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In this paper, we study the three-dimensional noncommutative Maxwell-Chern-Simons theory. In the
present analysis, a complete account for the gauge field two-point function renormalizability is presented
and physical significant quantities are carefully established. The respective form factor expressions from
the gauge field self-energy are computed at one-loop order. More importantly, an analysis of the gauge field
dispersion relation, in search of possible noncommutative anomalies and infrared finiteness, is performed
for three special cases, with particular interest in the highly noncommutative limit.
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I. INTRODUCTION

In our search for a better understanding of physical
phenomena in nature, we have faced many drawbacks in
explaining well-recognized four-dimensional problems; in
particular, it is of higher importance to understand why
physical nature dwells in four dimensions. In our attempts to
come close to answering these and other questions, we have
employed means that are sufficiently intricate so that
it has proven useful to wander into lower-dimensional
spacetime models [1]. Although our initial hope was solely
motivated by the wishful thought that we could learn useful
things in a simpler setting, the wandering into lower-
dimensional models has proven to be very fertile and has
stimulated significantly the development of our knowledge
in such a way that we are now able to explain statistical
systems and condensed matter physics by means of planar
physics—in two dimensions and three dimensions.
In recent years, we have witnessed a major advance in the

description of so many important condensed matter phe-
nomena by means of connections with high-energy theories
[2]. We can cite BCS superconductivity [3] and novel
materials such as graphene [4] and Weyl semimetals [5]
as some of the most remarkable examples where a partial or
full description is obtained by means of the use of effective
proposals of gauge field theory models [6]. In particular,
within the broad class of effective models, one can find
proposals in which the violation of Lorentz symmetry is
analyzed in some materials by means of effective low-energy
theories; e.g., a Lorentz-violating effective version of QED is
used to describe Weyl semimetals [7].
In addition to the technological advance motivated by the

development of new material and matter states, we do also
live nowadays in a thrilling era of rich high-precision

experiments in particle physics, testing long-dated gauge
theories, where structural pillars of theoretical gauge theories
are scrutinized, in particular the CPT theorem and Lorentz
symmetry [8], whose violation would be a sensitive signal
for unconventional underlying physics. Furthermore, if we
enlarge our scope and add to our interest the description of
the nature behavior at shortest distances [9,10], i.e., a
quantum theory of gravity, or even the so-called minimal
length scale physics, one inexorably finds that noncommu-
tative geometry is one of the highly motivated and richer
frameworks [11], including phenomenological inspirations
[12,13]. In attempts to accommodate quantum mechanics
and general relativity within a common framework [14],
one finds uncertainty principles that are compatible with
noncommuting coordinates, showing that the spacetime
noncommutativity naturally emerges at Plank scale.
It is well known that noncommutative geometry is a self-

sufficient theory, which over the past decade has found
motivation in several theoretical frameworks [15–19], but
one should highlight its prominent role in the many
phenomenological attempts to detect sensitive deviations
originated from physics at the Planck scale [9,10,12]. In
summary, in the noncommutative scenario, it is supposed
that the spacetime coordinate operators do not commute
with each other and satisfy the commutation relation

½x̂μ; x̂ν� ¼ iθμν; ð1:1Þ

in which θμν is a constant antisymmetric matrix of
dimension of length squared. To construct a noncommu-
tative field theory, using the Weyl-Moyal (symbol) corre-
spondence [20], the ordinary product is replaced by the
Moyal star product defined as

fðxÞ⋆gðxÞ ¼ fðxÞ exp
�
i
2
θμν ⃖∂μ

~∂ν

�
gðxÞ: ð1:2Þ*m_ghasemkhani@sbu.ac.ir
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Inserting the above star product into the Lagrangian density
of the ordinary field theory yields a highly nonlocal theory,
including higher-derivative terms which are not present in
commutative theory. Furthermore, the study of NC gauge
theories have uncovered several interesting properties. In
particular, a common feature in these theories is that the
high-momentum modes (UV) affect the physics at large
distances (IR) leading to the appearance of the so-called
UV/IR mixing [21], even in theories with massive particles.
Contrary to the initial expectation (which was that non-
commutativity could render UV finite field theories), this
mixing complicates the renormalization of the theory.
Despite the many attempts to cure it [22,23], with no
complete success, the problem has not yet been fully
understood.
In the exact same way as we have discussed above, the

noncommutative three-dimensional field theory, in particu-
lar gauge theory, can find application in the study of planar
physics in condensed matter and statistical physics [24–28].
Despite the fact that some perturbative aspects of the
noncommutative three-dimensional field theory have been
studied in the context of the Chern-Simons theory [29–33]
and QED3 [34], to the best of our knowledge, none of the
aforementioned studies were concerned with the analysis of
the anomalies that the noncommutativity can cause in the
physical content of the field, e.g., UV/IR mixing that can be
present in the physical dispersion relation of the gauge field
due to radiative corrections [35] and, therefore, modify
significantly the behavior of the quantum field in the
description of a given phenomenon [36]. In addition, this
calculation allows also an analysis regarding the infrared
finiteness of the given cases [37].
The Maxwell-Chern-Simons theory consists of an

important model with the striking feature of allowing a
massive gauge field theory without any gauge symmetry
breaking [38], in this case we have the so-called topologi-
cally massive electrodynamics (it describes a helicity �1
mode). The presence of commutative (noncommutative)
Chern-Simons action can also be seen as resulting from
quantum effects, arising from integrating out the fermionic
fields in commutative (noncommutative) massive QED3

[39,40]. Moreover, we can refer to some analysis, with a
different scope than ours, in regard to the noncommutative
Maxwell-Chern-Simons theory [41,42] and its supersym-
metric extension [43,44], as well as to the higher-derivative
extensions of the Chern-Simons action (in both commu-
tative and noncommutative space) [45–47].
In this paper, we discuss the gauge field two-point

function renormalizability and physically significant quan-
tities on the one-loop order polarization tensor of the three-
dimensional noncommutative Maxwell-Chern-Simons
theory, with particular interest in analyzing the gauge field
dispersion relation in search of possible noncommutative
anomalies and infrared finiteness. We begin, at Sec. II, by
reviewing the general properties of the gauge-invariant

noncommutative Maxwell-Chern-Simons theory as well as

its discrete symmetries. We determine the one-loop 1PI

self-energy function, and by considering a general tensor
form for it, we are able to find relations for the respective
form factors. Moreover, in Sec. III, the renormalizability for
the gauge field two-point function in this model is carefully
established and afterwards analyzed, since it can be
jeopardized by the UV/IR mixing [48]. Within this context,
a multiplicative renormalization holds, and quantities of
physical significance are readily defined. In Sec. IV, we
compute explicitly the planar and nonplanar contributions
for the form factor expressions, where the commutative
limit of the given outcome is investigated. Finally, in
Sec. V, we establish three particular physical cases of
interest. In particular, we examine the highly noncommu-
tative limit, where its physical dispersion relation is
discussed. In Sec. VI, we summarize the results and present
our final remarks.

II. GENERAL REMARKS

We start our analysis by considering the gauge-invariant
Lagrangian density of the noncommutative Maxwell-
Chern-Simons theory in a Minkowski spacetime,

L ¼ −
1

4
Fμν⋆Fμν þm

2
ϵμνλ

�
Aμ∂νAλ þ

2e
3
Aμ⋆Aν⋆Aλ

�

þ Lg:f þ Lgh; ð2:1Þ

where, the field strength tensor is Fμν ¼ ∂μAν − ∂νAμþ
ie½Aμ; Aν�⋆. The gauge-fixing term is chosen as to the usual
Lorentz condition

Lg:f ¼
ξ

2
B⋆Bþ B⋆ð∂μAμÞ;

where B is the Nakanishi-Lautrup auxiliary field and the
ghost term reads

Lgh ¼ ∂μc̄⋆D⋆
μc;

where the covariant derivative is defined such as D⋆
μc ¼

∂μc − ie½Aμ; c�⋆. The full theory (2.1) is invariant under the
BRST Slavnov transformations:

sAμ¼D⋆
μc; sc¼ ie c⋆c; sc̄¼−B; sB¼0: ð2:2Þ

The auxiliary field B can be integrated out, since it plays no
part on the theory’s dynamics. Now, the tree-level propa-
gator for the gauge field can be readily obtained, in the
Landau gauge ξ ¼ 0, as

DμνðpÞ ¼
−i

p2ðp2 −m2Þ ðp
2ημν −pμpν þ imϵμνλpλÞ; ð2:3Þ
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where m2 is the gauge field mass originating from the
Chern-Simons term.
By completeness, in order to discuss the one-loop

structure of the polarization tensor, it is useful to review
on the discrete symmetries of parity (P), charge conjuga-
tion (C) and time reversal (T), for a three-dimensional
noncommutative spacetime [38,49]:

(i) Parity
Parity transformation in 2þ 1 dimensions is

indeed a reflection described by x1 → −x1 and
x2 → x2. Under parity, the gauge field transforms as

A0→A0; A1→−A1; A2→A2; ð2:4Þ

which leads to a P-invariant noncommutative Max-
well term if we consider that the parameter θ is not
changed under a parity transformation. However, the
Chern-Simons kinetic term changes sign under P,

ϵμνλAμ∂νAλ → −ϵμνλAμ∂νAλ; ð2:5Þ

whereas, for the interaction term of the Chern-
Simons part, we obtain

ϵμνλAμ⋆Aν⋆Aλ → −ϵμνλAμ⋆Aν⋆Aλ: ð2:6Þ

It is thus concluded that the total noncommutative
Chern-Simons terms are P-odd.

