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Motivated by a desire to understand quantum fluctuation energy densities and stress within a spatially
varying dielectric medium, we examine the vacuum expectation value for the stress tensor of a scalar field
with arbitrary conformal parameter, in the background of a given potential that depends on only one spatial
coordinate. We regulate the expressions by incorporating a temporal-spatial cutoff in the (imaginary) time
and transverse-spatial directions. The divergences are captured by the zeroth- and second-order WKB
approximations. Then the stress tensor is “renormalized” by omitting the terms that depend on the cutoff.
The ambiguities that inevitably arise in this procedure are both duly noted and restricted by imposing
certain physical conditions; one result is that the renormalized stress tensor exhibits the expected trace
anomaly. The renormalized stress tensor exhibits no pressure anomaly, in that the principle of virtual work
is satisfied for motions in a transverse direction. We then consider a potential that defines a wall, a one-
dimensional potential that vanishes for z < 0 and rises like zα, α > 0, for z > 0. Previously, the stress
tensor had been computed outside of the wall, whereas now we compute all components of the stress tensor
in the interior of the wall. The full finite stress tensor is computed numerically for the two cases where
explicit solutions to the differential equation are available, α ¼ 1 and 2. The energy density exhibits an
inverse linear divergence as the boundary is approached from the inside for a linear potential, and a
logarithmic divergence for a quadratic potential. Finally, the interaction between two such walls is
computed, and it is shown that the attractive Casimir pressure between the two walls also satisfies the
principle of virtual work (i.e., the pressure equals the negative derivative of the energy with respect to the
distance between the walls).
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I. INTRODUCTION

When Casimir discovered [1] that, because of quantum
fluctuations, two uncharged perfectly conducting parallel
plates attracted each other in vacuum, he considered an
unphysical abstraction. Lifshitz [2] partially remedied this
defect, by allowing the plates to consist of dielectric
material with an arbitrary permittivity as a function of
frequency, but he still imagined that the plates were
separated by vacuum. This omission was removed a few
years later with the addition of Dzyaloshinskii and
Pitaevskii [3]; now the plates could be separated by another
dielectric. But the geometry still was a three-layer system:
the dielectric material was spatially constant in each region.
The general problem of a spatially varying medium has still
not been solved [4]. (Recent papers on this topic include
Refs. [5–7].) It is not merely a matter of numerics:

Divergences arise associated with this variation that are
still not understood. For an overview of the state of
knowledge in Casimir physics, see Ref. [8]. In this paper,
we use natural units, with ℏ ¼ c ¼ 1.
Some years ago, we started a program to investigate such

problems in the context of a simpler scalar field interacting
with a spatially varying potential. The proposal of a soft
wall was made in Ref. [9]; that is, we consider a potential of
the form

vðzÞ ¼
�
0; z < 0;

zα; z > 0;
ð1:1Þ

with α > 0, the coupling constant being absorbed into the
definition of z [9]. This potential interacts with a massless
scalar field ϕ governed by the Lagrangian

L ¼ −
1

2
∂μϕ∂μϕ −

v
2
ϕ2: ð1:2Þ

The corresponding stress-energy tensor in flat Minkowski
space with gμν ¼ diagð−1; 1; 1; 1Þ is
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Tμν ¼ ∂μϕ∂νϕ −
1

2
gμνð∂λϕ∂λϕþ vϕ2Þ

− ξð∂μ∂ν − gμν∂2Þϕ2: ð1:3Þ

Here, we have included the arbitrary conformal term, with
the conformal parameter ξ. The value ξ ¼ 1=6 is the one
that makes conformal symmetry manifest, and softens
many divergences in scalar quantum field theory.
In Ref. [10], we computed the energy density for this

model, mostly in the vacuum region below the wall. Once
the bulk energy density, which makes no reference to the
potential at all, is subtracted, the energy density is finite
outside the wall. We showed that the energy density
diverges as the boundary is approached from below,

z → 0−∶ uðzÞ ∼ 1 − 6ξ

96π2
1

z
; ð1:4Þ

for a linear wall, much softer than the 1=z4 divergence seen
for a Dirichlet wall. For a quadratic wall, the surface
divergence is logarithmic,

z → 0−∶ uðzÞ ∼ −
1 − 6ξ

48π2
Γð0; 2jzjÞ: ð1:5Þ

For larger values of α, there is no surface divergence at all.
We also analyzed the divergence structure within the

walls, where using second-order WKB analysis we showed
with a temporal cutoff τ that the energy density had the
following dependence:

uðzÞ ∼ 3

2π2
1

τ4
−

1

8π2
vðzÞ
τ2

þ 1

32π2

�
vðzÞ2 þ 2

3
ð1 − 6ξÞ ∂2

∂z2 vðzÞ
�
ln τ: ð1:6Þ

The first term is the divergent bulk energy density,
independent of the potential. The lower-order divergences
involve the potential.
The first steps in extending this work have been given in

Ref. [11]. There, general formulas are given for all
components of the stress tensor, and a strategy for extend-
ing the computational ability to general α is sketched. Here
we tackle the general problem within the wall, but with
detailed numerical results restricted to the explicitly solv-
able cases α ¼ 1, 2.
In Sec. II, we state the general Green’s function

formulation of the problem, and discuss the point-splitting
regulation scheme used to define the vacuum expectation
value of the square of the field. We then give formulas for
constructing the vacuum expectation value of the stress
tensor. In Sec. III, we identify the divergences occurring in
the vacuum expectation value of the stress tensor, based
on the second-order WKB approximation. In Sec. IV, we
give the classically expected trace and divergence equations

satisfied by the stress tensor. Since the WKB solutions
found in Sec. III are only approximate, the divergence, or
conservation, identity is only approximately satisfied in any
order of WKB approximation, although the trace identity is
automatically satisfied for any g.
The divergences found in Sec. III are systematically

discarded in Sec. V. As in the curved-space analogue, at
least some of these divergences correspond to terms in the
original Lagrangian [9,12,13], so we shall refer to this
process as “renormalization.” There are logarithmically
divergent terms; these transform into finite terms depending
logarithmically on the potential with an arbitrary mass
scale. The process of renormalizing the stress tensor
involves two further steps: the vacuum expectation value
of the scalar field is shifted by an amount proportional to
the square of the cutoff parameter δ; and the stress tensor is
modified by the addition of a term proportional to the
second heat-kernel coefficient, so that it does not possess a
conservation anomaly. As a consequence, the stress tensor
acquires the well known [14] trace anomaly. In this
procedure, we follow Wald [15]. The resulting renormal-
ized stress tensor is now diagonal and satisfies the principle
of virtual work, displaying no pressure anomaly.
The considerations in Secs. II–V are more general

than the steeply rising potential considered in the rest of
the paper. They apply to (at least) any positive Klein-
Gordon potential that depends on only one Cartesian
coordinate.
We then go on in Secs. VI and VII to discuss the energy

density in the interior region for the linear and the quadratic
potentials, respectively. We compute the finite remainders
numerically, and show that they have the expected diver-
gences as the boundary z ¼ 0 is approached from above,
the same as those found outside (further discussion in
Appendix B). The behavior of hTzzi, which does not exhibit
any surface divergence, is discussed in Sec. VIII.
Finally, in Sec. IX, we consider two such walls, with

arbitrary, mirrored, potentials. The Lifshitz formula is
easily obtained for the force between the walls, which is
shown, for arbitrary potential, to be equally well derivable
from the total energy obtained by integrating the energy
over the regions between as well as inside the potentials.
Thus, as expected, the principle of virtual work is once
again satisfied.
The Conclusion discusses further directions this work

will pursue. It is followed by two Appendixes, the first on
the WKB approximation and the second on the derivation
of the “surface divergences.”

