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We investigate the properties of quantum radiation produced by a uniformly accelerating charged
particle undergoing thermal random motion, which originates from the coupling to the vacuum fluctuations
of the electromagnetic field. Because the thermal random motion is regarded to result from the Unruh
effect, the quantum radiation might give us hints of the Unruh effect. The energy flux of the quantum
radiation is negative and smaller than that of Larmor radiation by one order in a=m, where a is the constant
acceleration and m is the mass of the particle. Thus, the quantum radiation appears to be a suppression of
the classical Larmor radiation. The quantum interference effect plays an important role in this unique
signature. The results are consistent with the predictions of a model consisting of a particle coupled to a
massless scalar field as well as those of the previous studies on the quantum effect on the Larmor radiation.
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I. INTRODUCTION

One of the most exciting phenomena related to quantum
fields in the noninertial frame is the Unruh effect. The
Unruh effect is the theoretical prediction that an accelerat-
ing observer sees the Minkowski vacuum as a thermally
excited state with the Unruh temperature TU ¼ a=2π as the
natural unit, where a is the acceleration [1] (see Ref. [2] for
a review). Through the principle of equivalence, the Unruh
effect is related to the Hawking effect, which predicts
radiation with a thermal spectrum from a black hole [3].
The uniformly accelerated observer of the Unruh effect is
an approximation to an observer at a fixed distance near the
horizon of a black hole. In both cases, the observer
perceives a horizon.
Although direct experimental verification of the

Hawking effect seems to be difficult, that of the Unruh
effect might be possible. Chen and Tajima proposed a
possible experimental test of the Unruh effect using an
intense laser field [4], which has inspired many studies,
such as Refs. [5–7]. These studies suggested that the Unruh
effect may give rise to quantum radiation from an accel-
erating charged particle, which is termed Unruh radiation.
However, the problem is not entirely straightforward; it has
been argued that the naively expected quantum radiation
produced by the detector models cancels out due to the
interference effect [8–10]. On the other hand, the quantum
radiation from a uniformly accelerating charged particle
may exist because the cancellation is partial; the naively
expected radiation term cancels out, but the interference
terms remain [11].

Recently, we have reinvestigated the quantum radiation
produced by a uniformly accelerating charged particle
coupled to vacuum fluctuations [12]. In this previous study,
we adopted a model consisting of a particle and a massless
scalar field, from which we verified that the remaining
interference terms may give rise to a unique signature of
the Unruh effect contained in the radiation. In the present
paper, we extend our previous work to a realistic model
consisting of a charged particle and an electromagnetic
field with vector-type coupling. We demonstrate that the
previously mentioned partial cancellation still occurs, and
the remaining interference terms indeed give rise to a
unique signature of the Unruh effect contained in the
energy flux.
It is useful to clarify the feature of our work and the

difference between our approach and those of other
previous works. First, our model consists of a charged
particle and an electromagnetic field. This is the same as
the previous works [4,6,7,11], which investigated the
Unruh radiation. However, the completely different point
of our work compared with the previous works [4,6,7] is
that we take into account the interference term between the
quantum vacuum fluctuations of electromagnetic field,
Aμ
hðxÞ, and the component of electromagnetic field gen-

erated by the thermal random motions of a charged particle
due to the Unruh effect, Aμ

inhðxÞ [see Eq. (7) for the
definition]. They are obtained by solving the first principle
equations of motion. The second point is that we compute
the expectation value of the energy-momentum tensor of
the electromagnetic field. Thus, our approach is based on a
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straightforward method for clear interpretation of results
avoiding ambiguity.

