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Topological triangulations of orientable and nonorientable surfaces with arbitrary genus have important
applications in quantum geometry, graph theory and statistical physics. However, until now, only the
asymptotics for 2-spheres have been known analytically, and exact counts of triangulations are only
available for both small genera and triangulations. We apply the Wang-Landau algorithm to calculate the
numberNðm; hÞ of triangulations for several orders of magnitude in system sizem and type h (equals genus
in orientable triangulations). We verify that the limit of the entropy density of triangulations is independent
of genus and orientability and are able to determine the next-to-leading-order and the next-to-next-to-
leading-order terms. We conjecture for the number of surface triangulations the asymptotic behavior

Nðm; hÞ → ð170.4� 15.1Þhm−2ðh−1Þ=5
�
256

27

�
m=2

;

which might guide a mathematician’s proof for the exact asymptotics.
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I. INTRODUCTION

Triangulations of manifolds provide a standard method
of discretizing surfaces in condensed matter and a pos-
sibility for quantizing space-time. They are used in the
simplicial quantum gravity models of dynamical triangu-
lations [1] and the causal version thereof [2], as well as in
spin foams [3]. Furthermore, they are also a fundamental
object within the group field theory approach to quantum
gravity [4–6], which can be seen to relate the previously
mentioned approaches. For the simplicial quantum geom-
etry models, it is crucial to know the scaling of the number
of triangulations in terms of the system size, because on the
one hand, the statistical models are only well defined if
there exists an exponential scaling, and on the other hand,
the scaling constant determines the value of the coupling
constant to obtain a phase transition necessary for results
independent of the introduced discretization scale [1,2].
Even if triangulations are not seen as a tool for regulari-
zation as in simplicial quantum geometry, but as the actual
relevant degrees of freedom as in the spin foam or the group
field theory approach, the asymptotics of the number of
triangulations in terms of the system size is important for
the measure term of the path integral.
For rooted triangulations of the 2-sphere, it is well known

that their number scales ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
256=27

p
m, with m being the

number of triangles [7]. A triangulation is rooted by marking
some vertex as well as some adjacent edge and face as
special in order to break symmetry and to simplify the
counting procedure. For standard triangulations, the same
result was obtained later by proving that the ratio of
triangulations possessing any nontrivial symmetry vanishes
for large triangulations [8]. For other surfaces with a different

genus or orientability, like the torus or the projective plane,
no asymptotic numbers are known, neither for the rooted nor
for the default, unrooted case. Nevertheless, for simplicial
quantum gravity, triangulations of arbitrary surfaces are
important, because the models are not restricted to a certain
topology of the underlying manifold.
Triangulations of surfaces with nonvanishing genus are

also an object of study in other branches of physics: Since
every graph is planar if embedding into a surface with an
arbitrary high genus, and triangulations are the maximal
planar graphs for the respective surfaces (every insertion of
an edge would violate the planarity), they are an important
tool in graph and network theory [9–11]. Furthermore,
critical properties of statistical systems defined on quantum
surfaces or triangulated manifolds are sometimes easier to
solve than they would be on Euclidean lattices, but they can
be related to these using the KPZ formula [12–14].
Using lexicographic enumeration, it is possible to

exactly count triangulations of orientable and nonorientable

FIG. 1. Examples for triangulations of surfaces with low
genera. (Left, red): Triangulation of the 2-sphere with m ¼ 50
maximal simplices. (Right, blue): Triangulation of the torus
(orientable surface with genus g ¼ 1) with m ¼ 200 maximal
simplices.*benedikt.krueger@fau.de
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surfaces for small genera g ≤ 6 and a small number of
vertices v ≤ 23 [15–17]. For bigger genera or larger
triangulations, this method does not give results in any
reasonable computation time.
In contrast to triangulations, the asymptotic behavior of

(triangular) maps on surfaces is far better understood. A
triangular map is a graph drawn on a surface so that each
face is a triangle; the main difference from triangulations is
that triangular maps allow for digons, multiple edges or
loops. One can show that the asymptotic number Tðk; hÞ
(orientable) and Pðk; hÞ (nonorientable) of certain classes
of maps on arbitrary surfaces has the form [18]