II. GREEN’S FUNCTION AND CONSTRUCTION
OF STRESS TENSOR

We will compute in this paper the vacuum expectation
value of the stress tensor obtained from the Green’s
function, which for this ð2þ 1Þ-dimensional spatial geom-
etry has the form
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Gðx; x0Þ ¼
Z

dω
2π

ðdk⊥Þ
ð2πÞ3 e−iωðt−t0Þeik⊥·ðr−r0Þ⊥gðz; z0;ω;k⊥Þ;

ð2:1Þ

which satisfies the differential equation,

� ∂2

∂t2 −∇2 þ v

�
Gðx; x0Þ ¼ δðx − x0Þ; ð2:2Þ

where xμ is a four-vector, and so the delta function is a four-
dimensional one. The time-ordered product of fields is the
quantum correspondent of this Green’s function,

hTϕðxÞϕðx0Þi ¼ 1

i
Gðx; x0Þ: ð2:3Þ

It is more than convenient to perform a Euclidean trans-
formation (more than a Wick rotation),

ω → iζ; ðt − t0Þ → iðτ − τ0Þ; ð2:4Þ

which is permitted because the Green’s function has no
singularities in the first and third quadrants. Then the
reduced Green’s function becomes a function of

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ k2

p
, k ¼ jk⊥j:

gðz; z0;ω;k⊥Þ → gðz; z0; κÞ: ð2:5Þ

The reduced Green’s function then satisfies

�
−

∂2

∂z2 þ κ2 þ vðzÞ
�
gðz; z0Þ ¼ δðz − z0Þ: ð2:6Þ

In general, there is no closed form solution to the
homogeneous version of this equation; therefore, in the
next section, we give the leading and next-to-leading WKB
approximations to the solutions of this equation (which
capture the asymptotic behavior in any case) and compute
the corresponding stress tensor components, obtained by
applying a differential operator to Eq. (2.3). These are
divergent, so we regulate them by point-splitting in time
and transverse space:

τ − τ0 → τ → 0; ðr − r0Þ⊥ → ρ → 0: ð2:7Þ

Everything is expressed in terms of scalar integrals involv-
ing δ [11]:

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ ρ2

q
: ð2:8Þ

In particular, the vacuum expectation value of ϕ2 is
given by

hϕ2ðxÞi ¼ 1

i

Z
dω
2π

ðdk⊥Þ
ð2πÞ2 eik·δgðz; z;ω; kÞ

¼ 1

2π2

Z
∞

0

dκκ2gðz; z; κÞ sin κδ
κδ

≡ I½gðzÞ�: ð2:9Þ

Here, gðzÞ ¼ gðz; zÞ.
The general expression for the reduced Green’s function

can be taken as

gðz; z0Þ ¼ 1

w
Fðz>ÞGðz<Þ −

1

w
FðzÞFðz0ÞGð0Þ −G0ð0Þ=κ

Fð0Þ − F0ð0Þ=κ ;

ð2:10Þ

where F is a solution of the homogeneous equation,

�
−

∂2

∂z2 þ κ2 þ vðzÞ
��

F

G

�
¼ 0; ð2:11Þ

that decays at positive infinity, and w is the Wronskian with
a second independent solution G,

w ¼ FðzÞG0ðzÞ −GðzÞF0ðzÞ; ð2:12Þ

which is independent of z. It is important to note that
adding an arbitrary multiple of F to G does not change the
Green’s function.
All components of the stress tensor can be computed

from the Green’s function, more particularly in terms of the
regulated vacuum expectation value of ϕ2 (2.9). For
example, the energy density is given by [11] (β ¼ ξ − 1=4),

u ¼
� ∂2

∂τ2 − β
∂2

∂z2
�
I½gðzÞ�; ð2:13aÞ

and the xx and yy components of the stress tensor are
expressed as

hTxxi ¼ −
� ∂2

∂ρ2x − β
∂2

∂z2
�
I½gðzÞ�; ð2:13bÞ

and

hTyyi ¼ −
� ∂2

∂ρ2y − β
∂2

∂z2
�
I½gðzÞ�; ð2:13cÞ

while the zz component is written as

hTzzi ¼
1

4

∂2

∂z2 I½gðzÞ� − I½ðκ2 þ vðzÞÞgðzÞ�: ð2:13dÞ

The off-diagonal terms are given by
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hTxyi ¼
∂
∂ρx

∂
∂ρy I½gðzÞ�; hT0xi ¼ i

∂
∂τ

∂
∂ρx I½gðzÞ�;

hT0yi ¼ i
∂
∂τ

∂
∂ρy I½gðzÞ�; ð2:13eÞ

while

hT0zi ¼ hTxzi ¼ hTyzi ¼ 0: ð2:13fÞ

III. ASYMPTOTIC BEHAVIOR

Now we wish to obtain a generalization of Eq. (1.6),
which mirrors divergences much earlier obtained in curved
space [16–18]. The large κ behavior to the integrand in
(2.9) is dominated by that of the first term in Eq. (2.10). At

coincident points, that term is approximated by the second
WKB approximation [19]:

FðzÞGðzÞ
w

∼ ~gðz; zÞ≡ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ vðzÞ

p −
v00ðzÞ

16ðκ2 þ vðzÞÞ5=2

þ 5v02ðzÞ
64ðκ2 þ vðzÞÞ7=2 : ð3:1Þ

In Eqs. (A8a) and (A8b), we have expanded I½~g� through
order δ2, thereby obtaining an approximation to I½g� that is
second order in both WKB and point-splitting senses.
Inserting it into Eqs. (2.13), we obtain the stress tensor to
second WKB order and to Oðδ0Þ:

h ~Tμνi ¼
1

2π2δ4

0
BBBBBB@

3τ2−ρ2
δ2

4iτρx
δ2

4iτρy
δ2

0

4iτρx
δ2

τ2þρ2y−3ρ2x
δ2

4ρxρy
δ2

0

4iτρy
δ2

4ρxρy
δ2

τ2þρ2x−3ρ2y
δ2

0

0 0 0 1

1
CCCCCCA

þ vðzÞ
8π2δ2

0
BBBBB@

ρ2−τ2
δ2

− 2iτρx
δ2

− 2iτρy
δ2

0

− 2iτρx
δ2

ρ2x−τ2−ρ2y
δ2

− 2ρxρy
δ2

0

− 2iτρy
δ2

− 2ρxρy
δ2

ρ2y−ρ2x−τ2

δ2
0

0 0 0 −1

1
CCCCCA

þ v2ðzÞ
32π2

�
ln

ffiffiffi
v

p
δ

2
þ γ

�
diagð1;−1;−1;−1Þ −

�
ξ −

1

6

�
v00ðzÞ
8π2

�
ln

ffiffiffi
v

p
δ

2
þ γ

�
diagð1;−1;−1; 0Þ

þ v2ðzÞ
128π2

0
BBBBBB@

τ2−3ρ2
δ2

4iτρx
δ2

4iτρy
δ2

0

4iτρx
δ2

3τ2þ3ρ2y−ρ2x
δ2

4ρxρy
δ2

0

4iτρy
δ2

4ρxρy
δ2

3τ2þ3ρ2x−ρ2y
δ2

0

0 0 0 3

1
CCCCCCA

−
v00ðzÞ
96π2

0
BBBBB@

τ2

δ2
iτρx
δ2

iτρy
δ2

0

iτρx
δ2

− ρ2x
δ2

ρxρy
δ2

0

iτρy
δ2

ρxρy
δ2

− ρ2y
δ2

0

0 0 0 0

1
CCCCCA

þ 1

96π2

�
6
v02ðzÞ
vðzÞ −

∂2

∂z2
�
v00ðzÞ
vðzÞ

��
diagð−β; β; β; 1=4Þ

þ 1

384π2

�
v02ðzÞ
vðzÞ diagð−1; 1; 1;−5Þ þ 2

∂2

∂z2
�
v02ðzÞ
v2ðzÞ

�
diagð−β; β; β; 1=4Þ

�
: ð3:2Þ

(Here, the tilde notation means that the second WKB
approximation is being employed.) Of the ten terms
displayed above, the last two give the finite contribution
from the final term in Eq. (3.1). The middle term in
Eq. (3.1), which also arises from the second-order WKB
approximation as discussed in Appendix A, contributes
both to the eighth term in Eq. (3.2) and to the divergent and
ambiguous terms proportional to v00, the sixth and fourth
terms, and results in the conversion of β to the expected
ξ − 1=6 in the fourth term above. The remaining terms arise
from the zeroth-order WKB approximation, the first term in
Eq. (3.1).
It is obvious that (at least) the most singular terms in

Eq. (3.2) can be written in a covariant tensorial form in

analogy to the formulas of Christensen [16] for the case of
an external gravitational field. We find it convenient,
however, to delay displaying the result of that step until
after renormalization [see Eq. (5.11)].