II. MODEL

We consider the theoretical model described in Ref. [11],
which consists of a charged particle and an electromagnetic
field. The authors of Ref. [11] have shown that the energy
equipartition relation with the Unruh temperature TU ¼
a=2π appears in the random motions of an accelerated
charged particle due to the coupling to the electromagnetic
field, similar to the case with a massless scalar field. We
focus our investigation on the quantum radiation from the
charged particle. The action of the model is given by

S ¼ SPðzÞ þ SEMðAÞ þ Sintðz; AÞ; ð1Þ

where SPðzÞ and SEMðAÞ are the actions of the free particle
and the vector field,

SPðzÞ ¼ −m
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ημν _zμ _zν

q
ð2Þ

SEMðAÞ ¼ −
1

4

Z
d4xFμνFμν; ð3Þ

respectively, and Sintðz; AÞ describes the interaction,

Sintðz; AÞ ¼ −e
Z

dτ
Z

d4xδ4Dðx − zðτÞÞ_zμðτÞAμðxÞ; ð4Þ

where e is the charge of the particle and Fμνð¼ ∂μAν −∂νAμÞ is the field strength. We follow the metric convention
ðþ − −−Þ. The equations of motion are

m̈zμ ¼ eð∂μAν − ∂νAμÞ_zν þ fμ; ð5Þ

∂μ∂μAν ¼ e
Z

dτ_zνðτÞδ4Dðx − zðτÞÞ; ð6Þ

where we adopted the gauge condition, ∂μAμ ¼ 0, and
introduced an external force fμ for a uniform acceleration.
The solution to Eq. (6) is given by a combination of the
homogeneous solutionAμ

hðxÞ, which satisfies∂ν∂νAμ
hðxÞ¼0,

and the inhomogeneous solution written with the retarded
Green’s function GRðx; yÞ, which satisfies ∂ν∂νGRðx; yÞ ¼
δ4Dðx − yÞ, as

AμðxÞ ¼ Aμ
hðxÞ þ e

Z
dτGRðx; zðτÞÞ_zμðτÞ

¼ Aμ
hðxÞ þ Aμ

inhðxÞ: ð7Þ

Inserting the above solution into the equation of motion
of the particle (5), the homogeneous solution gives rise to
the random force, while the inhomogeneous solution leads
to the Abraham-Lorentz-Dirac radiation reaction force, and

we also have the stochastic equation of motion (see
Eq. (5.9) in Ref. [11]). To consider random motions around
uniformly accelerated motion, we write

zμðτÞ ¼ z̄μðτÞ þ δzμðτÞ; ð8Þ

where z̄μðτÞ describes the uniformly accelerated motion
and δzμðτÞ denotes the small perturbed randommotion. The
uniformly accelerated motion yields a hyperbolic trajectory
written as

z̄μðτÞ ¼ a−1ðsinh aτ; coshaτ; 0; 0Þ: ð9Þ

Unless otherwise noted, we adopt the convention that the
Greek letters run from 0 to 3; the Latin letters take on the
values 2 and 3, the components of the transverse direction;
and the capital Latin letters take on 0 and 1, the components
of the longitudinal direction. It is useful to note that _̄zA and
z̄A are related to each other as

_̄zA ¼ aϵABz̄B; ð10Þ

where ϵAB is the two-dimensional Levi-Civitá completely
antisymmetric tensor, which is defined by ϵ01 ¼ −ϵ10 ¼ 1.
We solve the stochastic equation using the perturbative

method by expanding it with respect to δzμ. Because the
random motion in the transverse direction satisfies
the energy equipartition relation [11], we assume that
the quantum radiation from the transverse fluctuations
are related to the Unruh effect. Therefore, we restrict our
investigation to the transverse motion with the δzi with i ¼
2 and 3. Expanding the stochastic equation perturbatively
to first order yields

mδ̈ziðτÞ ¼
e2

6π
ðδz… i − a2 _δziÞ

þ eðηiν _̄zα − ηiα _̄zνÞ∂νAα
hðxÞjx¼zðτÞ: ð11Þ

In the present paper, for simplicity, we drop the third-
order time derivative term of the radiation reaction force.
As discussed in Ref. [12], the contribution of this term to
the solution of δzi is small and is limited to the order of
Oðða=mÞ2Þ. In that study, it is also shown that the
contribution comes from the short-distance dynamics about
the classical electron radius, re ¼ e2=m, which is much
smaller than the Compton length. The assumption of the
point particle is no longer valid when describing such short-
distance behavior, where one needs to employ a more
sophisticated model on the basis of the wave packet [13].
Hence, we ignore such a term in our description of the point
particle.
Then, the equation is solved by introducing the Fourier

