or variations in initial conditions. The BE
is often regarded as the defining property of chaos [33,45].

The supersymmetry breaking picture of stochastic chaos
provides a theoretical explanation of the BE via the
Goldstone theorem [29].
In order to identify spontaneous topological supersym-

metry breaking with the emergence of deterministic chaos,
we investigate the number of periodic trajectories of a
dynamical system. It is well known that in many deter-
ministic chaotic systems the number of periodic trajectories
grows exponentially as a function of their periods in the
long-time limit.19 This exponential growth comes from the
infinite number of unstable periodic orbits with unlimited
periods that constitute strange or chaotic attractors [47]. In
Ref. [29], it was shown that for some classes of models the
stochastically averaged number of periodic solutions must
be represented by the dynamical partition function,

Ztjt→∞ ¼ Tre−tĤjt→∞ ≈
X
g

e−tEg ¼
8<
:

const Fig: 1a;

2etjEgj Fig: 1b;

4 cosðtImEgÞetjReEgj Fig: 1c;

;

where the label g runs over the ground states. This equation
shows that for spectra as displayed in Fig. 1(b) the
stochastically averaged number of periodic solutions must
grow exponentially. The broken topological supersym-
metry therefore seems to be a prerequisite for deterministic
chaos in deterministic as well as in stochastic systems.
Therefore, this spectral classification of dynamical chaos
seems to be the natural generalization of the concept of
deterministic chaos to the stochastic regime.
In the case of a spectrum as displayed in Fig. 1(c), the

dynamical partition function can become negative. This
implies that in this case the dynamical partition function
cannot represent the stochastically averaged number of
periodic solutions. Furthermore, there are theorems in the
dynamical system theory stating that for a certain class of
(expanding) models that mimic chaotic behavior the
eigenvalue of the ground state must be real.20 In light of
these theorems, the spectrum in Fig. 1(c) looks suspicious.
This raises the question of whether such STS spectra are

realizable. Here, the KD-STS correspondence proves useful
for the STS. As flow configurations which exhibit growing
oscillating KD modes are known [30–32], the existence of
spectra like shown in Fig. 1(c) is proven.

E. Limit of the KD-STS correspondence

The reported KD-STS correspondence is in a sense
accidental. It is possible due to the linearity of the induction
equation and its specific form, i.e., the Lie derivative along the
velocity field representing the evolution of magnetic field
lines frozen into the media. In a more general situation as
given by the nonlinear dynamo, this picture breaks down.
On the other hand, the STS is applicable to all stochastic
and deterministic differential equations, and the dynamical
equations of the nonlinear dynamo is one of them. If the STS
theory of the nonlinear dynamo would be constructed, it
would be a full-fledged “field theory” with an infinite-
dimensional phase space of magnetic field configurations
as compared to the finite-dimensional phase space of test
particle trajectories considered here for the KD. Instead of
Eq. (26), the underlying equation of motion will be the
induction equation itself. The magnetic field (and perhaps
other functions/fields over the real space) would no longer
be the “wave function,” as in case of the KD, but rather the
coordinates of the model, whereas the wave functions would
depend on them in a functional manner.

IV. CONCLUSION

We established a correspondence between the theory of
KD and the recently found approximation-free STS. We
showed that the KD equation is essentially the stochastic
evolution operator of a related SDE and thus it possesses
topological supersymmetry. This connection allowed us to
identify the KD effect as the supersymmetry breaking
phenomenon in the corresponding SDE. We further argued
that the SDEs related to KDs with growing magnetic modes
are chaotic in a generalized stochastic sense. We showed

20In terminology of Ref. [48], the finite-time SEO is the
generalized transfer operator (GTO), and it is the spectrum of the
GTO which is addressed there.

19The exponential rate of this growth is related to various
versions of entropy (such as topological entropy, see, e.g., Ref. [46]
and references therein) introduced in dynamical system theory.

18By coincidence, nonsupersymmetric eigenstates with zero
eigenvalues can exist. Such degeneracy can be removed by a
deformation of the model.
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that the flow pattern of stationary KDs can only amplify
quantities associated with vector potentials (like magnetic
fields) but not those associated with scalar potentials or
which are densities.
Furthermore, the existence of the growing modes of the

magnetic field in the KDs can be viewed as a proof that the
supersymmetry breaking spectra of the stochastic evolution
operator with both real and complex conjugate eigenvalues
of the ground states are realizable. This finding is valuable
for the STS. We believe that further work may reveal
other important insights on both sides of the KD-STS
correspondence established in this paper.
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