IV. TRACE AND DIVERGENCE THEOREMS

From Eq. (1.3) we can immediately show, classically,
that the trace of the stress tensor is

Tμ
μ ¼ −vϕ2 þ 1

2
ð6ξ − 1Þ∂2ϕ2; ð4:1Þ

while the divergence is
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∂μTμν ¼ −
1

2
ϕ2∂νv: ð4:2Þ

As expected, the stress tensor is conserved outside the
potential region and is traceless there as well for conformal
coupling, ξ ¼ 1=6.
What happens quantum mechanically? Consider, first,

the trace. According to Eqs. (2.13), the vacuum expectation
value of the trace is

hTμ
μi ¼ −hT00i þ hTxxi þ hTyyi þ hTzzi

¼
�
−
� ∂2

∂τ2 þ
∂2

∂ρ2x þ
∂2

∂ρ2y
�
þ
�
3β þ 1

4

� ∂2

∂z2
�
I½g�

− I½ðκ2 þ vÞg�: ð4:3Þ

But I½g� depends on the cutoff parameters only through the
combination δ, so the above is simply

hTμ
μi ¼ −

� ∂2

∂δ2 þ
2

δ

∂
∂δ − 3

�
ξ −

1

6

� ∂2

∂z2
�
I½g�

− I½ðκ2 þ vÞg�: ð4:4Þ

Using

�
−

d2

dδ2
−
2

δ

d
dδ

�
sin κδ
κδ

¼ κ2
sin κδ
κδ

; ð4:5Þ

we simplify Eq. (4.4) to

hTμ
μi ¼ −vI½g� þ 3

�
ξ −

1

6

�
∂2
zI½g�; ð4:6Þ

which is the vacuum expectation value of the classical trace
identity (4.1). This is true identically as a functional
relationship for any g, so it is satisfied exactly by the
WKB approximation, to any order.
What about the divergence equation (conservation law)?

The nonzero component of the divergence of the stress
tensor is

∂μhTμzi ¼ ∂zhTzzi ¼ 1

4
∂3
zI½g� − ∂zI½ðκ2 þ vÞg�; ð4:7Þ

and the question is whether this is equal to − v0
2
I½g�. This

will be an identity if I is a functional of the exact Green’s
function which satisfies

ð−∂2
z þ κ2 þ vÞgðz; z0Þ ¼ 0; z ≠ z0: ð4:8Þ

But the WKB approximants do not satisfy the equation of
motion. In fact, if we use the zeroth-order approximation
given in Eq. (3.2) (essentially the first seven terms there),
we find that (terms that vanish with δ are omitted here and
in the following),

∂zh ~Tð0Þ
zz i þ v0

2
I½gð0Þ� ¼ 1

4
∂3
zI½gð0Þ� − ∂zI½ðκ2 þ vÞgð0Þ�

þ v0

2
I½gð0Þ� ¼ ∂z

1

64π2

�
v02

v

�
; ð4:9Þ

where the right side is simply the z derivative of the
unambiguous finite part of the stress tensor originating in
this order, the first term in the penultimate line of Eq. (3.2),
the seventh term. Note that this zeroth-order discrepancy is
third order in derivatives. If we include both the zeroth- and
second-order terms [all the terms displayed in Eq. (3.2)],
the discrepancy is fifth order in derivatives,

1

4
∂3
zI½gð0Þþð2Þ� − ∂zI½ðκ2 þ vÞgð0Þþð2Þ� þ v0

2
I½gð0Þþð2Þ�

¼ −∂3
z

1

384π2

�
v00

v
−

v02

2v2

�
¼ 1

4
∂3
zI½gð2Þ�; ð4:10Þ

where I½gð2Þ� is given in Eq. (A8b). [Alternatively, it is the z
derivative of the eight and tenth terms in Eq. (3.2).] If we go
through the fourth order, we get

1

4
∂3
zI½gð0Þþð2Þþð4Þ� − ∂zI½ðκ2 þ vÞgð0Þþð2Þþð4Þ�

þ v0

2
I½gð0Þþð2Þþð4Þ� ¼ 1

4
∂3
zI½gð4Þ�; ð4:11Þ

where I½gð4Þ� is given in Eq. (A8c). The discrepancy is now
seventh order in derivatives. In each case, the lower-order
discrepancy is canceled, and the remaining discrepancy is
pushed to the next-higher order.

V. RENORMALIZATION

We now wish to obtain finite, “renormalized” values for
hϕ2i and hTμνi. The former is needed both to investigate the
fate of the trace and divergence identities of Sec. IV and to
provide a simple way of getting the renormalized stress
tensor itself in parallel to the derivation of the regularized
version (3.2); for the latter purpose, we need to keep the
Oðδ2Þ terms in I½g�.
Naively, one would like simply to discard from (3.2) all

terms that, as δ → 0, either diverge or depend on the
direction of the point-splitting vector ðτ; ρÞ. The problem
of justifying that step physically by a genuine renormal-
ization of coupling constants in a full theory including
the gravitational field and the scalar field v as dynamical
objects will not be discussed here (but see Refs. [9,12,13]);
hence, our use of quotation marks around “renormalized.”
Another problem, however, cannot be postponed: It is
impossible to separate logarithmically divergent terms from
finite terms in a scale-invariant manner, and likewise it is
impossible to separate direction-dependent terms from
direction-independent finite terms unambiguously. Both
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of these ambiguities afflict only the terms proportional to v2

and v00; we shall refer to all such terms as being of “critical
order.”What is being confronted here is a close analogue of
the situation in quantum field theory in curved spacetime
that was resolved by intensive work in the late 1970s
[15,20–22] (see also Ref. [23] and related papers), and we
follow those references rather closely. The basic doctrine is
that terms of critical order in the renormalized stress tensor
are inherently ambiguous but can be constrained by certain
physical requirements of conservation and covariance
(tensoriality).
We start with the expression for I½~g�≡ I½gð0Þ� þ I½gð2Þ�.

Starting from Eqs. (A8a) and (A8b), we omit the Oðδ−2Þ
term and make the replacement

ln
ffiffiffi
v

p
δ

2
þ γ −

1

2
→ ln

ffiffiffi
v

p
μ

; ð5:1Þ

where μ is some arbitrary mass scale, in every logarithmic
term. Note that the constant term on the left-hand side of
rule (5.1) is an arbitrary convention, since a change in it can
be regarded as a redefinition of μ, but it is important to
adopt the same convention in every instance. The result is a
tentatively renormalized expression:

4π2ĪR½gð0Þþð2Þ� ¼
�
v
2
þ δ2

16

�
v2 −

1

3
v00
��

ln
ffiffiffi
v

p
μ

−
1

24

�
v00

v
−
1

2

v02

v2

�
−
δ2

64

�
3v2 þ 1

3

v02

v

�
;

ð5:2Þ

in which the term − 3
64
δ2v2 arises because one logarithm in

Eq. (A8a) has − 5
4
instead of − 1

2
.

If Eq. (5.2) is inserted into Eqs. (2.13) in place of the
unrenormalized 4π2I½g�, one obtains a tentatively renor-
malized version of Eq. (3.2) from which all divergent or
direction-dependent terms have disappeared. This calcu-
lation is facilitated by recognizing from Eq. (4.5) that
Eq. (2.13d) may be replaced by

hTzzi ¼
�
1

4
∂2
z þ∇2

δ − v

�
I½g�; ð5:3Þ

where we see the appearance of the Laplacian in the δ
coordinates, which on a spherically symmetric function
becomes

∇2
δ ¼

∂2

∂δ2 þ
2

δ

∂
∂δ : ð5:4Þ

In particular, ∇2
δδ

2 ¼ 6. However, it remains to grapple
with the arbitrariness in the terms of critical order produced
by this tentative procedure.