�
Tðk; hÞ
Pðk; hÞ

�
¼ α

�
th
ph

�
ðβkÞ5ðh−1Þ=2 · γk; ð1Þ

where k is the number of edges and h ¼ g (orientable) or
h ¼ g=2 (nonorientable) is the type of the surface. The
constants th and ph only depend on h and not on the class of
maps that are counted; they were calculated in Ref. [19]
using a recursion relation obtained in Ref. [20]. The
numbers α, β and γ depend on the class of surface; one
finds e.g. γ ¼ 12 for all maps [21] or γ ¼ 22=3

ffiffiffi
3

p
for

triangular maps [22].
In this paper we numerically approximate the number of

surface triangulations in terms of the genus g and the number
of trianglesm using theWang-Landau algorithm [23,24] for
several orders of magnitude in g andm. A similar version of
thismethodwas used inRef. [25] to approximate the number
of lattice triangulations. We are able to extract the long-
sought asymptotics for the number of triangulations of
arbitrary surfaces for the first time and find an exponential
growth that coincides with the one found for spheres in
Ref. [8]. Additionally, we determine the subexponential
corrections similar to Eq. (1), which are a valuable hint for
mathematicians proving the exact asymptotics for the
number of surface triangulations. The presented method
is not limited to estimating the total number of surface
triangulations, but it can also be used for estimating the
asymptotics of the cardinality for certain subclasses of these
triangulations. A possible application can be estimating the
asymptotic number of irreducible triangulations, which are
triangulations without contractible edges (see Ref. [26] for a
detailed definition, and Ref. [15] for enumerations of small
irreducible triangulations). Furthermore, our method can
also be applied to k-equivelar or k-covered triangulations,
where in the former every vertex has degree k and in the latter
there is at least onevertexwith degree k (seeRefs. [27,28] for
detailed discussion and numbers for few vertices), and to
many more different subclasses of triangulations.

II. CONSTRUCTION OF TRIANGULATIONS

First, we present the definition of triangulations of
(closed) surfaces M by using the notion of simplicial

complexes. Let I be a set and K ⊂ 2I a set of subsets
of I . K is an abstract simplicial complex if it is complete
(σ ∈ K, σ0 ⊂ σ ⇒ σ0 ∈ K) and closed under the formation
of intersections (σ1; σ2 ∈ K ⇒ σ1 ∪ σ2 ∈ K). A triangu-
lation T of the two-dimensional surface M is an abstract
simplicial complex K equipped with an geometric reali-
zation (coordinization of every element of I) that is
homeomorphic to M. Since the topology of a closed
surface is determined only by its Euler characteristic, or
equivalently by its genus and orientability [29], this is also
true for the topology of their triangulations. Two examples
for surface triangulations can be found in Fig. 1.
Triangulations of orientable and nonorientable surfaces

with arbitrary genus g ≠ 0 can be constructed in terms of an
arbitrary triangulation of the torus T (orientable surface
with g ¼ 1) or the projective planeP (nonorientable surface
with g ¼ 1), using the connected sum #. Triangulations of
the torus and the projective plane can be found e.g. in
Ref. [30]. The connected sum of two triangulated surfaces
is created easily by removing a triangle from each triangu-
lation and gluing the boundary together. A (non-)orientable
surface with genus g can then be constructed by taking the
g-fold connected sum T#T#…#T (P#P#…#P) of the torus
(projective plane). A triangulation of the 2-sphere, which is
the orientable surface with g ¼ 0, is given by the boundary
of a 3-simplex.
In order to create all possible triangulations of a surfaceM

with given genus and orientability, we introduce some
elementary steps called Pachner moves [31] (which are
modification of Alexander moves [32]) that preserve the
topology of the underlying manifold M and allow us to
ergodically create every triangulation ofM from every other
triangulationofM. In twodimensions, thereare threedifferent
Pachner moves (see Fig. 2): The first inserts a vertex into a
triangle (insertion move), its inverse step removes a three-
valent vertex from the triangulation (removalmove).The third
step replaces one diagonal of a quadrangle with the other
triangle (diagonal-edge move) and is its own inverse. In two
dimensions, the diagonal-edge moves are ergodic for the
subset of triangulations with the same number of vertices v, if
one chooses a large enough v [33,34].
In order to construct a triangulation of a orientable or

nonorientable surface of a given genus g and given number
of vertices v or number of triangles m, we first create a
triangulation with the proper genus by taking the connected
sum of tori or projected planes as described above. If the
number of triangles in this triangulation is smaller than m,

FIG. 2. Elementary Pachner moves in two dimensions. (Left):
Insertion and removal of a vertex. (Right): Diagonal-edge flip,
which is ergodic in the subset of triangulations with the same
number of vertices.
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we perform insertion moves until the number of vertices
equals m. If, otherwise, the number of triangles is bigger
thanm, we perform removal moves until the triangulation is
small enough, and in between diagonal-edge moves if no
removal move is possible. Note that there is a lower bound
on the number of vertices or triangles necessary to
triangulate a surface with given genus [35–37], so it is
not possible to create arbitrary small triangulations for a
given g.