transform
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δ_ziðτÞ ¼
Z

dω
2π

~δ_ziðωÞe−iωτ; ð12Þ

which leads to the solution

~δ_ziðωÞ ¼ ehðωÞ g∂i
αAαðωÞ ð13Þ

with

hðωÞ ¼ 1

mðaσ − iωÞ ð14Þ

and σ ¼ e2a=6πm, and

g∂i
αAαðωÞ ¼

Z
dτeiωτð _̄zαηiν − ηiα _̄zνÞ∂νAα

hðxÞjx¼z̄ðτÞ: ð15Þ

One can demonstrate that the solution satisfies the energy
equipartition relation with the Unruh temperature TU ¼
a=2π [11],

m
2
hδ_ziðτÞδ_zjðτÞi ¼ δij

2

a
2π

�
1þO

�
a2

m2

��
; ð16Þ

by using the Wightman function

hAα
hðxÞAβ

hðyÞi ¼
1

4π2
ηαβ

ðx0 − y0 − iϵÞ2 − ðx − yÞ2 : ð17Þ

III. TWO-POINT FUNCTION

We now consider the radiation produced by the charged
particle. To evaluate the expectation value of the energy-
momentum tensor, we first derive the two-point function of
the vector field:

hAαðxÞAβðyÞi − hAα
hðxÞAβ

hðyÞi
¼ hAα

hðxÞAβ
inhðyÞi þ hAα

inhðxÞAβ
hðyÞi þ hAα

inhðxÞAβ
inhðyÞi:

ð18Þ

Using the expression for the retarded Green’s function,
GRðx − yÞ ¼ δDððx − yÞ2Þθðx0 − y0Þ=2π, the inhomo-
geneous solution of AμðxÞ reduces to

Aμ
inhðxÞ ¼

e_zμðτx−Þ
4πρðτx−Þ

; ð19Þ

where we defined ρðxÞ ¼ _zμðτx−Þðxμ − zμðτx−ÞÞ and τx−
satisfies ðx − zðτx−ÞÞ2 ¼ 0. Following the perturbative
expansion, zμ ¼ z̄μ þ δzμ, we may write

ρðxÞ ¼ ρ0ðxÞ þ δρðxÞ ð20Þ

with

ρ0ðxÞ ¼ _̄zμðτx−Þxμ; ð21Þ

δρðτx−Þ ¼ δ_zμðτx−Þðxμ − z̄μðτx−ÞÞ; ð22Þ

where τx− is redefined to satisfy ðx − z̄ðτx−ÞÞ2 ¼ 0. Then, the
inhomogeneous solution is written up to the first-order
perturbative term as

Aμ
inhðxÞ ¼

e
4πρ0ðxÞ

ð _̄zμðτx−Þ − Eμ
ð−ÞiðxÞδ_ziðτx−ÞÞ; ð23Þ

which is obtained from δρðτx−Þ ¼ δ_ziðτx−Þxi and δ_zμðτx−Þ ¼
ημ

iδ_ziðτx−Þ for the transverse fluctuations, where we
introduced

Eμi
ð∓ÞðxÞ ¼ ημi −

_̄zμðτx∓Þxi
ρ0ðxÞ

: ð24Þ

Here, we also introduced τxþ, which satisfies
ðx − z̄ðτxþÞÞ2 ¼ 0. The meaning of τx− and τxþ is explained
in Fig. 1.
It is straightforward to evaluate the two-point function;

the explicit expression for the symmetrized two-point
function with respect to x and y is