Adler et al. [18] and Wald [15,21] demanded that (in our
terminology) the terms subtracted from I½~g� to yield IR½~g�
must themselves be the leading asymptotic terms of a
certain minimal solution of the Green’s function’s differ-
ential equation. For technical reasons, we find it hard to
follow Wald’s procedure in our setting, but we offer a
different physical argument that leads in the end to the same
result, in the sense that our trace anomaly (5.10) agrees with
Wald’s general formula. We observe that all terms of critical
order in the tentatively renormalized hTμνi can be written
tensorially in terms of the metric tensor and v and its
covariant derivatives, with one exception, traceable to the
term − 3

64
δ2v2 in ĪR previously noted. The bad term in the

stress tensor can be removed by modifying the critical-
order terms in Eq. (5.2): IR ≡ ĪR þ ΔIR with

4π2ΔIR ≡ 3

64
δ2
�
v2 −

1

3
v00
�
: ð5:5Þ

Here we see the appearance of

a2 ¼
1

2

�
v2 −

1

3
v00
�
; ð5:6Þ

the second heat-kernel coefficient for the system under
study ([24], Sec. 4.8; [25], chap. 9), which also occurs in
the logarithmic term in Eq. (5.2). This gives a modification,
for example, to the zz component of the stress tensor,

4π2ΔhTzzi ¼
9

16
a2: ð5:7Þ

We now follow Wald [15] precisely, observing that the
critical-order terms in the new renormalized stress tensor do
not obey the conservation law (4.2):

4π2
�
∂zhTzzi½IR� þ

1

2
v0IR

�
¼ −∂z

1

16
a2: ð5:8Þ

(This phenomenon is entirely separate from the WKB
residual indicated in Eq. (4.10), which involves terms of
higher order in derivatives and does not represent any
anomaly in the exact stress tensor.) This “conservation
anomaly” is cured by adding to the stress tensor another
critical-order term:

hTμνiR ¼ hTμνi½IR� þ
a2
64π2

gμν: ð5:9Þ

This step introduces a trace anomaly,

hTμ
μiR þ vIR − 3

�
ξ −

1

6

�
∂2
zIR ¼ 1

16π2
a2: ð5:10Þ

So with this set of redefinitions, we are finally led to the
following form of the renormalized energy-momentum
tensor,
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4π2hTμνiRðzÞ ¼ −gμν
v2

8
ln

ffiffiffi
v

p
μ

−
1

2

�
β þ 1

12

�
ð∂μ∂ν − gμν∂2Þ

�
v ln

ffiffiffi
v

p
μ

�
þ gμν

v2

32

þ 1

96

v02

v
diagð1;−1;−1; 1Þ − 1

24
∂2
z

�
v00

v
−
1

2

v02

v2

�
diag

�
−β; β; β;

1

4

�
þ 4π2tμν; ð5:11Þ

where tμν is the remainder of the stress tensor, obtained by
the construction in Eqs. (2.13) when the zeroth and second
WKB approximations are subtracted from the Green’s
function,

tμν ¼ hTμνi − h ~Tμνi ¼ hTμνi½I½g − ~g��: ð5:12Þ
The form of the renormalized stress tensor (5.11) is a
central result of this paper.
Note that the terms of critical order [in the top line of

Eq. (5.11)] are now completely tensorial. The terms in the
second line are, strictly speaking, part of the finite remain-
der, which need not be covariant in that sense. Note also
that the off-diagonal tensor components, which in Eq. (3.2)
were entirely direction-dependent, have now completely
disappeared. The direction-independent off-diagonal finite
terms must vanish by reflection symmetry in each of the
coordinates t, x, and y. The renormalized hTxxiR and hTyyiR
are the same as uR ¼ hT00iR, except for a reversal of sign;
see Eqs. (2.13b) and (2.13c). This proves the nonexistence
of a transverse pressure anomaly [13], completing the
argument in Ref. [11].
We will compute tμν numerically in the following two

sections, for a linear and a quadratic potential, respectively,
where explicit formulas for the exact Green’s functions can
be given.

VI. ENERGY DENSITY FOR THE LINEAR WALL

Let us consider the energy density for the linear wall,
within the region of the potential,

z > 0∶ vðzÞ ¼ z: ð6:1Þ
In this case, the renormalized WKB stess tensor (5.11)
gives the leading contribution:

~uR ¼ h ~T00iR
¼ 1

32π2
z2
�
ln

ffiffiffi
z

p
μ

−
1

4

�
−

β

16π2z
−

1

384π2

�
1

z
þ 12β

z4

�
:

ð6:2Þ
The remainder of the energy density comes from substitut-
ing g − ~g into Eq. (2.9) and using the construction for the
energy density in terms of this vacuum-expectation value,
Eq. (2.13a). Since the integral defining the remainder is
convergent without the cutoff, we expand the cutoff factor,
sin κδ=ðκδÞ ¼ 1 − ðκδÞ2=6þ � � �, and obtain the remainder:

ðu − ~uÞðzÞ ¼ −
1

2π2

Z
∞

0

dκκ2
�
1

3
κ2 þ β

∂2

∂z2
�

× ½gðz; zÞ − ~gðz; zÞ�: ð6:3Þ

Here, the explicit Green’s function for the linear potential is

gðz; zÞ ¼ πAiðκ2 þ zÞBiðκ2 þ zÞ

−
ðκBi − Bi0Þðκ2Þ
ðκAi − Ai0Þðκ2Þ πAi

2ðκ2 þ zÞ: ð6:4Þ

We know from Ref. [11] that the WKB approximation is
quite good for large κ, so the integral (6.3) should converge
quite rapidly. The integrand is plotted in Fig. 1. To the
numerical integration of the remainder (6.3), we add the
portion of the renormalized WKB energy from Eq. (6.2)
that dominates for small values of z,

uwkb ¼ −
1

384π2

�
1þ 24β

z
þ 12β

z4

�
: ð6:5Þ

(The dominant terms in the renormalized energy density for
large distances,

uleading ¼
1

32π2
z2
�
ln

ffiffiffi
z

p
μ

−
1

4

�
; ð6:6Þ

are ambiguous because they depend on the arbitrary scale
μ, and require further discussion.) In Fig. 2, we plot the sum
u − ~uþ uwkb, which we call the “residual energy density.”
It is seen that in each case the residual energy density

in
te

gr
an

d

0.0000

–0.0002

–0.0004

–0.0006

–0.0008

–0.0010

–0.0012

FIG. 1. Integrand in Eq. (6.3) for z ¼ 1 for β ¼ 0 (dotted),
β ¼ −1=12, the conformal value (thick), and β ¼ −1=4 (dashed).
(All figures were prepared with Mathematica.)
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rapidly goes to zero as z → ∞. (Of course, the terms in
uleading, Eq. (6.6), grow for large z.) For the conformal case,
β ¼ −1=12, the energy density is nearly zero. Otherwise,
the energy diverges as the boundary z ¼ 0 is approached.
For β < −1=12 the residual energy is everywhere negative,
while for β > −1=12 the energy density is positive. The
leading WKB divergence seen in Eq. (6.5), going like z−4,
is clearly spurious, being canceled by the remainder energy
density (6.3). Thus, the dominant structure in the integrand
seen in Fig. 1 reflects this ultimately spurious behavior, and
the integrations have to be carried out to much higher
values of κ than Fig. 1 suggests. The remaining divergence
near the boundary is precisely the same (in terms of jzj) as
found in Ref. [10] for the exterior region [see our Eq. (1.4)]

usurf ¼
1þ 12β

192π2z
: ð6:7Þ

This is shown as the dotted curves in Fig. 2. In Appendix B,
we give a plausibility argument for why this result might
have been expected.