III. NUMERICAL COUNTING ALGORITHM

We use the Wang-Landau Markov-chain Monte Carlo
algorithm [23,24] to numerically measure the density of
states (DOS) gðmÞ, which is up to a normalization factor the
number of triangulations with m triangles. In general, a
Markov-chain Monte Carlo algorithm generates samples
ω ∈ Ω from a sample space Ω according to a given
probability distribution PðωÞ by creating a Markov chain
of samples with stationary distribution PðωÞ. Therefore, the
transition probabilities Pðω → ω0Þ have to fulfill the
detailed balance condition

Pðω1 → ω2Þ
Pðω2 → ω1Þ

¼ Pðω2Þ
Pðω1Þ

: ð2Þ

A famous and often-used example is the Metropolis
algorithm [38], where PðωÞ ∝ exp½−βEðωÞ� is basically
the Boltzmann factor. TheWang-Landau algorithm uses the
probability distribution

PWLðωÞ ¼
1

gðEðωÞÞ ð3Þ

so that the probability distribution in terms of the energies
is flat, and chooses the transition probabilities

Pðω1 → ω2Þ ¼ min

�
1;
gðEðω1ÞÞ
gðEðω2ÞÞ

�
: ð4Þ

For the considered system of triangulations, we use as the
energy of a triangulation T its number of triangles m, so
that every number m of triangles is sampled equally often.
Naturally, the DOS is a prior unknown, as in most

physical problems; otherwise the problem of counting the
triangulations would already be solved. So the Wang-
Landau algorithm takes an initial estimation of the DOS
(in our case, a flat distribution ginitial ∝ 1) and improves
it gradually by gðmÞ → f · gðmÞ whenever a state with
m triangles occurs in the Markov chain. Here f > 1
is a modification factor that decreases during the simula-
tion whenever the histogram of visited energies HðmÞ
recorded at this modification factor is approximately flat
to ensure the DOS anneals to the correct DOS. We use
f → f0.9 as the decrease for the modification factor, and
consider the histogram of visited energies to be flat if

min½HðmÞ� ≥ c · avg½HðmÞ� with c ¼ 0.99 at the begin-
ning of the simulation, relaxing this condition to c ¼ 0.8
with decreasing modification factor. [Note that HðEÞ is
reset after each decrease of the modification factor.] Our
first modification factor is f ¼ expð1Þ and decreases to
f ¼ expð10−8Þ during the simulation. Our choice of para-
meters is much more careful than the original parameters
proposed in Refs. [23,24], resulting in a very small
statistical error for our results.
Instead of counting the number Ntðm; gÞ of triangula-

tions, we calculate the entropy density κcðm; gÞ defined by

κcðm; gÞ≔m−1 logNtðm; gÞ: ð5Þ

By using the entropy density, we can use directly the output
of the Wang-Landau algorithm, which is for numerical
reasons the logarithm DOS, and cancel the normalization
factor. It is also a common quantity discussed in the
literature [25,39,40] and corresponds to the value of the
(causal) dynamical triangulations’ coupling constant for
obtaining scale invariance [1,2]. In Fig. 3, a comparison
between our calculations and results obtained by lexico-
graphic enumeration for small triangulations [17] shows
excellent agreement and justifies our method.
Due to the diagonal-edge flips being ergodic for large

enough surface triangulations, it is sufficient to calculate
the density of states in an interval ½m − 2; mþ 2� to obtain
the entropy density κc by

κcðmÞ ¼ 1

8
· log

gðmþ 2Þ
gðm − 2Þ ; ð6Þ

using the assumption that κcðm� 2Þ ≈ κcðmÞ valid for
large m. Choosing this small interval of computation, the
calculation speeds up drastically compared to determining

(a) (b)

FIG. 3. Comparison of the exact entropy density from Ref. [17]
and our numerical calculations. (a) Entropy density κcðm; gÞ
in terms of the number of triangles m for orientable surfaces
(g ¼ 0: red circles, g ¼ 1: blue diamonds, g ¼ 2: green squares)
and nonorientable surfaces (g ¼ 1: purple triangles, g ¼ 2: brown
pentagons). Our numerical data is plotted with filled symbols; the
exact values are plotted with empty symbols and are shifted
slightly to the right to resolve these points. (b) Relative error