FIG. 1. The hyperbolic curve in the R region is the trajectory of
a uniformly accelerating particle. The hyperbolic curve in the L
region is the hypothetical trajectory obtained by an analytic
continuation of the true trajectory. For an observer at point xμ in
the R region, τx− is defined by the proper time of the particle’s
trajectory intersecting with the past light cone, while τxþ is
similarly defined with the future light cone when xμ is in the
R region. For an observer in the F region, τxþ is the proper time of
the hypothetical trajectory in the L region intersecting with the
past light cone.
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½hAαðxÞAβðyÞ − Aα
hðxÞAβ

hðyÞi�S ¼
�

e
4π

�
2 _̄zαðτx−Þ
ρ0ðxÞ

_̄zβðτy−Þ
ρ0ðyÞ

þ
�

e
4πρ0ðyÞ

e
4πρ0ðxÞ

Eβ
ð−ÞiðyÞEαi

ðþÞðxÞ
2m

I2ðx; yÞ

þ e
4πρ0ðyÞ

e
4πρ30ðxÞ

Eβ
ð−ÞiðyÞxiηαAaϵAA

0
xA0

×
i
2m

ðI1ðx; yÞ − I3ðx; yÞÞ
�
þ ½ðx; αÞ ↔ ðy; βÞ�; ð25Þ

where Il with l ¼ 1–3 is the same as Eqs. (4.45)–(4.47) in
Ref. [12] but with σ ¼ e2a=6πm. The approximate expres-
sion for Il is given as (see Ref. [12])

I1ðx; yÞ ¼ −
i

2πσ
þ i
π
logð1þ e−ajτ

y
−−τxþjÞ

þ i
π
aðτy− − τxþÞθðτy− − τxþÞ þOðσÞ; ð26Þ

I2ðx; yÞ ¼ −
a
π

1

eaðτxþ−τ
y
−Þ þ 1

þOðσÞ; ð27Þ

I3ðx; yÞ ¼ −
i

2πσ
þ i
π
logð1 − e−ajτ

y
−−τx−jÞ

þ i
π
aðτy− − τx−Þθðτy− − τx−Þ þOðσÞ; ð28Þ

for the F region x0 > jx1j (see Fig. 1).
Here, we note some details in deriving Eq. (25).

In evaluating hAα
hðxÞAβ

inhðyÞi þ hAα
inhðxÞAβ

hðyÞi þ
hAα

inhðxÞAβ
inhðyÞi, we find that the term hAα

inhðxÞAβ
inhðyÞi

completely cancels out. Therefore, Eq. (25) comes from
the remaining interference term of hAα

hðxÞAβ
inhðyÞi þ

hAα
inhðxÞAβ

hðyÞi. Thus, the interference term screens the
radiation field carried by hAα

inhðxÞAβ
inhðyÞi. This means that

the component of the electromagnetic field generated by
the thermal random motions of a charged particle due to the
Unruh effect cancels by the interference term. This feature
is in common with the model consisting of a particle and a
scalar field [12] as well as the model consisting of a
detector and a scalar field [14].

IV. FLUX

The energy flux is given by the time-space component of
the energy-momentum tensor,

T0μ ¼ −ðAα;0 − A0;αÞðAα
;μ − Aμ

;αÞ; ð29Þ

the expectation value of which is derived by differentiating
the two-point function and taking the coincidence
limit, i.e.,

lim
y→x

∂
∂xμ

∂
∂yν ½hA

αðxÞAβðyÞ − Aα
hðxÞAβ

hðyÞi�S: ð30Þ

The energy flux at large distances is obtained from the
energy-momentum tensor by −

P
3
i¼1 T0ini with ni ¼ xi=r.

We consider here the energy flux in the F region, which is
relevant at r → ∞. The energy flux is a combination of
the classical part fC and the quantum part fQ, which are
given by

fC ¼
�
e
4π

�
2

a2
1

r2
1

sin4θ
GðqÞ; ð31Þ

fQ ¼
�
e
4π

�
2 a3

2πm
1

r2
1

sin4θ
FðqÞ; ð32Þ

with

GðqÞ ¼ 1 − P2

ð1þ q2Þ2 ; ð33Þ

FðqÞ ¼ 1

ð1þ q2Þ3
�
6Pð2P2 − 1Þ

�
log aε − logð1

þ e−ajτ−−τþjÞ − aðτ− − τþÞθðτ− − τþÞ
�
þ 2P
ðaεÞ2

þ 2
ð3 − eaðτþ−τ−ÞÞð2 − eaðτþ−τ−Þð9 − eaðτþ−τ−ÞÞÞ

ð1þ eaðτþ−τ−ÞÞ3
�
;