VII. ENERGY DENSITY
FOR THE QUADRATIC WALL

Now we are looking at

vðzÞ ¼ z2; α ¼ 2; ð7:1Þ

for which the renormalized second-order WKB energy
density is

~uR ¼ h ~T00iR

¼ z4

32π2

�
ln
z
μ
−
1

4

�
−
ξ − 1=6
4π2

ln
z
μ
−

1

48π2
ð1þ 18βÞ:

ð7:2Þ

The remainder of the energy density is given by

ðu − ~uÞðzÞ ¼ −
1

2π2

Z
∞

0

dκκ2
�
κ2

3
þ β

∂2

∂z2
�

×

�
gðz; zÞ − 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ z2

p þ 1

8ðκ2 þ z2Þ5=2

−
5

16

z2

ðκ2 þ z2Þ7=2
�
: ð7:3Þ

The diagonal Green’s function for the quadratic wall is

gðz; zÞ ¼ Γðκ2þ1
4
ÞΓðκ2þ3

2
Þ

π2ð3−κ2Þ=2

�
D−κ2þ1

2

ð
ffiffiffi
2

p
zÞD−κ2þ1

2

ð−
ffiffiffi
2

p
zÞ

−
Γðκ2þ1

4
Þ − 2

κ Γðκ
2þ3
4
Þ

Γðκ2þ1
4
Þ þ 2

κ Γðκ
2þ3
4
ÞD

2

−κ2þ1
2

ð
ffiffiffi
2

p
zÞ
�
; ð7:4Þ

in terms of parabolic cylinder functions. The WKB
approximation is very accurate, as shown in Fig. 3.
This time we add to the remainder energy, computed

numerically, the parts of the renormalized WKB energy
(7.2) important for small z,

uwkb ¼ −
1þ 12β

48π2
ln
z
μ
−

1

48π2
ð1þ 18βÞ: ð7:5Þ

(Again, we omit the leading term in the renormalized WKB
energy

FIG. 2. Residual energy density within the wall for a linear
potential. The solid curves show, from top to bottom, the energy
density for β ¼ 0;−1=12;−1=4, compared with the dotted curves
which show the surface energy estimates from Eq. (6.7).

FIG. 3. The reduced diagonal Green’s function for the quadratic
wall, for z ¼ 1, shown by the solid curve. The dashed curve
shows the absolute value of the residual Green’s function after the
leading WKB approximation is removed, the dotted curve shows
the residual after the two leading WKB approximations are
subtracted, and the dot-dashed curve shows the absolute value of
the residual after the first three WKB approximations shown in
Eq. (7.3) are subtracted (top to bottom on the right). Thus the
bottom curve shows the effect of subtracting the WKB approx-
imations through second order. (Because what is plotted is the
logarithm of the absolute value of the residual of gðz; zÞ, the
spikes occur at the points where the differences change sign.)
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uleading ¼
z4

32π2

�
ln
z
μ
−
1

4

�
ð7:6Þ

which is dominant for large distances.) Convergence of the
integral for the remainder energy is quite slow in this case,
complicated by the fact thatMathematica fails to compute the
parabolic cylinder function accurately for large κ. Therefore,
it is necessary to break up the integration into two parts,

uðzÞ ¼
Z

K

0

dκIðκ; zÞ þ
Z

∞

K
dκIðκ; zÞ; ð7:7Þ

whereI is the integrand shown inEq. (7.3), and then compute
the second integral, for large K, from the dominant WKB
approximation coming from the second term in Eq. (2.10)
[see Appendix B, Eq. (B11)],

gF2 ∼
1

16κ5
e−2κz; κ → ∞; ð7:8Þ

which leads to the approximate evaluation,

Iðκ; zÞ ∼ −
1þ 12β

96π2
1

κ
e−2κz; κ → ∞; ð7:9Þ

and then to a form for the energy density suitable for
numerical calculation,

ðu − ~uÞðzÞ ≈
Z

K

0

dκIðκ; zÞ − 1þ 12β

96π2
Γð0; 2KzÞ; ð7:10Þ

in terms of the incomplete gamma function. Figure 4 shows
the residual energy density composed of the remainder
energy (7.3) [computed using Eq. (7.10)] plus uwkb [from

Eq. (7.5)] for β ¼ 0,−1=12 (the conformal value),−1=4, and
1=20. The method of Appendix B yields a surface term,

usurf ¼ −
1þ 12β

96π2
Γð0; 2zÞ; ð7:11Þ

which is, in fact, the same as the exterior result, Eq. (1.5),
except, this time, for sign. However, a constant term is
undetermined by our asymptotic analyses. Tomatch the data,
the surface energy is shifted by a constant amount, which is
empirically fitted by the simple formula:

uoffset ¼ 0.00025ð1 − 20βÞ: ð7:12Þ
(Thevalue for β ¼ 1=20 is shown in the graph to demonstrate
that no offset is required in that case.) The fit is quite
remarkably good. The numerical fit, for large κ and small
z, is the statementZ

K

0

dκIðκ; zÞ − 1þ 12β

48π2
ln z −

1þ 18β

48π2

þ 1þ 12β

96π2
½Γð0; 2zÞ − Γð0; 2KzÞ� ≈ 0.00025ð1 − 20βÞ:

ð7:13Þ

VIII. OTHER STRESS TENSOR COMPONENTS

As noted above, hTμνiR is diagonal, and

hTxxiR ¼ hTyyiR ¼ −uR: ð8:1Þ

So we only have to examine hTzziR.
For the linear wall, the second-order renormalized WKB

stress tensor (5.11) gives for the linear potential (omitting
the ambiguous leading term

T leading
zz ¼ −

z2

32π2

�
ln

ffiffiffi
z

p
μ

−
1

4

�
; ð8:2Þ

which is irrelevant for small z)

hTzziwkb ¼
1

384π2

�
1

z
þ 3

z4

�
: ð8:3Þ

This is added to the numerical evaluation of the remainder,

tzz ¼ hTzzi − h ~Tzzi ¼
1

2π2

Z
∞

0

dκκ2
�
1

4

∂2

∂z2 − ðκ2 þ zÞ
�

×
�
gðz; zÞ − 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ z

p −
5

64ðκ2 þ zÞ7=2
�
; ð8:4Þ

and tzz þ hTzziwkb is shown in Fig. 5. Now there is no
surface divergence, and the residual stress tensor within the
wall [leaving aside the contribution of Eq. (8.2)] is very
small. (The corresponding stress tensor outside the wall is
exactly zero [10,11].)

FIG. 4. Numerical integration of the residual energy [the sum of
Eqs. (7.3) plus (7.5)] for the quadratic wall for β ¼ 1=20, β ¼ 0,
β ¼ −1=12, the conformal value, and β ¼ −1=4, from bottom to
top. The results are insensitive to the value of K, as long as it is
sufficiently large, but not so large that the errors in computing
parabolic cylinder functions are significant. Here we used
K ¼ 10. Here μ is arbitrarily taken to be 1. The dotted curves
are the surface energies (7.11) with the offset (7.12).
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As for the trace and divergence identities, Eqs. (5.10) and
(5.8), these are not modified by the residual finite con-
tributions. The former is structurally true as noted in
Eq. (4.6). The latter should be respected because the
modification of the stress tensor (5.9) involved only the
critical terms. We have checked numerically that our
approximations are consistent,

4π2
�
∂ztzz þ

v0

2
ðI − ~IÞ

�
−

1

96
∂3
z

�
v00

v
−

v02

2v2

�

→ 2

Z
∞

0

dκκ2
�
1

4
∂3
z − ðκ2 þ zÞ∂z −

1

2

�
ðg − ~gÞ − 1

8z5
≈ 0;

ð8:5Þ

consistent with zero within machine precision, where the
substitution is for the linear wall. Numerical consistency of
the remainder stress tensor with the divergence identity has
been verified also for the quadratic wall.