κcðm; gÞ=κðexactÞc ðm; gÞ − 1 of the numerical data with respect to
the exact values.
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the whole DOS using the Wang-Landau algorithm, because
computation time scales with the number of bins.
In order to fulfill the detailed balance condition in the

Wang-Landau algorithm and to correctly calculate the
transition probabilities, one has to compute for each flip
the ratio of the selection probabilities of the flip and those
of the inverse flip. Assuming that the triangulation has no
special symmetries, the selection probabilities can be
determined in terms of the current simplex numbers and
their change induced by the flip. However, there are
symmetric triangulations which make it necessary to check
whether there are other flips leading to an isomorphic
triangulation (these flips are then equivalent), and the same
for the inverse flip. These isomorphism checks increase
drastically the computation time needed for one step. But
fortunately, as depicted in Fig. 4, the deviations of the exact
(with isomorphisms) calculated and the simplified calcu-
lations are negligible for triangulations withm > 30. These
results are comparable with those of Ref. [41] on the level
of maps, where it was shown that almost all maps do not
posses intrinsic symmetries, which implies in our notion
that the simplified and exact selection probabilities match.

IV. RESULTS

We calculated the entropy density (6) κcðm; gÞ for
orientable and nonorientable surface triangulations up to
genus gmax ¼ 1000 and up to mmax ¼ 107 triangles using
400 independent Wang-Landau simulations each. In Figs. 5
and 6 κcðm; gÞ is displayed for fixed genus and for fixed
number of triangles.
Inspired by the asymptotic enumeration results for

triangulations of the 2-sphere and for maps on arbitrary
surfaces, we assume that the number of triangulations
behaves as

Nðm; gÞ ¼ āðgÞ · b̄ðgÞm ·mκ∞c ðgÞ: ð7Þ

This implies for the entropy density (6) the relation

κcðm; gÞ ¼ aðgÞ · 1
m
þ bðgÞ · logðmÞ

m
þ κ∞c ðgÞ: ð8Þ

Considering Fig. 5, we find that the constant term κ∞c ðgÞ
in Eq. (8) does not depend on the genus g or on whether the
surface is orientable; furthermore, we find excellent agree-
ment with the theoretical value of logð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

256=27
p Þ ≈ 1.1247

obtained for triangulations of the sphere [8]. By inspecting
κcðm; g ¼ 1Þ, one finds that for g ¼ 1 the entropy density is
approximately constant in terms of m, which implies that
bðgÞ ∝ b1 · ðg − 1Þ without any constant term, in agree-
ment with Refs. [8] and [19], where b1 ¼ 7=2 for trian-
gulations of the 2-sphere and b1 ¼ 5=2 for triangular maps
on surfaces.
To obtain the constants aðgÞ and bðgÞ, we rescale the

entropy density (8) so that

m · ½κcðm; gÞ − κ∞c ðgÞ� ¼ aðgÞ þ bðgÞ logm:

(a) (b)

FIG. 4. Influence of using the simplified selection probability,
not taking into account isomorphism. (a) Relative error of the
selection probability factors for orientable (g ¼ 0: red circles,
g ¼ 1: blue diamonds, g ¼ 2: green squares) and nonorientable
(g ¼ 1: purple triangles, g ¼ 2: brown pentagons) surfaces in
terms of the number of triangles. (b) Relative error of the entropy
density.

(a) (b)

FIG. 5. Entropy density for triangulations of orientable (a) and
nonorientable (b) surfaces in terms of the number of triangles m
for the genera g ¼ 0 (black, unfilled circles) (only orientable),
g ¼ 3 (red, filled circles), g ¼ 10 (blue squares), g ¼ 30 (green,
up-pointing triangles), g ¼ 100 (purple diamonds), g ¼ 300
(brown, down-pointing triangles) and g ¼ 1000 (pink penta-
gongs). The lines are fits of Eq. (8) with respect to aðgÞ and bðgÞ.