(ii) Charge conjugation
Under a charge conjugation transformation, the

gauge field changes as Aμ → −Aμ and consequently
the noncommutative Maxwell term is not
C-invariant unless we consider θ → −θ, which has
an intuitive explanation discussed in [50]. Further-
more, the Chern-Simons kinetic term transforms as

ϵμνλAμ∂νAλ → ϵμνλAμ∂νAλ: ð2:7Þ

To study the C transformation of the Chern-Simons
interaction part, it is useful to rewrite it as

ϵμνλAμ⋆Aν⋆Aλ ¼
1

2
ϵμνλAμ⋆½Aν; Aλ�⋆; ð2:8Þ

and therefore we have that under a charge conjugation
transformation

ϵμνλAμ⋆Aν⋆Aλ → ϵμνλAμ⋆Aν⋆Aλ: ð2:9Þ
Accordingly, under the above consideration, we
see that the noncommutative Chern-Simons term is
C-even.

(iii) Time reversal
Under a time reversal transformation, the gauge

field now changes as

A0→A0; A1→−A1; A2→−A2; ð2:10Þ

which yields a T-invariant noncommutative
Maxwell term, with the condition θ → −θ. For
the Chern-Simons free part, we obtain

ϵμνλAμ∂νAλ → −ϵμνλAμ∂νAλ; ð2:11Þ

as well as

ϵμνλAμ⋆Aν⋆Aλ → −ϵμνλAμ⋆Aν⋆Aλ: ð2:12Þ
Therefore, the noncommutative Chern-Simons term
is also T-odd. In view of the above arguments on
discrete symmetries, we conclude that the noncom-
mutative Maxwell action is even under CP and PT,
while the noncommutative Chern-Simons action is
CP-odd and PT-even, although both of these actions
are separately CPT invariant. We expect that the
tensor structure of the photon polarization tensor,
which is induced by quantum effects, inherits
(respects) the properties, gauge and discrete sym-
metries, from the classical theory.

The one-loop contributions for the gauge field self-
energy are those from the cubic, tadpole self-interaction
and ghost loop, and these diagrams are depicted in Fig. 1.
A detailed account for each one of them can be found
at Appendix A. These contributions can be conveniently
written in the following form (A6),

p+kp

k

p p pp+k

k

pp

k

(a) (b) (c)

FIG. 1. One-loop Feynman diagrams in noncommutative Maxwell-Chern-Simons theory: (a) gauge loop, (b) tadpole loop, (c) ghost
loop.
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ΠμνðpÞ ¼ e2
Z

d3k
ð2πÞ3 sin

2

�
p∧k
2

�
N g

μν þ 2N gh
μν þ 2N t

μν

k2ðk2 −m2Þðpþ kÞ2ððpþ kÞ2 −m2Þ ; ð2:13Þ

where we have used the notation p∧k ¼ pμθ
μνkν. Also, the tensor quantities at the numerator are defined, respectively, by

Eq. (A5),

N g
μν ¼ ðimϵμαβ þ ðpþ 2kÞμηαβ þ ðp − kÞβημα − ð2pþ kÞαημβÞðimϵνρσ − ðpþ 2kÞνηρσ þ ðk − pÞσηρν þ ð2pþ kÞρηνσÞ

× ðk2ηαρ − kαkρ þ imϵαρλkλÞððpþ kÞ2ηβσ − ðpþ kÞβðpþ kÞσ − imϵβσξðpþ kÞξÞ; ð2:14Þ

and Eqs. (A7) and (A8),

N gh
μν ¼ m4ðkμkν þ kμpνÞ −m2ð2k2 þ p2 þ 2p:kÞðkμkν þ kμpνÞ þ k2ðk2 þ 2p:kþ p2Þðkμkν þ kμpνÞ; ð2:15Þ

N t
μν ¼ −m2ðk2 þ 2p:kþ p2Þðk2ημν þ kμkνÞ þ ðk4 þ 2k2p2 þ p4 þ 4k2ðp:kÞ þ 4p2ðp:kÞ þ 4ðp:kÞ2Þðk2ημν þ kμkνÞ:

ð2:16Þ

As a check for Eq. (2.13), we see that, apart from the
trigonometric factor sin2ðp∧k

2
Þ, the remaining of the expres-

sion is exactly the same as the one appearing in [37], where
a detailed one-loop analysis of the Yang-Mills-Chern-
Simons theory is presented. The most general tensor
structure of the photon self-energy in a noncommutative
three-dimensional spacetime is given as

Πμν ¼
�
ημν −

pμpν

p2

�
Π⋆

e þ
~pμ ~pν

~p2
~Π⋆
e þ iΠA

o ϵ
μνλpλ

þ ΠS
oð ~pμuν þ ~pνuμÞ; ð2:17Þ

where we had chosen uμ ¼ ϵμαβpα ~pβ, with pμuμ ¼
~pμuμ ¼ 0 as our orthonormal basis. We notice, however,
that Πμν in this basis has nine terms that reduce to four
terms due to the Ward identity1 (for further details, see
Appendix B). It is notable that the tensor structure of
the first and the third term in (2.17) is analogous to that
of the tree-level counterparts in commutative Maxwell-
Chern-Simons model, which is a free theory. Indeed,
the first term is even under CP and PT, while the third
term is CP-odd and PT-even, they are similar to the
commutative Maxwell and Chern-Simons actions,
respectively.
On the other hand, the second and the fourth terms

have no tree-level counterparts in commutative Maxwell-
Chern-Simons model, arising fully from quantum effects.
Furthermore, the second term in (2.17), similar to the first
term, is even under CP and PT, while the fourth term,
similar to the third term, is CP-odd and PT-even.
Consequently, the behavior of the quantum effect terms

is the same as that of the tree-level terms, as we expected.
We observe hence that the specific decomposition appear-
ing in the tensor structure of the photon self-energy in
(2.17) is physically justified, using the aforementioned
discussion on discrete symmetries.
Besides, we see that the one-loop photon self-energy

(2.13) is invariant under θ → −θ, which is in agreement
with its tensor structure described by (2.17). Consequently,
all of the form factor coefficients Π⋆

e , ~Π⋆
e , ΠA

o and ΠS
o in

(2.17) are expected to be even in θ, at least at
one-loop level, as we see in the following identities,
Eqs. (B10)–(B13),

Π⋆
e ¼ ημνΠμν −

~pμ ~pν

~p2
Πμν; ð2:18Þ

~Π⋆
e ¼ − ημνΠμν þ 2

~pμ ~pν

~p2
Πμν; ð2:19Þ

ΠA
o ¼ i

2p2
ϵμναpαΠμν; ð2:20Þ

ΠS
o ¼ −

1

2 ~p4p2
ðuμ ~pν þ uν ~pμÞΠμν: ð2:21Þ

With these quantities we have introduced all necessary
information on regard to our analysis. Next, we shall
proceed and write explicitly the one-loop expressions for
the form factors of the gauge field self-energy.

A. Form factors

In order to evaluate the above relations, Eqs. (2.18)–
(2.21), we shall take the respective tensor contraction with
the one-loop expression (2.13). First, the relation (2.18)
yields the following result,

1Since the tensor Πμν is not totally symmetric, the Ward
identity must hold for both pμΠμν ¼ 0 and pνΠμν ¼ 0.
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Π⋆
e ðp2Þ ¼ ie2

Z
d3k
ð2πÞ3 sin

2

�
p∧k
2

�
1

ðpþ kÞ2ððpþ kÞ2 −m2Þ
�
6ðp:kÞ þ 4

ðk: ~pÞ2
~p2

− 16m2

þ 1

ðk2 −m2Þ
�
16ðp:kÞ2 þ 10p2ðp:kÞ þ p4 þ ðk: ~pÞ2

~p2
ð4ðp:kÞ − 2p2 þ 16m2Þ − 26m2ðp:kÞ − 12m2p2 − 16m4

�

þ 1

k2ðk2 −m2Þ
�ðk: ~pÞ2

~p2
ðm2ð8p2 þ 14ðp:kÞÞ − 4ðp:kÞ2 − 2p4 − 8p2ðp:kÞÞ

− 4m2p2ðp:kÞ − 8m2ðp:kÞ2 þ 3p2ðp:kÞ2 þ 4ðp:kÞ3
��

: ð2:22Þ

Besides, from the relation (2.19), we obtain

~Π⋆
e ðp2Þ ¼ ie2

Z
d3k
ð2πÞ3 sin

2

�
p∧k
2

�
1

ðpþ kÞ2ððpþ kÞ2 −m2Þ
�
2k2 þ 2ðp:kÞ − 4p2 þ 16m2 − 8

ðk: ~pÞ2
~p2

þ 1

ðk2 −m2Þ
�
m2ð30ðp:kÞ þ 7p2 þ 14m2Þ þ 2m4 − 3p4 − 10p2ðp:kÞ þ ðk: ~pÞ2

~p2
ð4p2 − 8ðp:kÞ − 32m2Þ

�

þ 1

k2ðk2 −m2Þ
�ðk: ~pÞ2

~p2
ð8ðp:kÞ2 þ 4p4 þ 16p2ðp:kÞ − 2m2½8p2 þ 14ðp:kÞ�Þ

þ ðp:kÞðm2ð4p2 þ 7ðp:kÞÞ þ p2ðp:kÞ þ 4ðp:kÞ2Þ
��

: ð2:23Þ

Moreover, from the relation (2.20), we find the odd form factor ΠA
o as

ΠA
o ðp2Þ ¼ 2mie2

p2

Z
d3k
ð2πÞ3 sin

2

�
p∧k
2

�
1

ðpþ kÞ2ððpþ kÞ2 −m2Þ

×

�
5p2 þ ðð5ðp:kÞ þ 4p2 þ 7m2Þp2 − 5ðp:kÞ2Þ

ðk2 −m2Þ −
ðp:kÞ2ð2m2 þ 5ðp:kÞ þ 4p2Þ

k2ðk2 −m2Þ
�
: ð2:24Þ

Finally, the form factor ΠS
o follows (2.21) as

ΠS
oðp2Þ ¼ i

~p4p2
e2

Z
d3k
ð2πÞ3 sin

2

�
p∧k
2

� ðu:kÞð ~p:kÞ
ðpþ kÞ2ððpþ kÞ2 −m2Þ

�
4þ 1

ðk2 −m2Þ ð16m
2 − 2p2 þ 4ðp:kÞÞ

þ 1

k2ðk2 −m2Þ ð14m
2ðp:kÞ þ 8m2p2 − 4ðp:kÞ2 − 2p4 − 8p2ðp:kÞÞ

�
: ð2:25Þ

In order to evaluate the above momentum integration,
we can make use of the standard rules for Feynman
integrals. We shall next continue with our formal devel-
opment by providing now a detailed account for the
renormalizability of the photon two-point function, which
analysis will allow us to define properly the one-loop
dispersion relation.