IX. INTERACTION BETWEEN
TWO MIRRORED SOFT WALLS

Now imagine we have two such soft walls separated by a
distance a, as shown in Fig. 6. That is, let the potential be

VðzÞ ¼
8<
:

vð−z − a=2Þ; z < −a=2;
0; −a=2 < z < a=2;

vðz − a=2Þ; a=2 < z:

ð9:1Þ

There is a Casimir force between the walls, and because
each wall can move without changing its shape, it should be
possible to calculate this force without depending upon the
renormalization theory developed in the previous sections
for the region inside the potential. This indeed turns out to
be the case.
The reduced Green’s function satisfies

�
−

∂2

∂z2 þ κ2 þ VðzÞ
�
gðz; z0Þ ¼ δðz − z0Þ; ð9:2Þ

which has the following solution in the three regions:

z < −a=2∶ gðz; z0Þ ¼ 1

w
Fð−z< − a=2ÞGð−z> − a=2Þ þ R

1

w
Fð−z − a=2ÞFð−z0 − a=2Þ; ð9:3aÞ

−a=2 < z < a=2∶ gðz; z0Þ ¼ 1

2κ
e−κjz−z0j þ 1

2κ

2r
e2κa − r2

½r cosh κðz − z0Þ þ eκa cosh κðzþ z0Þ�; ð9:3bÞ

z > a=2∶ gðz; z0Þ ¼ 1

w
Fðz> − a=2ÞGðz< − a=2Þ þ R

1

w
Fðz − a=2ÞFðz0 − a=2Þ: ð9:3cÞ

Here F and G are independent solutions of the single
potential problem (2.11), with, again, F being the solution
that vanishes at z ¼ þ∞. Because the potential defines
a cavity, in this section, we will refer to the solutions

F, G as the “exterior” solutions, while the exponential
solutions within the cavity are referred to as “interior.” The
Wronskian of the two exterior solutions is w, Eq. (2.12),
is independent of z, and subsumes any normalization

FIG. 5. This shows the numerical values of the remainder (8.4)
added to the WKB approximation (8.3) for the zz component of
the stress tensor within the wall, for a linear potential. The surface
divergences apparent in the WKB approximation are completely
canceled out by the numerical remainder, leaving only a small
residual.

FIG. 6. Two facing soft walls, each modeled by a potential vðzÞ,
separated by a distance a. The origin is chosen at the midpoint
between the two facing potentials.
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condition. The reflection coefficients here are generically
computed by multiple scattering. In terms of the abbrevia-
tions,

F� ¼ κFð0Þ � F0ð0Þ; G� ¼ κGð0Þ � G0ð0Þ; ð9:4Þ

the interior (within the cavity) reflection coefficient is

r ¼ Fþ
F−

< 1; ð9:5Þ

as already seen in Ref. [10].
The exterior (outside the cavity) reflection coefficient R

is composed of the single-wall exterior reflection coeffi-
cient r̄,

r̄ ¼ −
G−

F−
; ð9:6Þ

also as given in Ref. [10], followed by multiple reflections
between the interior walls,

R ¼ r̄þ rt2

e2κa − r2
; ð9:7Þ

which involves the transmission coefficient across the wall
(the same in either direction),

t ¼
ffiffiffiffiffiffiffiffi
2κw

p

F−
; ð9:8Þ

where the numerator refers to the Wronskian w for the
exterior solutions (F, G) and the Wronskian (2κ) for
the interior solutions (e�κz). Under an arbitrary scaling
of the solutions, F → mF, G → nG, where m and n are
constants, the Wronskian changes by w → mnw, the
interior reflection coefficient does not change, r → r, while
the exterior reflection coefficient and transmission coef-
ficient change,

r̄ →
n
m
r̄; t →

ffiffiffiffi
n
m

r
t; ð9:9Þ

and hence the total reflection coefficient R changes in the
same way as r̄: R → n

mR, thus verifying the scaling
consistency of Eq. (9.8).
Using only the interior reflection coefficient r, it is easy

to calculate the zz component of the stress tensor in the
vacuum region between the potentials, −a=2 < z < a=2,
using the prescription (2.13d). The (divergent) contribution
from the first term in Eq. (9.3b), 1=ð2κÞe−κjz−z0j, is
recognized as the universal zero-point pressure and dis-
carded. [This corresponds to the Tzz component of the first
term in Eq. (3.2).] The remainder leads immediately to the
Lifshitz formula [2],

tzz ¼ P ¼ −
1

2π2

Z
∞

0

dκκ3
1

r−2e2κa − 1
; ð9:10Þ

which is independent of where it is evaluated in the cavity.
If there is no additional pressure exerted on the system

from infinity, P is pressure felt by each wall; it is attractive,
as expected. In earlier sections, however, we have found
terms in the renormalized stress tensor that grow as
jzj → ∞; the interpretation of these presumably unphysical
terms is a topic for future work.
We now wish to verify the principle of virtual work in the

longitudinal direction, that is, that this pressure is the
negative derivative of the total energy of the system with
respect to the distance between the walls,

P ¼ −
∂U
∂a ; ð9:11Þ

where U is the integral of the energy density over the entire
system, the energy per unit area,

U ¼
Z

∞

−∞
dzuðzÞ; ð9:12Þ

where u is obtained by the operations given in Eq. (2.13a).
The term proportional to β vanishes because it is a total
derivative; there is no dependence on the conformal
parameter in the total energy. Then, temporarily ignoring
the first terms in each of Eqs. (9.3), we calculate

U − U0 ¼ −
1

6π2

Z
∞

0

dκκ4
�
2R
w

Z
∞

0

dzF2ðzÞ

þ 1

2κ

r
e2κa − r2

�
2raþ 1

κ
ðe2κa − 1Þ

��
: ð9:13Þ

The contribution U0 of the ignored terms is divergent but
can indeed be ignored, for the following reasons. The two
integrals stemming from Eqs. (9.3a) and (9.3c) are formally
independent of a, in accordance with our intuition that the
self-energies of the walls are irrelevant to the force. The
contribution from the first term in Eq. (9.3b) appears to be
proportional to a, but again, we know from Refs. [10,11]
that this term is precisely the bulk zero-point energy inside
the gap.
Even though we do not have an explicit expression for

the fundamental solution F, the first integral in Eq. (9.13)
can be evaluated just from the differential equation satisfied
by F, as shown in Ref. [26]:

Z
∞

0

dzF2ðzÞ ¼ 1

2κ
Fð0ÞF0ð0Þ d

dκ
ln

Fð0Þ
F0ð0Þ : ð9:14Þ

The latter may be readily expressed in terms of the
reflection coefficient r:
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Z
∞

0

dzF2ðzÞ ¼ −
F2
−

ð2κÞ2
�
r2 − 1

2κ
þ dr
dκ

�
: ð9:15Þ

When this is substituted into Eq. (9.13), and terms
independent of a omitted, we obtain

U → −
1

12π2

Z
∞

0

dκκ3
1

e2κa − r2

�
−2r

dr
dκ

þ 2r2a

�

¼ 1

4π2

Z
∞

0

dκκ2 ln ð1 − r2e−2κaÞ; ð9:16Þ

where the last step involves integration by parts. Evidently,
differentiating this with respect to −a yields the pressure
(9.10); that is, Eq. (9.11) is satisfied.
As noted at the beginning, the Green’s function is

invariant under the substitution G → Gþ pF, where p
is independent of z. Here p is not allowed to depend on the
separation between the walls. Such a substitution does not
change the Wronskian or the transmission coefficient, but
does change the reflection coefficient by a constant,
R → R − p. Therefore, the energy (9.13) changes only
by a constant, and the Casimir pressure on one wall is
unchanged.

X. CONCLUSION

We have, in this paper, significantly extended the
analysis given in Ref. [10]. We now have extracted all
the divergences corresponding to the soft-wall potential and
have computed the energy density and stress tensor within
as well as outside the region of the potential, for the case of
linear and quadratic potentials. The renormalized energy
density exhibits divergences as the boundary is approached,
just as it does in the case of a Dirichlet wall, but much
weaker; these divergences are the same (up to a sign) on
both sides of the wall. The fact that the surface divergences
are proportional to ξ − 1

6
indicates the irrelevance of these

terms, since the total energy must be independent of the
conformal parameter. However, before we can ascribe a
finite self-energy to this configuration, we must recognize
that terms in the energy density that grow with the distance
into the wall require physical interpretation. It may be that
the only physically unambiguously observable conse-
quence is the force between two soft walls, which we
calculated in the last section of this paper.
In future work, we hope to further understand the

meaning of the energy density, total energy, and stress in
these configurations. We hope to make progress in solving
the problem for general α: In particular, the limit of α → ∞
would be of great interest to study, because that limit would
correspond to the appearance of a hard Dirichlet wall at
z ¼ 1. (The emergence of this preferred length scale in a
seemingly scale-invariant problem is related to the coupling
constant that we have suppressed, as explained in Ref. [9].)
As α grows, the WKB approximation becomes increasingly

unsuited to the region of small κ and z, and hence it will be
necessary to bring in approximations at small κ, completing
the program of Ref. [11]. Accurate treatment of the
contributions to the energy density from small κ should
clarify and remedy the deficiencies in the analysis offered
in Appendix B.