(a) (b)

FIG. 6. Deviation of the entropy density from the limiting value

κð∞Þ
c for triangulations of (a) orientable and (b) nonorientable
surfaces in terms of the genus g for m ¼ 102 (red), m ¼ 103

(blue), m ¼ 104 (green), and m ¼ 105 (purple) triangles.
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For every genus g, both constants can then be determined
by a linear fit of the rescaled entropy density in terms of
logm. In Fig. 7(a), the rescaled entropy density is plotted
for orientable surfaces of different genera; one can see an
excellent agreement with the proposed linear dependency
in terms of logm for sufficient triangles. Using the fitted
constants, all obtained data points can be brought to a
collapse as depicted in Fig. 7(b).
Having fitted aðgÞ and bðgÞ for all considered genera of

orientable and nonorientable surfaces, one can access
numerically the scaling relation of both constants for
triangulations as depicted in Fig. 8. The leading order
bðgÞ ¼ b1 · ðg − 1Þ does differ from the results for triangu-
lar maps qualitatively; we find b1 ¼ −0.197� 0.006 for
orientable and b1 ¼ −0.102� 0.004 for nonorientable
triangulations, while for triangular maps the theoretical
value b1 ¼ 5=2 was found [19]. We conjecture that b1 ¼
−2=5 for orientable and b1 ¼ −1=5 for nonorientable
surface triangulations, since these small integer fractions
are in the 1σ bounds of the numerically obtained values.
The next-to-leading order aðgÞ ¼ ð5.14� 0.09Þ · g (orient-
able) and aðgÞ ¼ ð2.60� 0.03Þ · g (nonorientable) has a
linear dependency on g for the considered range of genera

[implying ā ∝ expðgÞ in Eq. (7)]; no logarithmic correc-
tion as proposed in Ref. [19] for triangular maps is
present. For both aðgÞ and bðgÞ, one can deduce that the
results for orientable and nonorientable triangulations
coincide if one does not consider the genus, but the
type of the surface (which is half the genus for non-
orientable surfaces).

V. CONCLUSION AND OUTLOOK

In this paper, the number of triangulations of (orientable
and nonorientable) surface triangulations with arbitrary
genus was calculated using the Wang-Landau Markov-
chain Monte Carlo algorithm. Based on our results, we
conjecture the following relation for the asymptotic number
of surface triangulations:

Nðm; hÞ → ð170.4� 15.1Þhm−2ðh−1Þ=5
�
256

27

�
m=2

; ð9Þ

in terms of the type h of the surface, which equals the
genus g for orientable and half its value for nonorientable
triangulations.
These quantitative results for the leading- and next-to-

leading-order terms can be a valuable hint for mathemati-
cians proving the exact asymptotics of the number of surface
triangulations. Additionally, the numerical method pre-
sented in this paper can be directly applied to estimate the
number and its asymptotics of special typesof triangulations,
e.g. irreducible, k-equivelar or k-covered triangulations.
Using the presented method makes it possible to find the

scaling behavior of triangulations of higher-dimensional
manifolds (either of the total number or of the number of
triangulations with certain properties), and to conjecture
about fundamental questions that could not be answered
until now. For example, the question of whether there are
exponentially many or more triangulations of the d-sphere
(or another underlying manifold) in terms of the number of
maximal simplices (facets) [42] can only be answered for
certain subclasses of triangulations (e.g., locally construct-
able triangulations [43,44], geometric triangulations [45],
triangulations with a Morse function with a fixed number of
critical cells [46], or melonic triangulations, which are the
dominant contribution to the 1=N expansion in group field
theory [47]), the answer is there are more than exponen-
tially many in terms of the number of vertices for d-spheres
[48–50]. However, in three or more dimensions, the
computational effort increases due to the fact that for each
data point one has to calculate the DOS gðmÞ for a much
larger interval in the number m of maximal simplices to
ensure ergodicity, since there is no similar result as in
Refs. [33,34].
Our methods and results can also be used for solving

simplicial quantum gravity models like (causal) dynamical
triangulations on surfaces with arbitrary genus, where the

(a) (b)

FIG. 7. Scaling of the entropy density. (a) Plot of the entropy
m · κcðmÞ in terms of the logarithm of the number m of triangles
used to extract the constants aðgÞ and bðgÞ by fitting a straight
line. The data points are the same as those used in Fig. 5.
(b) Collapse of the data points; the points are darker for smaller
error, and only points with κcðmÞ=κ∞c < 1.05 are plotted.

(a) (b)

FIG. 8. Values of the asymptotic constants a and b in terms of
the genus g for orientable (red circles) and nonorientable (blue
squares) triangulations. The corresponding lines are linear fits.
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leading-order term gives the value of the coupling
constant necessary for obtaining scale-independent limits.
Furthermore, the next-to-leading-order terms can provide
insights into their finite size scaling, which is important,
since these models are solved mainly using Monte Carlo
simulations.
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