III. RENORMALIZED GAUGE
PROPAGATOR AND MASS

We shall now formally establish the gauge field two-
point function renormalizability. In particular, we want to
determine the renormalized gauge propagator and mass,
which allow us to define the physical pole and, therefore,

the dispersion relation of the gauge field. We start by
writing the complete propagator expression (B9),2

iDμν ¼
p2 − Π⋆

e − ~Π⋆
e

R

�
ημν −

pμpν

p2
−

~pμ ~pν

~p2

�

þ p2 − Π⋆
e

R

~pμ ~pν

~p2
þmþ ΠA

o

R
iεμνλpλ þ ξ

p4
pμpν;

ð3:1Þ

2For a complete account of this discussion, see Appendix B.
Moreover, we take ΠS

o ¼ 0 in Eq. (B9). This is explicitly shown
in Eqs. (4.14) and (4.15), which is expected to be true to all
orders.
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where the quantity R at the denominator is given by

R ¼ ðp2 − Π⋆
e Þðp2 − Π⋆

e − ~Π⋆
e Þ

þ p2½ð ~p2ΠS
oÞ2 − ðmþ ΠA

o Þ2�:

It proves to be convenient for our development to make a
few replacements,

fΠ⋆
e ; ~Π⋆

eg → p2fΠe; ~Πeg; ð3:2Þ

where Πe and ~Πe are dimensionless form factors. With this
new definition, and also introducing the notation
Π0

e ¼ Πe þ ~Πe, the exact propagator (3.1) is conveniently
rewritten as

iDμν ¼
1

ð1 − ΠeÞ
h
p2 − ðmþΠA

o Þ2
ð1−ΠeÞð1−Π0

eÞ
i
�
ημν −

pμpν

p2
−

~pμ ~pν

~p2

�

þ 1

ð1 − Π0
eÞ
h
p2 − ðmþΠA

o Þ2
ð1−ΠeÞð1−Π0

eÞ
i ~pμ ~pν

~p2

þ ðmþ ΠA
o Þ

ð1 − ΠeÞð1 − Π0
eÞ
h
p2 − ðmþΠA

o Þ2
ð1−ΠeÞð1−Π0

eÞ
i iεμνλpλ

p2

þ ξ

p4
pμpν: ð3:3Þ

From this expression, we can readily identify the respective
renormalization functions and renormalized mass. Thus,
we introduce the wave function and mass renormalization
constants as the following,

Z ¼ 1 − Πe; ~Z ¼ 1 − Π0
e; Zm ¼ 1þm−1ΠA

o ;

ð3:4Þ

and we also define the renormalized mass as

m2
ren ¼

ðmþ ΠA
o Þ2

ð1 − ΠeÞð1 − Π0
eÞ

¼ Z2
m

Z ~Z
m2: ð3:5Þ

The most significant consequence arising from the multi-
plicative property of (3.5) is that the gauge symmetry is
exactly preserved at classical (tree) and quantum (loop)
levels. Mainly because m ¼ 0 corresponds to the non-
commutative Maxwell theory which is gauge invariant at
any order, without any mass generation. Hence, by taking
into account the above definitions, Eqs. (3.4) and (3.5), we
rewrite the propagator (3.3) in the form

iDμν ¼
1

Z½p2 −m2
ren�

�
ημν −

pμpν

p2
−

~pμ ~pν

~p2

�

þ 1

~Z½p2 −m2
ren�

~pμ ~pν

~p2

þ mrenffiffiffiffiffiffiffiffi
Z ~Z

p
½p2 −m2

ren�
iεμνλpλ

p2
þ ξ

p4
pμpν: ð3:6Þ

It should be emphasized that, in view of Eq. (3.6), the
multiplicative renormalization holds for the gauge-invariant
noncommutative Maxwell-Chern-Simons theory, which is
a remarkable result. Furthermore, we should stress the fact
that the physical massive pole p2 ¼ m2

ren is found to be
naturally present at all physical terms of the complete
propagator.
Since we are working within a perturbation theory

approach, we can express the physically significant renor-
malized mass mren (3.5) at the lowest-order in terms of the
form factors as

mren ¼
ðmþ ΠA

o Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ΠeÞð1 − Π0
eÞ

p

≃m

�
1þ 1

m
ΠA

o þ Πe þ
1

2
~Πe þOðα2Þ

�
: ð3:7Þ

whereas the dispersion relation p2 ¼ m2
ren, the renormal-

ized mass at the lowest order is given by (3.7) and, hence,
written in a convenient form:

ω2 ¼ j~pj2 þm2

�
1þ 2

m
ΠA

o þ 2Πe þ ~Πe þOðα2Þ
�
:

ð3:8Þ
With this renormalizability discussion, we conclude

our formal development for NC Maxwell-Chern-Simons
theory. We will proceed now to compute explicitly the one-
loop self-energy function, in particular its form factors.
Afterwards, we shall particularize the results by consider-
ing some physical relevant limits where analytical expres-
sions for the dispersion relation are found. In addition to
these discussions on the dispersion relation, we will
scrutinize it for an analysis of the UV/IR mixing in order
to verify whether or not it jeopardizes the theory’s renor-
malizability [48].

IV. ONE-LOOP RADIATIVE CORRECTION

In order to compute the momentum integration on the
form factors we shall make use of the standard Feynman
parametrization and dimensional regularization method.
Some relevant results for the nonplanar integration can
be found at Appendix C, also we present the complete
expression of some lengthy expression of the form factors
in Appendix D.
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A. Transverse part Πe

In this first study we will perform the calculation by reviewing some relevant detail. We start by making use of the
Feynman parametrization to write the denominator of Eq. (2.22) in the form

Πeðp2Þ ¼ ie2

p2

Z
d3k
ð2πÞ3 sin

2

�
p∧k
2

��
Γð2Þ

Z
dΦ

1

½ðpþ kÞ2 − Δ2
1�2

�
6ðp:kÞ þ 4

ðk: ~pÞ2
~p2

− 16m2

�

þ Γð3Þ
Z

dϒ
1

½ðkþ ðyþ zÞpÞ2 − Δ2
2�3

�ðk: ~pÞ2
~p2

ð4ðp:kÞ − 2p2 þ 16m2Þ

þ 16ðp:kÞ2 þ 10p2ðp:kÞ þ p4 − 26m2ðp:kÞ − 12m2p2 − 16m4

�

þ Γð4Þ
Z

dΞ
1

½ðkþ ðzþ wÞpÞ2 − Δ2
3�4

�
4ðp:kÞ3 − 4m2p2ðp:kÞ − 8m2ðp:kÞ2 þ 3p2ðp:kÞ2

þ ðk: ~pÞ2
~p2

ðð8p2 þ 14ðp:kÞÞm2 − 4ðp:kÞ2 − 2p4 − 8p2ðp:kÞÞ
��

; ð4:1Þ

where we have introduced the following notation for the integration measures,

Z
dΦ¼

Z
dxdyδðxþy−1Þ;

Z
dϒ¼

Z
dxdydzδðxþyþz−1Þ;

Z
dΞ¼

Z
dxdydzdwδðxþyþzþw−1Þ; ð4:2Þ

and defined the following quantities as well:

Δ2
1 ¼ ym2; ð4:3Þ

Δ2
2 ¼ ðxþ zÞm2 − ðyþ zÞð1 − y − zÞp2; ð4:4Þ

Δ2
3 ¼ ðyþ wÞm2 − ðzþ wÞð1 − z − wÞp2: ð4:5Þ

Next, by making a suitable change of variables on the momentum integration on the terms of (4.1), we find the expression

Πeðp2Þ ¼ iμ2ð3−ωÞe2

p2

�
Γð2Þ

Z
dΦ

�
ð−6p2 − 16m2ÞΩ2ðΔ1Þ þ 4

~pμ ~pν

~p2
Ωμν

2 ðΔ1Þ
�

þ Γð3Þ
Z

dϒ
�
½16ðyþ zÞ2p4 − 10ðyþ zÞp4 þ ð26ðyþ zÞ − 12Þm2p2 þ p4 − 16m4�Ω3ðΔ2Þ

þ
�
16pμpν þ

~pμ ~pν

~p2
ð−ð4ðyþ zÞ þ 2Þp2 þ 16m2Þ

�
Ωμν

3 ðΔ2Þ
�

þ Γð4Þ
Z

dΞ
�
p4½4ðzþ wÞð1 − 2ðzþ wÞÞm2 þ ðzþ wÞ2ð3 − 4ðzþ wÞÞp2Þ�Ω4ðΔ3Þ

þ
�
ðm2ð8 − 14ðzþ wÞÞp2 − 4ðzþ wÞ2p4 − 2p4 þ 8ðzþ wÞp4Þ ~pμ ~pν

~p2

þ ð−8m2 þ 3p2 − 12ðzþ wÞp2Þpμpν

�
Ωμν

4 ðΔ3Þ −
4

~p2
pμpν ~pλ ~pβΩ

μνλβ
4 ðΔ3Þ

��
; ð4:6Þ

where, by convenience, we have introduced the following notation for the momentum integration:
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fΩa;Ω
μν
a ;Ωμνλβ

a gðΔiÞ

¼
Z

dωQ
ð2πÞω sin

2

�
p∧Q
2

� f1; QμQν; QμQνQλQβg
½Q2 − Δ2

i �a
:

ð4:7Þ

The integration from (4.7) can be readily calculated (see
Appendix C). In particular, we can separate the planar and
nonplanar contributions by using the trigonometric relation
2 sin2ðp∧Q

2
Þ ¼ 1 − cos ðp∧QÞ. The expressions for the

planar and nonplanar contributions are explicitly given
by Eqs. (D1) and (D2), respectively.
A remark is in place for the expressions Eqs. (D1) and

(D2) (as well for the next ones). Since the remaining
integrals on the Feynman parameters of these expressions
are rather difficult to compute exactly (and no substantial
information would be obtained), we shall leave it only
indicated and evaluate them in some particular cases, which

imply some simplification on the integrand, and we can
hence discuss some interesting physical implications. We
will also do this for the remaining contributions.
In particular, one can realize that, at the commutative

limit, i.e., θ → 0, the planar and nonplanar contributions,
Eqs. (D1) and (D2), result as expected in

ðΠeÞpðp2Þ þ lim
θ→0

ðΠeÞn−pðp2Þ ¼ 0: ð4:8Þ

Furthermore, this vanishing result is in agreement with
the tree-level (propagator) structure of the commutative
Maxwell-Chern-Simons which is a free theory.