ACKNOWLEDGMENTS

The work of K. A. M. was supported in part by a grant
from the Julian Schwinger Foundation. We thank Li Yang,
Alex Mau, and Jacob Tice for collaborative assistance, and
Steve Christensen, Itay Griniasty, and Ulf Leonhardt for
helpful conversations.

APPENDIX A: WKB APPROXIMATION

In the text, we are considering approximate solutions to
the problem

y00ðzÞ ¼ QðzÞyðzÞ; QðzÞ ¼ κ2 þ vðzÞ; ðA1Þ
with Q positive and large. The effective expansion param-
eter, therefore, multiplies Q as a whole; one can write
ϵ2y00 ¼ Qy, ϵ → 0. (In quantum mechanics, ϵ is identified
with Planck’s constant.) We suppress ϵ (take it equal to 1) in
the detailed formulas.
The WKB approximation is constructed to high order in

[19] in terms of local functionals ofQ, which we denote qn,
for each non-negative integer n:

yðzÞ ∼ exp

�
ϵ−1

X∞
n¼0

ð�Þ
Z

z
ϵnqnðtÞdt

�
: ðA2Þ

Fröman [27] noted that the odd-order terms can be
resummed into the prefactor:

yðzÞ ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0ðzÞ þ q2ðzÞ þ q4ðzÞ þ � � �p

× e�
R

z dt½q0ðtÞþq2ðtÞþq4ðtÞþ����; ðA3Þ

where qn is accompanied by ϵn−1 in the exponent and by ϵn

in the prefactor. The first three even-order WKB integrands
are (in the notation of Bender and Orszag [19])

q0ðtÞ ¼ Q1=2ðtÞ; ðA4aÞ

q2ðtÞ ¼
Q00ðtÞ

8Q3=2ðtÞ −
5

32

Q02

Q5=2ðtÞ ; ðA4bÞ

q4ðtÞ ¼
Qð4ÞðtÞ

32Q5=2ðtÞ −
7

32

Q0ðtÞQ000ðtÞ
Q7=2ðtÞ −

19

128

Q002ðtÞ
Q7=2ðtÞ

þ 221

256

Q00ðtÞQ02ðtÞ
Q9=2ðtÞ −

1105

2048

Q04ðtÞ
Q11=2ðtÞ : ðA4cÞ
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(In Ref. [27],Q is calledQ2.) In the Fröman approximation
of order 2n, the exponential sum terminates with q2n and
the prefactor sum terminates with q2n−2. In the approxi-
mation of order 2nþ 1, both series extend through q2n.
When these successive WKB approximants are used in

computing the first term in the diagonal Green’s function
(2.10), orders 2n and 2nþ 1 give identical results for the
particular combination that is relevant,

FðzÞGðzÞ
w

¼
�
G0ðzÞ
GðzÞ −

F0ðzÞ
FðzÞ

�
−1

∼
1

2

1

q0 þ q2 þ q4 þ � � � :

ðA5Þ
(Recall that F is the solution which vanishes exponentially
at positive infinity, so G must be dominated by the
exponentially growing solution.) Continuing to expand
in powers of ϵ,

FG
w

ðzÞ ∼ 1

2q0ðzÞ
�
1 −

q2ðzÞ
q0ðzÞ

þ
��

q2ðzÞ
q0ðzÞ

�
2

−
q4ðzÞ
q0ðzÞ

�

þOðϵ6Þ
�
: ðA6Þ

The zeroth-order WKB term yields the first term
displayed in Eq. (3.1), while the second and third terms
there result from the second-order term in Eq. (A6). The
two terms in the square brackets in Eq. (A6) give the
fourth-order contribution to the coincident Green’s
function,

gð4Þðz; zÞ ¼ 1

2
ffiffiffiffi
Q

p
�
−

1

32

vð4Þ

Q3
þ 7

32

v0v000

Q4
þ 21

128

v002

Q4

−
231

256

v00v02

Q5
þ 1155

2048

v04

Q6

�
: ðA7Þ

Note that an expansion in ϵ is not quite the same thing
as one in 1=κ. Including enough WKB terms is
sufficient but not necessary to obtain a certain order
in κ. Thus, in Eq. (3.1), the second term was necessary
to capture all divergences [10], whereas the third term
was not but is needed to capture the correct WKB
behavior at large z.
To compute all the components of the stress tensor, we

have to expand I½g� out to order δ2. The corresponding
terms are

4π2I½gð0Þ� ¼ 1

δ2
þ v

2

�
ln

ffiffiffi
v

p
δ

2
þ γ −

1

2

�
þ v2δ2

16

�
ln

ffiffiffi
v

p
δ

2
þ γ −

5

4

�
; ðA8aÞ

4π2I½gð2Þ� ¼ 1

24

�
−
v00

v
þ 1

2

v02

v2

�
−
v00δ2

48

�
ln

ffiffiffi
v

p
δ

2
þ γ −

1

2

�
−

δ2

192

v02

v
; ðA8bÞ

4π2I½gð4Þ� ¼ −
1

240

vð4Þ

v2
þ 1

60

v0v00

v3
þ 1

80

v002

v3
−

11

240

v02v00

v4
þ 1

48

v04

v5

þ δ2
�

1

960

vð4Þ

v
−

1

480

v0v000

v2
−

1

640

v002

v2
þ 11

2880

v00v02

v3
−

1

768

v04

v4

�
: ðA8cÞ

APPENDIX B: “SURFACE” DIVERGENCE

Here we examine the behavior of the energy as the
boundary at z ¼ 0 is approached from above. We confine
attention to the cases of interest in this paper, α ¼ 1 and 2,
and to the contribution from the WKB region of the
Euclideanized spectrum, which appears to be the most
important one.
Recall that the Green’s function has the construction [see

Eqs. (2.10)–(2.12) and (9.4)]

z; z0 > 0∶ gðz; z0Þ ¼ 1

w
Fðz>ÞGðz<Þ −

G−

F−

1

w
FðzÞFðz0Þ;

ðB1aÞ

z; z0 < 0∶ gðz; z0Þ ¼ 1

2κ
e−κðz>−z<Þ þ Fþ

F−

1

2κ
eκðzþz0Þ: ðB1bÞ

When z0 ¼ z > 0, we introduce a short notation for the two
terms in Eq. (B1a),

gFG ¼ 1

w
FðzÞGðzÞ; gFF ¼ −

1

w
G−

F−
FðzÞ2: ðB2Þ

In the case α ¼ 1 (the linear wall), the exponentially
decreasing solution F can be chosen as Aiðκ2 þ zÞ,
and the independent solution G can be chosen
as Biðκ2 þ zÞ.
In Secs. III and VI, we used the WKB approximation

only on the first term in Eq. (B1a). As we have seen,
although it captures the correct behavior for large κ, this
procedure generates spurious singularities for z near the
boundary, presumably stemming from the inadequacy of
the WKB approximation at small κ and the neglect of the
second term, gFF. We argue that this first term is, in fact, not
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relevant to the question of “surface divergences.” The
corresponding energy density is given by

uFG ¼
� ∂2

∂τ2 − β
∂2

∂z2
�
I½gFG�: ðB3Þ

For α ¼ 1, the explicit form of gFG appears as the first term
in Eq. (6.4). Use of the asymptotic expansions of the Airy
functions for large argument gives, of course, the WKB
result (6.2). But suppose, on the contrary, that we simply
subtract (even at positive z) the first term in Eq. (B1b),
which would produce the free-field zero-point energy. That
is, we replace gFG by gFG − 1=ð2κÞ. Then one can easily
check numerically that I½gFG − 1=ð2κÞ� has a finite second
derivative with respect to τ for z → 0 and a finite second
derivative with respect to z at z ¼ 0. Thus, as expected, no
surface divergence originates from this term. (The mod-
ifications introduced by renormalization are nonsingular
at z ¼ 0.)
On the other hand, the WKB expansion is effective for

isolating the small-z behavior of the energy arising from
gFF. This expansion is valid for large κ, even for small z.
The asymptotic behaviors of the Airy functions are [19]