B. NC transverse part ~Πe

Next, in order to evaluate the integration of the con-
tribution (2.23), we follow the aforementioned steps and
write it conveniently in terms of the quantities Ωμν…

a ðΔiÞ

~Πeðp2Þ ¼ iμ2ð3−ωÞe2

p2

�
Γð2Þ

Z
dΦ

�
ð−4p2 þ 16m2ÞΩ2ðΔ1Þ þ

�
2ημν − 8

~pμ ~pν

~p2

�
Ωμν

2 ðΔ1Þ
�

þ Γð3Þ
Z

dϒ
�
ðm2ð−30ðyþ zÞp2 þ 7p2 þ 16m2Þ − 3p4 þ 10ðyþ zÞp4ÞΩ3ðΔ2Þ

þ ð4p2 þ 8ðyþ zÞp2 − 32m2Þ ~pμ ~pν

~p2
Ωμν

3 ðΔ2Þ
�

þ Γð4Þ
Z

dΞ
�
p4½−4m2ðzþ wÞ þ 7m2ðzþ wÞ2 þ ðzþ wÞ2p2 − 4ðzþ wÞ3p2�Ω4ðΔ3Þ

þ
�
8ððzþ wÞ2p2 þ 4p2 − 16ðzþ wÞp2 − 2m2½8 − 14ðzþ wÞ�Þp2

~pμ ~pν

~p2

þ ð7m2 þ p2 − 12ðzþ wÞp2Þpμpν

�
Ωμν

4 ðΔ3Þ þ
8

~p2
pμpν ~pλ ~pβΩ

μνλβ
4 ðΔ3Þ

��
: ð4:9Þ

Once again, the planar and nonplanar contributions can be
computed separately. For convenience, the expressions for
the planar and nonplanar contributions are written in
Appendix D, given by Eqs. (D3) and (D4), respectively.
In contrast with the previous case, we see from Eqs. (D3)

and (D4), that the planar and nonplanar parts do not sum to
zero at the commutative limit. This equation is a manifes-
tation of UV/IR mixing3 [21]

ð ~ΠeÞpðp2Þ þ lim
θ→0

ð ~ΠeÞn−pðp2Þ ¼ −
e2

4π

1

p2

�
1

j ~pj þ
2m
3

�
≠ 0:

ð4:10Þ

As it will be discussed later, one should already
notice that the presence of an UV/IR mixing term here
might render the theory to be inconsistent, spoiling
hence the renormalizability of the theory. Besides, it is
worth notice that the UV/IR mixing in 2þ 1 dimen-
sions appears in a less severe degree as 1

j ~pj, while in

3þ 1 dimensions it is given as 1
~p2. Furthermore, in

comparison to the form factor Πe outcome, we see that
the commutative limit for the contribution ~Πe is related
to the fact that it did not have a tree-level counterpart.
So this can be traced back to a purely noncommutative
(quantum) effect.

C. CP odd part ΠA
o

Moreover, we rewrite Eq. (2.24) conveniently in terms of
the quantities Ωμν…

a ðΔiÞ such as

3Although, the noncommutative Maxwell-Chern-Simons
theory in three dimensions is UV finite, we observe explicitly
a UV/IR mixing in our one-loop results.
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ΠA
o ðp2Þ ¼ 2mie2

p2
μ2ð3−ωÞ

�
5p2Γð2Þ

Z
dΦΩ2ðΔ1Þ þ Γð3Þ

Z
dϒ½ðð−6þ 15x − 5x2Þp2 þ 7m2Þp2Ω3ðΔ2Þ − 5pμpνΩ

μν
3 ðΔ2Þ�

− p2Γð4Þ
Z

dΞðzþ wÞ2f2m2 − 5ðzþ wÞp2 þ 4p2gΩ4ðΔ3Þ

− Γð4Þ
Z

dΞð2m2 − 5ðzþ wÞp2 þ 4p2 − 10ðzþ wÞp2ÞpμpνΩ
μν
4 ðΔ3Þ

�
: ð4:11Þ

Once again, we write down the expressions for the planar
and nonplanar contributions in Appendix D, explicitly
written in Eqs. (D5) and (D6), respectively.
In agreement with our expectations, the sum of the planar

and nonplanar contributions, Eqs. (D5) and (D6), at the
commutative limit, vanishes

ðΠA
o Þpðp2Þ þ lim

θ→0
ðΠA

o Þn−pðp2Þ ¼ 0: ð4:12Þ

Exactly as it did happened with the form factor Πe in (4.8),
this vanishing result is compatible with the free nature of

the commutative Maxwell-Chern-Simons theory, where the
form factor ΠA

o has a tree-level counterpart.

D. NC odd part ΠS
o

Finally, we shall now analyze the NC odd part ΠS
o;

however, due to its vanishing results, we present its
final expressions here in order to discuss its conclusion.
We rewrite Eq. (2.25) in terms of the quantities Ωμν…

a ðΔiÞ
such as

ΠS
oðp2Þ ¼ i

~p4p2
μ2ð3−ωÞe2uμ ~pν

�
4

Z
dΦΩμν

2 ðΔ1Þ þ 2Γð3Þ
Z

dϒð8m2 − p2 − 2ðyþ zÞp2ÞΩμν
3 ðΔ2Þ

þ 2Γð4Þ
Z

dΞð−2pλpβΩ
μνλβ
4 ðΔ3Þ þ p2½4m2 − 2ðzþ wÞ2p2 − p2 − ðzþ wÞð7m2 − 4p2Þ�Ωμν

4 ðΔ3ÞÞ
�
: ð4:13Þ

Based on the results for the momentum integration, Eqs. (C2) and (C6), it is easy to conclude that the planar contribution
vanishes

ðΠS
oÞpðp2Þ ¼ i

2 ~p4p2
e2uμ ~pνfημνAðΔ1;Δ2;Δ3Þ þ pλpβðημνηλβ þ ημληνβ þ ημβηνλÞBðΔ1;Δ2;Δ3Þg;¼ 0: ð4:14Þ

The last equality follows since u:p ¼ 0 and u: ~p ¼ 0. Now, proceeding in the same way, we have for the nonplanar part that

ðΠS
oÞn−pðp2Þ ¼ −

i
2 ~p4p2

e2uμ ~pν

�
ημν

ω
CðΔ1;Δ2Þ þ

~pμ ~pν

~p2
DðΔ1;Δ2Þ þ pλpβ

�
ðημνηλβ þ ηνλημβ þ ηνβηλμÞEðΔ3Þ

þ ~pλ ~pβ ~pν ~pμ

~p4
GðΔ3Þ þ

�
ηλβ

~pν ~pμ

~p2
þ sym permutations

�
FðΔ3Þ

��
¼ 0: ð4:15Þ

Again we have that the resulting expression is propor-
tional to u: ~p ¼ 0 and u:p ¼ 0. These vanishing results are
in agreement with the literature, since we can think about
the Bose-Einstein symmetry on the Πμν, i.e., μ↔ν and
p → −p, in addition to its accidental symmetry θ → −θ,
these combined facts show that the term ΠS

o will not be
radiatively generated at higher order as well.

V. DISPERSION RELATION AND
LIMITING CASES

In order to establish some limits of special
interest, we consider the scaling eAμ → Aμ on the

Lagrangian (2.1), this implies into the following
change4

L¼ −
1

4e2
F μν⋆F μν þ κ

2
ϵμνλ

�
Aμ⋆∂νAλ þ

2

3
Aμ⋆Aν⋆Aλ

�
;

ð5:1Þ

4It is notable that the mass dimension of the gauge field and the
coupling constant in 2þ 1 dimensions is equal to 1

2
, hence the

mass dimension of the new gauge fieldAμ and κ is equal to 1 and
0, respectively.
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where F μν ¼ ∂μAν − ∂νAμ þ i½Aμ;Aν�⋆ and also we
have introduced a new parameter κe2 ≡m. Therefore,
from such Lagrangian we can immediately read three
limits of interest:

(i) The NC Chern-Simons model is obtained when
e2 → ∞, i.e., m2 → ∞, so that the ratio κ ¼ m=e2

is kept finite;
(ii) The NC Maxwell model is obtained when κ → 0,

i.e., m2 → 0, so that e2 is kept finite;
(iii) We can consider the low-momenta limit, also known

as highly noncommutative limit, i.e., p2=m2 → 0
while ~p is kept finite.

These three cases will be analyzed accordingly from
our previous results in Sec. IV, allowing us to obtain
closed expression for the resulting form factors.

A. NC Chern-Simons model

This first limit is somehow laborious, and demands some
careful analysis. We can analyze the NC Chern-Simons
theory by taking directly the limit m2 → ∞ in the expres-
sion (2.13), we obtain the following result:

ΠμνðpÞ ¼
m
κ

Z
d3k
ð2πÞ3

1

k2
1

ðpþ kÞ2 sin
2

�
p∧k
2

�
½kμpν − kνpμ�

ð5:2Þ

As usual, one can put the different poles under the same
denominator, which result into a change of the type:
Qμ ¼ kμ þ cpμ, where c is some function of the
Feynman parameter(s), for instance. After this manipula-
tion, one can easily find the expression

ΠμνðpÞ ¼
m
κ

Z
d3Q
ð2πÞ3

1

ðQ2 − Δ2Þ2 sin
2

�
p∧Q
2

�

× ½Qμpν −Qνpμ� ¼ 0: ð5:3Þ

This vanishing result shows that no radiative correction
to the gauge field propagator is generated and accordingly
its exhibits the free nature of the noncommutative Chern-
Simons theory, which is in agreement with a previous
analysis [32].

B. NC Maxwell model

From either definition (2.13) or form factors, Eqs. (2.22),
(2.23), and (2.24), the limit m → 0 follows straightfor-
wardly. In this case, the form factor Πeðp2Þ is obtained
from the sum of the planar and nonplanar contributions,
Eqs. (D1) and (D2), respectively, and it yields to

Πeðp2Þ ¼ 3e2

8π
j ~pj þ e2

16π

1

jpj
�
1

2

Z
dϒ
ðΔ2

2Þ
3
2

ðð4ðyþ zÞ þ 2ÞΔ2
2Σð−Þðp; ~p;Δ2Þ

þ ð16ðyþ zÞ2 − 10ðyþ zÞ þ 1ÞΣðþÞðp; ~p;Δ2Þ − 16Δ2
2Σðp; ~p;Δ2ÞÞ

−
1

4

Z
dΞ

ðΔ2
3Þ

5
2

ððzþ wÞ2ð3 − 4ðzþ wÞÞΣð1Þðp; ~p;Δ3Þ − ð3 − 12ðzþ wÞÞΔ2
3ΣðþÞðp; ~p;Δ3Þ

þ ð2þ 4ðzþ wÞ2 − 8ðzþ wÞÞΔ2
3Σð2Þðp; ~p;Δ3Þ − 4Δ4

3Σð−Þðp; ~p;Δ3ÞÞ
�
; ð5:4Þ

where in order to simplify the notation we have introduced
the quantities

Σðp; ~p;ΔiÞ ¼ 1 − e−Δijpjj ~pj; ð5:5Þ

Σð�Þðp; ~p;ΔiÞ ¼ 1 − ð1� Δijpjj ~pjÞe−Δijpjj ~pj; ð5:6Þ

Σð1Þðp; ~p;ΔiÞ ¼ 3 − ð3þ 3Δijpjj ~pj þ Δ2
i p

2 ~p2Þe−Δijpjj ~pj;

ð5:7Þ

Σð2Þðp; ~p;ΔiÞ ¼ 1 − ½1þ Δijpjj ~pj − Δ2
i p

2 ~p2�e−Δijpjj ~pj;

ð5:8Þ

here the quantities Δ2 and Δ3 are given as

Δ2
2 ¼ −ðyþ zÞð1 − y − zÞ; ð5:9Þ

Δ2
3 ¼ −ðzþ wÞð1 − z − wÞ: ð5:10Þ

Besides, from Eqs. (D3) and (D4), we find for the NC
transverse part ~Πe the following
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~Πeðp2Þ ¼ e2

4π

�
j ~pj − 1

j ~pjp2

�
þ e2

32π

1

jpj
�Z

dϒ
ðΔ2

2Þ
3
2

ðð10ðyþ zÞ − 3ÞΣðþÞðp; ~p;Δ2Þ − 4ð1þ 2ðyþ zÞÞΔ2
2Σð−Þðp; ~p;Δ2ÞÞ

−
1

2

Z
dΞ

ðΔ2
3Þ

5
2

ððzþ wÞ2½1 − 4ðzþ wÞ�Σð1Þðp; ~p;Δ3Þ þ ð12ðzþ wÞ − 1ÞΔ2
3ΣðþÞðp; ~p;Δ3Þ

− 4ð1þ 2ðzþ wÞ2 − 4ðzþ wÞÞΔ2
3Σð2Þðp; ~p;Δ3Þ þ 8Δ4

3Σð−Þðp; ~p;Δ3ÞÞ
�
: ð5:11Þ

Finally, for the CP odd form factorΠA
o , Eqs. (D5) and (D6),

we find as expected a vanishing result:

ΠA
o ðp2Þ ¼ ðΠA

o Þpðp2Þ þ ðΠA
o Þn−pðp2Þ ¼ 0: ð5:12Þ

1. Dispersion relation

In the NC Maxwell theory we take the limit m → 0.
Thus, we can write the complete propagator (3.6) as the
following

iDμν ¼
1

½p2 − jpjΠð1Þ
e ðp2Þ�

�
ημν −

pμpν

p2
−

~pμ ~pν

~p2

�

þ 1

½p2 − jpj ~Πð1Þ
e ðp2Þ�

~pμ ~pν

~p2
þ ξ

p4
pμpν; ð5:13Þ

where the form factor expressions are defined so that

fΠð1Þ
e ; ~Πð1Þ

e g ¼ jpjfΠe; ~Πeg, with Πe and ~Πe given by
Eqs. (5.4) and (5.11), respectively.
In particular, the poles obtained above in Eq. (5.13),

i.e., p2 − jpjΠð1Þ
e ðp2Þ, reproduce a similar profile as those

found on the three-dimensional Yang-Mills theory [37,51],
which allow us to (partially) discuss the infrared finiteness
of the model.
In order to illustrate the pole behavior, we can take small

perturbations around p2 ~p2, so that at the leading-order the
form factor expressions are reduced to

Πð1Þ
e ðp2Þ ¼ 7e2

24π
jpjj ~pj − 13ie2

512
p2 ~p2; ð5:14Þ

and

~Πð1Þ
e ðp2Þ ¼ −

e2

12π
jpjj ~pj − e2

4π

1

jpjj ~pj þ
3ie2

256
p2 ~p2: ð5:15Þ

These equations at the commutative limit change to the
following:

lim
θ→0

Πð1Þ
e ðp2Þ ¼ 0; ð5:16Þ

lim
θ→0

~Πð1Þ
e ðp2Þ ¼ −

e2

4π

1

jpjj ~pj : ð5:17Þ

We note that (5.16) is consistent with the commutative
Maxwell action, which is a free theory, however (5.17),
similar to (4.10), exhibits the UV/IR mixing effect in 2þ 1
dimensions and does not correspond to any counterpart
term in commutative Maxwell theory. The presence of the
UV/IR mixing in the NC Maxwell theory emphasize the
fact that this theory is not infrared finite.

C. Highly noncommutative
Maxwell-Chern-Simons model

We now study the third limiting case, which describes
the low-momentum (or highly noncommutative) behavior
of NC Maxwell–Chern-Simons model. For the highly
noncommutative case, i.e., considering the limit p2=m2 →
0while ~p2 is kept finite, we can proceed in the exactly same
way as before. In this scenario, the complete form factor
Πeðp2Þ is obtained from Eqs. (D1) and (D2), this
results into

Πeðp2Þ≃ 1

16πκ

�Z
dΦffiffiffiffiffiffi
Δ2

1

p
�
6þ 4ð4 − yÞm

2

p2

�
Σðm; ~p;Δ1Þ þ

1

2

Z
dϒ
ðΔ2

2Þ
3
2

��
2ð13ðyþ zÞ − 6Þ − 16

m2

p2

�
ΣðþÞðm; ~p;Δ2Þ

þ 2

�
ð2ðyþ zÞ þ 1ÞΔ2

2 − 8
m2

p2
Δ2

2 þ 8ðyþ zÞð1 − y − zÞ
�
Σð−Þðm; ~p;Δ2Þ

�

−
1

4

Z
dΞ

ðΔ2
3Þ

3
2

�
8ΣðþÞðm; ~p;Δ3Þ − ð8 − 14ðzþ wÞÞΣð2Þðm; ~p;Δ3Þ − 4Δ2

3Σð−Þðm; ~p;Δ3Þ
��

þO
�
p2

m2

�
; ð5:18Þ

where the functions ΣðiÞðm; ~p;ΔjÞ are those defined before, Eqs. (5.5)–(5.8), but now the quantities Δi are given by
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Δ2
1 ¼ y; Δ2

2 ≃ ðxþ zÞ þO
�
p2

m2

�
; Δ2

3 ≃ ðyþ wÞ þO
�
p2

m2

�
: ð5:19Þ

Moreover, we find for the NC transverse part ~Πe, the sum of the Eqs. (D3) and (D4), the following expression

~Πeðp2Þ≃ 1

16πκ

�Z
dΦffiffiffiffiffiffi
Δ2

1

p
�
2

�
2þ ðy − 8Þm

2

p2

�
Σðm; ~p;Δ1Þ −

4m2

p2

� ffiffiffi
y

p
mj ~pj þ y

�
e−

ffiffi
y

p
mj ~pj

�

þ 1

2

Z
dϒ
ðΔ2

2Þ
3
2

��
7þ 16

m2

p2
− 30ðyþ zÞ

�
ΣðþÞðm; ~p;Δ2Þ

− 4

��
1þ 2ðyþ zÞ − 8

m2

p2

�
Δ2

2 þ 8ðyþ zÞð1 − y − zÞ
�
Σð−Þðm; ~p;Δ2Þ

�

−
1

4

Z
dΞ

ðΔ2
3Þ

3
2

�
4ð4 − 7ðzþ wÞÞΣð2Þðm; ~p;Δ3Þ − 7ΣðþÞðm; ~p;Δ3Þ þ 8Δ2

3Σð−Þðm; ~p;Δ3Þ
��

þO
�
p2

m2

�
; ð5:20Þ

At last, for the CP odd form factor ΠA
o , Eqs. (D5) and (D6), we get

ΠA
o ðp2Þ≃ −

1

8π

m
κ

�
5

Z
dΦffiffiffiffiffiffi
Δ2

1

p Σðm; ~p;Δ1Þ −
1

2

Z
dϒ
ðΔ2

2Þ
3
2

ð7ΣðþÞðm; ~p;Δ2Þ þ 5Δ2
2Σðm; ~p;Δ2ÞÞ

−
1

2

Z
dΞ

ðΔ2
3Þ

3
2

ΣðþÞðm; ~p;Δ3Þ
�
þO

�
p2

m2

�
: ð5:21Þ

An important check of our results for the low-momenta
limit is needed. On one hand, in the commutative limit,
Eqs. (4.8), (4.10), and (4.12), we have considered ~p → 0,
but this is explicitly read as θ → 0 when p is kept finite. On
the other hand, however, we can equally consider ~p → 0 as
given by p → 0 with θ ¼ finite. We can immediately
conclude from the low-momenta limit expressions,
Eqs. (5.18), (5.20), and (5.21), that the latter limit is in
agreement with the (former) commutative limit. Moreover,
in order to understand this point consider the scale θ ¼ 1

Λ2,
hence, the commutative limit can be interpreted as p

Λ ≪ 1,
where p is the external momentum. The condition p

Λ ≪ 1

can then happen in two distinct cases:

�
Λ → ∞; p ¼ finite
p → 0; θ ¼ finite

ð5:22Þ

Hence, we see that these two limits are indeed the same
and our results are correct. In possess of the above explicit
results we can proceed to the analysis the dispersion
relation behavior for this case, and discuss the UV/IR mixing
issue.