AiðzÞ ∼ 1

2
ffiffiffi
π

p z−1=4e−2z
3=2=3ð1 − c1z−3=2 þOðz−3ÞÞ; ðB4aÞ

BiðzÞ ∼ 1ffiffiffi
π

p z−1=4e2z
3=2=3ð1þ c1z−3=2 þOðz−3ÞÞ

þOðe−2z3=2=3Þ; ðB4bÞ

where c1 ¼ 5=48. Extrapolating to z ¼ 0 (and dropping
some κ-independent constants), these formulas suggest the
initial data,

Fð0Þ ∼ 1ffiffiffi
κ

p e−ΛðκÞ; F0ð0Þ ∼ −
ffiffiffi
κ

p �
1þ v0ð0Þ

4κ3

�
e−ΛðκÞ;

ðB5aÞ

Gð0Þ ∼ 1ffiffiffi
κ

p eΛðκÞ; G0ð0Þ ∼ ffiffiffi
κ

p �
1 −

v0ð0Þ
4κ3

�
eΛðκÞ;

ðB5bÞ

where ΛðκÞ ¼ 2
3
κ3=2. We have written Eqs. (B5) in a form

that identifies them with the first-order WKB formulas (A3)
and (A4a) for a particular choice of normalization, which
makes the Wronskian independent of κ (w ¼ 2, to be
precise). This normalization can usefully be copied for
dealing with other values of α. Note that Λ → ∞ as κ → ∞.
Validity of Eq. (B5b) requires that κ be sufficiently large
that both (a) theWKB approximation is accurate and (b) the
recessive term in Eq. (B4b) is negligible. From Eqs. (B5), it
follows that

G−

F−
¼ κBiðκ2Þ − Bi0ðκ2Þ

κAiðκ2Þ − Ai0ðκ2Þ ∼
1

4κ3
e4κ

3=3; ðB6Þ

(c1 having canceled), and hence

gFF ∼ −
1

16

v0ð0Þ
κ4

e−2κz: ðB7Þ

The resulting term in u diverges at the boundary,

α ¼ 1∶ usurf ¼
1þ 12β

192π2z
; ðB8Þ

as reported in Eq. (6.7) and numerically validated in Fig. 2.
(This calculation extrapolates the integrand (B7) down to
κ ¼ 0. In principle, we know how to improve it by the
method of Ref. [11].)
It is now incumbent upon us to investigate in what way

this result is dependent upon the “handbook” basis choice,
fAi;Big. As we have stressed repeatedly (Refs. [10,11],
and the body of this paper), the Green’s function must not
change under rescalings F → mF, G → nG, nor under a
replacement G → Gþ pF, where m, n, and p may depend
on κ. The rescalings are trivially taken care of by the
Wronskian factors w in Eq. (B2), so long as one has resisted
the temptation to replace w by its value in some particular
basis. The p replacement is more subtle, however; although
g of course remains unchanged, its division into the two
terms of Eq. (B2) does not. In particular, one might choose
G so that G− is identically 0. (This is the case for the
solution called H in Ref. [11].) Then gFF ¼ 0, and u must
come entirely from gFG. Thus, our attribution of the surface
energy to the second term of the Green’s function cannot be
valid in complete generality. What is going on here? Let us
return to Eq. (B6) and consider replacing Bi by Biþ pAi.
One sees that any admixture of Ai will give an exponen-
tially subdominant contribution, unless pðκÞ contains a
correspondingly large exponential factor. This suggests that
our calculation captures the truth for any “natural” basis
choice, one not involving such an exponential fine-tuning.
One can easily see that the preferred solution called G in
Ref. [11] (characterized by Gð0Þ ¼ 0) is proportional to
Biþ pAi with p ¼ −2e4κ3=3ð1þ 2c1κ−3 þ � � �Þ. ForH, the
other preferred solution in Ref. [11], the calculation is more
complicated, but again p will equal e4κ

3=3 times a weakly
(algebraically) varying function of κ. Such basis solutions,
however natural for our problem, must be regarded as rare.
Note that a small admixture of Ai will not change the

initial data (B5b) significantly. In fact, there is no reason to
expect that Bi satisfies Eq. (B5b) or any higher-order
improvement of it exactly [equivalently, that the recessive
term in (B4b) is exactly zero]. It is, therefore, legitimate to
challenge the numerical verification that gFG yields no
surface divergence at all; more likely, one is present but
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with such a tiny coefficient that it did not show up in the
finite-precision numerical investigation.
Can these considerations be carried over to larger α?

Since then v0ð0Þ ¼ 0, Eqs. (B5) lead to trivial results and
must be replaced by higher-order approximations. For
the quadratic wall, we go out to third WKB order [in
the sense of Appendix A—that is, keeping q2 in both the
exponent and the prefactor of Eq. (A3)] and obtain from
Eqs. (A3)–(A4b)

Fð0Þ ∼
�
κ þ 1

4κ3

�
−1=2

e−ΛðκÞ;

F0ð0Þ ∼ −
�
κ þ 1

4κ3

�
1=2

e−ΛðκÞ; ðB9aÞ

Gð0Þ ∼
�
κ þ 1

4κ3

�
−1=2

eΛðκÞ;

G0ð0Þ ∼
�
κ þ 1

4κ3

�
1=2

eΛðκÞ: ðB9bÞ

Here Eq. (B9a) is ineluctable, but Eq. (B9b) incorporates
the tacit assumption that G is a “natural” basis solution
without a large recessive component, so that the surface
divergence will come entirely from gFF. [If the recessive
term in G is significant at large κ, then (a) it may make a
surface-divergent contribution to the gFG term and (b) it
may cause a compensating change in the gFF term through
the factor G−. These two effects must cancel when the two
terms are known exactly, since the full answer must be
independent of the basis choice.] Now for large κ

Fð0Þ − 1

κ
F0ð0Þ ∼ 2ffiffiffi

κ
p e−ΛðκÞ;

Gð0Þ − 1

κ
G0ð0Þ ∼ −

1

4

1

κ9=2
eΛðκÞ;

ðB10Þ

and hence

gFF ∼
1

16

1

κ5
e−2κz: ðB11Þ

In this case, the resulting integral for u diverges at the lower
limit, κ ¼ 0, so as in Ref. [10] it must be cut off at, say,
κ ¼ 1, yielding

α ¼ 2∶ usurf ¼ −
1þ 12β

96π2
Γð0; 2zÞ: ðB12Þ

The ambiguity in this infrared cutoff (which would not be
necessary at all in a more accurate treatment of small κ [11])
can be absorbed into the logarithmic ambiguity μ from the
(ultraviolet) renormalization. As reported in Sec. VII, after
this one undetermined constant is fixed, Eq. (B12) agrees
with the numerics. [The leading asymptotic correction to
gFF for α ¼ 2 was used to approximate the integral from K
to ∞ in Eqs. (7.7) and (7.10), so that part of the numerical
agreement was foreordained. However, that part of the
integral is only a small part of the total, and the numerical
confirmation of Eq. (7.13) is nontrivial.]
Furthermore, both Eq. (B8) and Eq. (B12) match the

calculations in Ref. [10] for the exterior region, strengthen-
ing our confidence that the nonrigorous argument in this
appendix reflects reality. More precisely, result (B12) is
exactly the negative of the density found on the other side
of the wall in Ref. [10], with z → jzj, while result (B8) is
the same as in Ref. [10], including the sign.
The argument shows that there is no surface divergence

for Tzz, because in a term proportional to e−2κz, in the
construction (2.13d) the leading powers of κ cancel and
leave a positive power of z:

Tzz ∼ −zαI½gF2 �: ðB13Þ
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