1. Dispersion relation

The remaining integration on the Eqs. (5.18), (5.20), and
(5.21) can be computed analytically without further com-
plication thanks to the simplification due to the limit
p2=m2 → 0. We, thus, obtain for the transverse form factor
the explicit expression

Πeðp2Þ≃ 1

2πκ

1

m2p2 ~p4

h
−48þ 6

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ ðm2 ~p2Þ2 þ ð48þ 42

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ 18m2 ~p2 þ 5ðm2 ~p2Þ32Þe−

ffiffiffiffiffiffiffiffi
m2 ~p2

p i

þ 1

120πκ

1

ðm2 ~p2Þ3
h
39600þ 39720

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ 250m2 ~p2 þ 570ðm2 ~p2Þ32

− 240ðm2 ~p2Þ52 þ 131ðm2 ~p2Þ3 − 5ð7920þ 24

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
− 2800m2 ~p2

− 714ðm2 ~p2Þ32 þ 32ðm2 ~p2Þ2 þ 26ðm2 ~p2Þ52 þ 7ðm2 ~p2Þ3Þe−
ffiffiffiffiffiffiffiffi
m2 ~p2

p i
þO

�
p2

m2

�
; ð5:23Þ
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and next, for the NC transverse form factor, we find the result

~Πeðp2Þ≃ −
1

4πκ

1

mp2 ~p3

h
−24þ ðm2 ~p2Þ32 þ ð24þ 24

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ 13m2 ~p2 þ 4ðm2 ~p2Þ32Þe−

ffiffiffiffiffiffiffiffi
m2 ~p2

p i

−
1

240πκ

1

ðm2 ~p2Þ52
h
−26880þ 3060m2 ~p2 þ 229ðm2 ~p2Þ32 − 465ðm2 ~p2Þ2

þ 5
	
5376

	
1þ

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q 

þ 2076m2 ~p2 þ 284ðm2 ~p2Þ32

þ 11ðm2 ~p2Þ2 − 10ðm2 ~p2Þ52


e−

ffiffiffiffiffiffiffiffi
m2 ~p2

p i
þO

�
p2

m2

�
: ð5:24Þ

Finally, for the CP odd form factor, we get

ΠA
o ðp2Þ≃ −

m
24πκ

1

ðm2 ~p2Þ32
h
2ð3þ 9m2 ~p2 þ ðm2 ~p2Þ32Þ − 3

	
2þ 2

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ 7m2 ~p2 þ 7ðm2 ~p2Þ32



e−

ffiffiffiffiffiffiffiffi
m2 ~p2

p i
þO

�
p2

m2

�
:

ð5:25Þ

We can analyze the modifications caused into the dispersion relation by the noncommutativity from examining first the
formula (3.7). By simplicity, we shall consider the contribution up to the lowest order in α ¼ e2=4π. This implies into the
following expression for the renormalized mass

mren ≃mþ Πð1Þ ð5:26Þ

where we have defined Πð1Þ ¼ ΠA
o þmΠe þ m

2
~Πe, so that its expression reads

Πð1Þ ¼ m
8πκ

1

m2p2 ~p4

h
3
	
−64þ 16

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ ðm2 ~p2Þ2




þ
	
192þ 144

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ 48ðm2 ~p2Þ þ 7ðm2 ~p2Þ32 − 4ðm2 ~p2Þ2



e−

ffiffiffiffiffiffiffiffi
m2 ~p2

p i

þ m
96πκ

1

ðm2 ~p2Þ3
h
−31680þ 5280

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ 2016m2 ~p2 − 180ðm2 ~p2Þ32

− 171ðm2 ~p2Þ52 þ 51ðm2 ~p2Þ3 þ
	
31680þ 26400

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ 8544m2 ~p2 þ 804ðm2 ~p2Þ32

− 388ðm2 ~p2Þ2 − 31ðm2 ~p2Þ52 þ 66ðm2 ~p2Þ3


e−

ffiffiffiffiffiffiffiffi
m2 ~p2

p i
þO

�jpj
mκ

�
þO

�
mj ~pj
κ

�
: ð5:27Þ

In order to illustrate our result, we can consider small perturbation in powers of m2 ~p2, and we find at the leading-order that

Πð1Þ ¼ −
1

8πκ

m2

p2j ~pj þ
m
κ

�
−

317

1260π

ffiffiffiffiffiffiffiffiffiffiffi
m2 ~p2

q
þ � � � :

�
þO

�jpj
mκ

�
þO

�
m2 ~p2

κ2

�
þO

�
m3j ~pj
κp2

�
: ð5:28Þ

Finally, substituting (5.28) into (3.8), we obtain the
following dispersion relation

ω2 ¼ ~p2 þm2 −
1

4πκ

m3

p2j ~pj þO
�jpj
mκ

�
þO

�
mj ~pj
κ

�

þO
�
m3j ~pj
κp2

�
: ð5:29Þ

In particular, we see from this expression that the highly
noncommutative behavior has an UV/IR instability in the
NC momentum and consequently the theory is not infrared
finite. These facts can be seen as originating from the
general result in Eq. (4.10).
Furthermore, the insertion of the form factor expressions

(5.23), (5.24), and (5.25) into the relation (3.6) gives us the
one-loop photon propagator in the low-energy limit of the
noncommutative Maxwell-Chern-Simons theory. One of
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the main physical consequences of this corrected propa-
gator is that we can determine the noncommutative one-
loop corrections to the electrostatic potential energy of the
Maxwell-Chern-Simons model. By taking into account
the time-like photons from the above result, we find the
expression5

V1-loopðrÞ ¼ e2
Z

dx0

×
Z

d3p
ð2πÞ3

1

p2 −m2
ren

e−i~p:~rþip0x0 ½1þ Πe�;

ð5:30Þ

that by setting Πe ¼ 0, the free part of the potential is given
by VfreeðrÞ ¼ − e2

2πK0ðmrÞ → e2
2π ln ðmrÞ as mr ≪ 1. Now,

considering only the noncommutative contribution, i.e., by
taking into account the leading contribution in Eqs. (5.23)
and (5.28), we obtain the following deviation for the
potential

δV1-loopðrÞ¼−
jθje4

20160π2

Z
p3dp

1

p3ðp2þm2Þ− e2
4π

m2

jθj
× ½4009p2þ4284m2�J0ðprÞ;

¼−
ajθje4
π2

1

r

Z
∞

0

dp
p3ðp2þbm2r2Þ

p3ðp2þm2r2Þ− e2
4π

m2r5
jθj

J0ðpÞ;

ð5:31Þ

in which a ¼ 0.198 and b ¼ 1.068. By means of a simple
analysis, we see that the denominator of the above
integrand has one real positive root and four complex
roots, named here as p0 and pj, respectively. Due to its pole
structure, the integrand can be written as a pseudo function
plus a delta function. Hence, after some computation [52],
we finally arrive at

δV1-loopðrÞ¼−
ajθje4
π2

1

r

�
−iπ

Aðp0Þ
Bðp0Þ

J0ðp0Þþ1

þ
X4
j¼1

cj

�
K0ð−ipjÞþ

π

2
ðiJ0ðpjÞ−H0ðpjÞÞ

��
;

ð5:32Þ

where A ¼ p3
0ðp2

0 þ bm2r2Þ, B ¼ p3
0ðp2

0 þm2r2Þ − e2
4π

m2r5
jθj

and H is the Struve function. Also, the coefficient cj arises
from the fraction decomposition which is given by

AðpÞ
BðpÞ ¼ 1þ

X4
j¼o

cj
p − pj

ð5:33Þ

with cj ¼ AðpjÞ
B0ðpjÞ. Furthermore, by means of illustration, we

consider the behavior of the above expression again at
mr ≪ 1, so that we can compare it with the usual free
result. Hence, by using the asymptotic expansion of the
Bessel and Struve functions [52], we find

δV1-loopðrÞ ¼ −
ajθje4
π2

1

r

�
1 − iπ

Aðp0Þ
Bðp0Þ

�
: ð5:34Þ

It is important to emphasize the strong departure due to the
noncommutativity of the leading radial dependence of the
above expression, δV1-loop ∝ 1

r, when compared to the usual
Maxwell-Chern-Simons (confining) static potential energy
Vfree ∝ ln r, at mr ≪ 1.
It is worth noticing that an investigation of the Lamb

shift effect in noncommutative QED4 was carried out in
[53]. Since a complete discussion for this physical process
requires us to take into account the charge renormalization,
this will be considered further in the forthcoming
paper [54].

VI. CONCLUDING REMARKS

In this paper, we have studied in complete detail the
gauge field complete propagator at one-loop order in the
NC Maxwell-Chern-Simons theory. A careful account
covering all the renormalizability aspects of this two-point
function has been presented, in particular by establishing
the respective renormalization constants and subsequently
the gauge field renormalized mass. It is worth mentioning
that, as expected from a gauge theory, a multiplicative
renormalization holds for the theory.
We first discussed in detail the tensor structure of the

gauge field self-energy at one-loop order. This has been
supplemented by a full account on the discrete symmetries
for a three-dimensional noncommutative spacetime. The
explicit expressions of the form factor were calculated by
following the standard rules of Feynman integration. In
particular, we found that the commutative limit of the
complete form factor ~Πe displays a manifestation of IR/UV
mixing, since the planar and nonplanar contributions sum
to a nonvanishing result. Besides, we explicitly showed that
the NC CP-odd form factor ΠS

o identically vanishes.
In order to discuss some physical consequences of the

considered model, we have scrutinized some particular
limits: (i) the NC Chern-Simons theory; (ii) the NC
Maxwell theory; and (iii) the low-momenta limit, highly
noncommutative Maxwell-Chern-Simons theory. First, we
found that, as expected, the NC Chern-Simons theory is
actually a free theory. Next, we showed that the massless
limit, m ¼ 0, is well behaved in this context, and that the

5Here, by means of clarity, we have restored the usual notation
in terms of e2 ¼ m=κ.
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dispersion relation for the NC Maxwell theory displays the
same profile as in the three-dimensional Yang-Mills theory,
with no radiative mass generation, but with an UV/IR
mixing instability.
Finally, the highly noncommutative limit was consid-

ered, and analytical expressions have been obtained for the
form factors. Within this context, we examined its
dispersion relation and found that it is not infrared finite,
more precisely an UV/IR mixing instability due to the NC
momentum. Besides, using the one-loop expressions of the
form factors, we have determined the noncommutative
corrections to the photon propagator in the low-momenta
limit. As a physical outcome of the one-loop gauge field
propagator, we have discussed the noncommutative cor-
rections to the electrostatic potential. In particular, the
low-momenta limit of the Maxwell-Chern-Simons theory
(when coupled to matter fields) is of major interest for
physical application in planar materials, in particular to the
description of newmaterials in the framework of condensed
matter physics [6,55], which allows the use of effective
low-energy models.
It is worth mentioning that a complete account of the

noncommutative Maxwell-Chern-Simons theory renorma-
lizability must contain an analysis of the vertex functions.
This complementary study is now under scrutiny [54]. The
analysis takes into account the renormalization of the 3-
point vertex function and ghost sector, as well other vertex
functions, allowing us then to fully discuss the renormal-
ization of the gauge coupling, determining the theory’s beta
function, as well as the presence of the UV/IR mixing and
infrared finiteness.
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APPENDIX A: ONE-LOOP ANALYSIS OF
THE PHOTON SELF-ENERGY

We shall now write down the full contribution one-loop
expression for the photon self-energy; see Fig. 1. This
contribution has the following form,

Πμν ¼ Πg
μν þ Πgh

μν þ Πt
μν; ðA1Þ

where the explicit expression for the ghost, cubic, and
quartic self-interacting diagrams are given by

Πgh
μνðpÞ ¼ 2e2

Z
d3k
ð2πÞ3

1

k2
1

ðpþ kÞ2 sin
2

�
p∧k
2

�
kμðkþ pÞν;

ðA2Þ

Πg
μνðpÞ ¼ e2

Z
d3k
ð2πÞ3 sin

2

�
p∧k
2

�
1

k2ðk2 −m2Þ
×

1

ðpþ kÞ2½ðpþ kÞ2 −m2�N
g
μν; ðA3Þ

Πt
μνðpÞ ¼ 2e2

Z
d3k
ð2πÞ3 sin

2

�
p∧k
2

�
ημνk2 þ kμkν
k2ðk2 −m2Þ ; ðA4Þ

and the tensor at the numerator of Eq. (A3) is defined as

N g
μν ¼ ðimϵμαβ þ ðpþ 2kÞμηαβ þ ðp − kÞβημα − ð2pþ kÞαημβÞðimϵνρσ − ðpþ 2kÞνηρσ þ ðk − pÞσηρν þ ð2pþ kÞρηνσÞ

× ðk2ηαρ − kαkρ þ imϵαρλkλÞððpþ kÞ2ηβσ − ðpþ kÞβðpþ kÞσ − imϵβσξðpþ kÞξÞ: ðA5Þ

We note that the denominator on these three contributions
is different. Hence, we can write the complete contribution
in the following way,

ΠμνðpÞ ¼ e2
Z

d3k
ð2πÞ3 sin

2

�
p∧k
2

�

×
N g

μν þ 2N gh
μν þ 2N t

μν

k2ðk2 −m2Þðpþ kÞ2ððpþ kÞ2 −m2Þ ; ðA6Þ

where we have conveniently introduced the new tensor
quantities:

N gh
μν ¼ m4ðkμkν þ kμpνÞ

−m2ð2k2 þ p2 þ 2p:kÞðkμkν þ kμpνÞ
þ k2ðk2 þ 2p:kþ p2Þðkμkν þ kμpνÞ; ðA7Þ

N t
μν ¼ −m2ðk2 þ 2p:kþ p2Þðk2ημν þ kμkνÞ

þ ðk4 þ 2k2p2 þ p4 þ 4k2ðp:kÞ þ 4p2ðp:kÞ
þ 4ðp:kÞ2Þðk2ημν þ kμkνÞ: ðA8Þ
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APPENDIX B: TENSOR STRUCTURE OF THE
PHOTON SELF-ENERGY

In order to discuss the tensor structure of the complete
photon propagator, we shall introduce and consider the
following vectors, pμ, ~pμ ¼ θμνpν and uμ ¼ ϵμαβpα ~pβ, as
an orthogonal basis. In particular, it is easy to see that

pμ ~pμ ¼ 0; pμuμ ¼ 0; ~pμuμ ¼ 0 ðB1Þ

and that the completeness relation is also satisfied:

uμuν
u2

þ ~pμ ~pν

~p2
þ pμpν

p2
¼ ημν: ðB2Þ

The polarization tensor in this basis is written as

Πμν ¼ ða1pμ þ a2 ~pμ þ a3uμÞpν

þ ðb1pμ þ b2 ~pμ þ b3uμÞ ~pν

þ ðc1pμ þ c2 ~pμ þ c3uμÞuν: ðB3Þ

Applying the Ward identity pμΠμν ¼ 0 and pνΠμν ¼ 0, this
directly leads to a1 ¼ a2 ¼ a3 ¼ b1 ¼ c1 ¼ 0. Hence, we
are left with the expression

Πμν ¼ ðb2 ~pμ þ b3uμÞ ~pν þ ðc2 ~pμ þ c3uμÞuν
¼ b2 ~pμ ~pν þ d1ðuμ ~pν þ uν ~pμÞ
þ d2ð ~pμuν − ~pνuμÞ þ c3uμuν; ðB4Þ

in which, by convenience, we have rewritten the terms
b3uμ ~pν þ c2 ~pμuν as symmetric and antisymmetric parts.
Furthermore, it is easy to show that the antisymmetric part
can be revised as

~pμuν − ~pνuμ ¼ ϵμνλpλ ~p2: ðB5Þ

Using this result and also the completeness relation (B2),
we can write the photon self-energy in a clear and
appropriated form; see (B8). Now, at this step, we construct
the general form for the 1PI function Γμν for the NC
Maxwell-Chern-Simons theory using the defined basis

Γμν ¼ Γμν
tree-level þ Πμν

loop-level; ðB6Þ

where the 1PI two-point function and the polarization
tensor are, respectively, given by

Γμν
tree-level ¼ −p2ημν þ

�
1 −

1

ξ

�
pμpν þ imϵμνλpλ ðB7Þ

Πμν
loop-level ¼

�
ημν −

pμpν

p2

�
Π⋆

e þ
~pμ ~pν

~p2
~Π⋆
e þ iϵμνλpλΠA

o

þ ð ~pμuν þ ~pνuμÞΠS
o ; ðB8Þ

with which the tensor structure is in agreement [43]. We can
obtain the complete propagator expression by means of the
standard functional relation ΓλμDμν ¼ iδλν. After some
laborious calculation, we find that the complete propagator
has the following general expression,

iDμν ¼
p2 −Π⋆

e − ~Π⋆
e

R
ημν þ

�
−p2 þΠ⋆

e þ ~Π⋆
e

R
þ ξ

p2

�
pμpν

p2

þ
~Π⋆
e

R

~pμ ~pν

~p2
þΠS

o

R
ð ~pμuν þ uμ ~pνÞ þ

mþΠA
o

R
iεμνλpλ;

ðB9Þ

where R ¼ ðp2 − Π⋆
e Þðp2 − Π⋆

e − ~Π⋆
e Þ þ p2½ð ~p2ΠS

oÞ2−
ðmþ ΠA

o Þ2�.
In order to conclude this discussion, we shall now

determine the coefficients appearing in the expression
(B8) for the 1PI form factors Π⋆

e , ~Π⋆
e , ΠA

o and ΠS
o.

These are found from the following identities:

Π⋆
e ¼ ημνΠμν −

~pμ ~pν

~p2
Πμν; ðB10Þ

~Π⋆
e ¼ − ημνΠμν þ 2

~pμ ~pν

~p2
Πμν; ðB11Þ

ΠA
o ¼ i

2p2
ϵμναpαΠμν; ðB12Þ

ΠS
o ¼ −

1

2 ~p4p2
ðuμ ~pν þ uν ~pμÞΠμν: ðB13Þ

APPENDIX C: NONPLANAR INTEGRAL

Throughout the paper, we have made use of some
known results involving momentum integration. We shall
recall some of these results, in particular those involving a
nonplanar factor. The simplest integration reads

Z
dωq
ð2πÞω

1

ðq2 − s2Þa e
ik∧q

¼ 2ið−Þa
ð4πÞω2

1

ΓðaÞ
1

ðs2Þa−ω
2

�j~kjs
2

�a−ω
2

Ka−ω
2
ðj~kjsÞ: ðC1Þ

Next, we have the integration

Z
dωq
ð2πÞω

qμqν

ðq2 − s2Þa e
ik∧q ¼ ημνFa þ

~kμ ~kν

~k2
Ga; ðC2Þ

where we have introduced the following quantities,
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fFa;Gag ¼ ið−Þa−1
ð4πÞω2

1

ΓðaÞ
1

ðs2Þa−1−ω
2

ffa; gag; ðC3Þ

with

fa ¼
�
sj~kj
2

�a−1−ω
2

Ka−1−ω
2
ðj~kjsÞ; ðC4Þ

ga ¼ ð2a − 2 − ωÞ
�
sj~kj
2

�a−1−ω
2

Ka−1−ω
2
ðj~kjsÞ

− 2

�
sj~kj
2

�a−ω
2

Ka−ω
2
ðj~kjsÞ: ðC5Þ

Finally, we have

Z
dωq
ð2πÞω

qμqνqλqβ

ðq2 − s2Þa e
ik∧q

¼ ðημνηλβ þ ηνλημβ þ ηνβηλμÞHa þ
~kλ ~kβ ~kν ~kμ

~k4
Ja

þ
�
ηλβ

~kν ~kμ

~k2
þ ηνλ

~kβ ~kμ

~k2
þ ηνβ

~kλ ~kμ

~k2
þ ηλμ

~kβ ~kν

~k2

þ ηβμ
~kλ ~kν

~k2
þ ηνμ

~kλ ~kβ

~k2

�
Ia; ðC6Þ

where the quantities Ha, Ia and Ja are defined as the
following,

fHa; Ia; Jag ¼ −
ið−Þa
ð4πÞω2

1

ΓðaÞ
1

ðs2Þa−2−ω
2

1

s2 ~k2
fha; ia; jag;

ðC7Þ

with

ha ¼ ð2a − 2 − ωÞ
�
sj~kj
2

�a−1−ω
2

Ka−1−ω
2
ðj~kjsÞ

− 2

�
sj~kj
2

�a−ω
2

Ka−ω
2
ðj~kjsÞ; ðC8Þ

ia ¼ ½ð2a − 2 − ωÞð2a − 4 − ωÞ þ s2 ~k2�
�
sj~kj
2

�a−1−ω
2

× Ka−1−ω
2
ðj~kjsÞ − 2ð2a − 4 − ωÞ

�
sj~kj
2

�a−ω
2

Ka−ω
2
ðj~kjsÞ;

ðC9Þ

ja ¼ ð2a − 4 − ωÞ½ð2a − 2 − ωÞð2a − 6 − ωÞ

þ 2s2 ~k2�
�
sj~kj
2

�a−1−ω
2

Ka−1−ω
2
ðj~kjsÞ

− 2ð2ð2a − 4 − ωÞ þ s2 ~k2Þ
�
sj~kj
2

�a−ω
2

Ka−ω
2
ðj~kjsÞ:

ðC10Þ

APPENDIX D: ONE-LOOP FORM FACTORS

In this section, we write down explicitly some lengthy
expressions from the planar and nonplanar parts from the
self-energy form factors, discussed in Sec. IV. First, for the
planar contribution of the transverse part ðΠeÞ, Eq. (4.6),
we immediately find

ðΠeÞpðp2Þ ¼ −
e2

16π

�
−

1

p2

Z
dΦ

1ffiffiffiffiffiffi
Δ2

1

p ð6p2 þ 16m2 − 4Δ2
1Þ −

1

2p2

Z
dϒ

1

ðΔ2
2Þ

3
2

ð16ðyþ zÞ2p4 − 10ðyþ zÞp4 þ p4

þ ð26ðyþ zÞ − 12Þm2p2 − 16m4 − 2½ð7 − 2ðyþ zÞÞp2 þ 8m2�Δ2
2Þ

þ 1

4

Z
dΞ

1

ðΔ2
3Þ

5
2

ð3p2½4ðzþ wÞð1 − 2ðzþ wÞÞm2 þ ðzþ wÞ2ð3 − 4ðzþ wÞÞp2�

þ ½14ðzþ wÞm2 þ ð4ðzþ wÞ þ 4ðzþ wÞ2 − 1Þp2�Δ2
3 − 4Δ4

3Þ
�
; ðD1Þ

while for the nonplanar contribution of (4.6), we obtain

ðΠeÞn−pðp2Þ ¼ e2

16π

�
−

1

p2

Z
dΦ

e−Δ1j ~pjffiffiffiffiffiffi
Δ2

1

p ½ð6p2 þ 16m2Þ − 4Δ2
1�

−
1

2p2

Z
dϒ

e−Δ2j ~pj

ðΔ2
2Þ

3
2

ð−½16p2 þ ðð4ðyþ zÞ þ 2Þp2 − 16m2Þ½−1þ j ~pjΔ2��Δ2
2
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þ ½16ðyþ zÞ2p4 − 10ðyþ zÞp4 þ ð26ðyþ zÞ − 12Þm2p2 þ p4 − 16m4�ð1þ Δ2j ~pjÞÞ

þ 1

4

Z
dΞ

e−Δ3j ~pj

ðΔ2
3Þ

5
2

ð−½3p2 − 8m2 − 12ðzþ wÞp2�ð1þ Δ3j ~pjÞΔ2
3 þ 4Δ4

3ðΔ3j ~pj − 1Þ

þ ½4ðzþ wÞð1 − 2ðzþ wÞÞm2 þ ðzþ wÞ2ð3 − 4ðzþ wÞÞp2�ð3þ 3Δ3j ~pj þ Δ2
3 ~p

2Þp2

− ðð8 − 14ðzþ wÞÞm2 − 4ðzþ wÞ2p2 − 2p2 þ 8ðzþ wÞp2Þ½1þ Δ3j ~pj − ~p2Δ2
3�Δ2

3Þ
�
: ðD2Þ

Moreover, similar expressions follow for the NC transverse part ð ~ΠeÞ, Eq. (4.9). Without any complication, the planar
contribution results in

ð ~ΠeÞpðp2Þ ¼ −
e2

16π

�
1

p2

Z
dΦ

1ffiffiffiffiffiffi
Δ2

1

p ðð16m2 − 4p2Þ − 2Δ2
1Þ −

1

2p2

Z
dϒ

1

ðΔ2
2Þ

3
2

ðm2ð−30ðyþ zÞp2 þ 7p2 þ 16m2Þ

− 3p4 þ 10ðyþ zÞp4 − 2ð2p2 þ 4ðyþ zÞp2 − 16m2ÞΔ2
2Þ

þ 1

4

Z
dΞ

1

ðΔ2
3Þ

5
2

ð3p2½−4m2ðzþ wÞ þ 7m2ðzþ wÞ2 þ ðzþ wÞ2p2 − 4ðzþ wÞ3p2�

− ½8ðzþ wÞ2p2 þ 5p2 − 28ðzþ wÞp2 −m2½9 − 28ðzþ wÞ��Δ2
3 þ 8Δ4

3Þ
�
; ðD3Þ

and the nonplanar contribution reads

ð ~ΠeÞn−pðp2Þ ¼ e2

16π

�
1

p2

Z
dΦ

e−Δ1j ~pjffiffiffiffiffiffi
Δ2

1

p
�
ð−4p2 þ 16m2Þ − 4

1

j ~pjΔ1 − 6Δ2
1

�

−
1

2p2

Z
dϒ

e−Δ2j ~pj

ðΔ2
2Þ

3
2

ð−ð4p2 þ 8ðyþ zÞp2 − 32m2Þ½1 − Δ2j ~pj�Δ2
2

þ ½m2ð−30ðyþ zÞp2 þ 7p2 þ 16m2Þ − 3p4 þ 10ðyþ zÞp4�ð1þ Δ2j ~pjÞÞ

þ 1

4

Z
dΞ

e−Δ3j ~pj

ðΔ2
3Þ

5
2

ð−ð7m2 þ p2 − 12ðzþ wÞp2Þð1þ Δ3j ~pjÞΔ2
3 þ 8Δ4

3ð1 − Δ3j ~pjÞ

þ p2½−4m2ðzþ wÞ þ 7m2ðzþ wÞ2 þ ðzþ wÞ2p2 − 4ðzþ wÞ3p2�ð3þ 3Δ3j ~pj þ Δ2
3 ~p

2Þ

− ½8ðzþ wÞ2p2 þ 4p2 − 16ðzþ wÞp2 − 2m2½8 − 14ðzþ wÞ��ð1þ Δ3j ~pj − ~p2Δ2
3ÞΔ2

3Þ
�
: ðD4Þ

Finally, for the CP odd part ðΠA
o Þ, Eq. (4.11), we find the planar part of the expression,

ðΠA
o Þpðp2Þ ¼ −

me2

8π

�Z
dΦ

5ffiffiffiffiffiffi
Δ2

1

p −
1

2

Z
dϒ

1

ðΔ2
2Þ

3
2

ððð−6þ 15x − 5x2Þp2 þ 7m2Þ þ 5Δ2
2Þ

−
1

4

Z
dΞ

1

ðΔ2
3Þ

5
2

ð3ðzþ wÞ2f2m2 − 5ðzþ wÞp2 þ 4p2gp2 − ð2m2 þ 4p2 − 15ðzþ wÞp2ÞΔ2
3Þ
�
; ðD5Þ

whereas, for the nonplanar part, we obtain the following contribution:
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ðΠA
o Þn−pðp2Þ ¼ me2

8π

�
5

Z
dΦ

e−Δ1j ~pjffiffiffiffiffiffi
Δ2

1

p þ 1

2

Z
dϒ

e−Δ2j ~pj

ðΔ2
2Þ

3
2

ððð6 − 15xþ 5x2Þp2 − 7m2Þð1þ Δ2j ~pjÞ − 5Δ2
2Þ

−
1

4

Z
dΞ

e−Δ3j ~pj

ðΔ2
3Þ

5
2

ððzþ wÞ2f2m2 þ ð4 − 5z − 5wÞp2gð3þ 3Δ3j ~pj þ Δ2
3 ~p

2Þp2

− ð2m2 þ 4p2 − 15ðzþ wÞp2Þð1þ Δ3j ~pjÞΔ2
3Þ
�
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