ð34Þ

where we defined ε ¼ jτx− − τy−j, and P and aðτþ − τ−Þ are
functions of q related by PðqÞ ¼ q=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
¼

− tanhaðτþ − τ−Þ=2. Note also that q is a function of
the coordinates written as Eq. (35), or q ¼ aðt − r−
1=2a2rÞ= sin θ. In FðqÞ, there are two terms that diverge
in the coincidence limit ε ¼ 0. This divergence is due to the
short-distance motion of the particle, which originates from
our formulation based on the point particle (see also
Ref. [12]). The divergence due to the short-distance motion
of the particle can be removed by taking the finite-size
effect of the particle into account. For simplicity, we omit
the divergent terms; however, this prescription does not
alter our conclusions as long as the cutoff value is
aε ¼ Oð1Þ. Figure 2 plots GðqÞ and FðqÞ as functions
of q. With the diverging terms removed, the classical part
fC reduces to the classical Larmor radiation, while the
quantum part fQ goes to the quantum radiation. As in the
case of the massless scalar field, the quantum part fQ is
smaller than the classical counterpart fC by one order in
a=m. However, the angular distribution for the electro-
magnetic field case is quite different from that for the case
of the massless scalar field, as described below.
Figure 3 shows the polar plot of sin−4θGðqðτx−; θÞÞ (blue

dotted curve) and sin−4θFðqðτx−; θÞÞ (black solid curve for
positive values and red dashed curve for negative values)
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with τx− fixed as aτx− ¼ 0. This plot is made by regarding q
as a function of τx− and θ, i.e.,

qðτx−; θÞ ¼ sinh ½aτx− − arctanhðcos θÞ�: ð35Þ

Figure 3 describes the angular distribution of the energy flux
at the moment aτx− ¼ 0. It is well known that the classical
energy fluxfC of theLarmor radiation is dominantly emitted
perpendicular to the direction of acceleration. The quantum
radiation flux is almost entirely negative, although some
small positive regions exist. The emission directions in the
dominant regions are similar to those of the classical
radiation. This is understood as the suppression of the
Larmor radiation due to the quantum effect, which is
consistent with the predictions of the model based on a
particle and a massless scalar field [12]. It is also consistent
with studies on the quantum correction to the Larmor
radiation [15–19], though our approach described here is
quite different from those studies. The interference effect

plays an important role for this property because the
quantum radiation comes from the interference terms;
however, this also makes it difficult to understand the
results in an intuitive manner. Negative quantum energy
density may appear in the quantum field theory, depending
on the quantum state [20,21]. Following one such possible
explanation, the quantum radiation may contain quantum-
correlated photons distinct from the classical radiation. This
is an interesting possibility, but it is out of the scope of the
present paper. However, it should be stressed that the total
radiation combining the classical Larmor radiation and the
quantum radiation is positive unless the condition a=m ≪ 1
is broken.

V. SUMMARY AND CONCLUSIONS

We have investigate the properties of quantum radiation
produced by a uniformly accelerating charged particle
undergoing thermal random motion, which originates from
the coupling to the vacuum fluctuations of the electromag-
netic field. The thermal random motion is regarded to result
from the Unruh effect. The energy flux of the quantum
radiation is negative and smaller than that of Larmor
radiation by one order in a=m, where a is the constant
acceleration and m is the mass of the particle. Thus, the
quantum radiation appears to be a suppression of the
classical Larmor radiation. These properties of the quantum
radiation might be interesting because it may be possible to
experimentally verify them. In Ref. [11], possible methods
of experimentally testing the Unruh effect are discussed.
One difficultly comes from the thermalization time,
2=aσ ¼ 12πm=ða2e2Þ, which is quite long; additionally,
it is difficult to keep an electron in a state of acceleration for
a sufficient duration of time [11]. It is interesting and
important to investigate phenomena during relaxation
process. One will find corrections by considering a particle
accelerated in a finite duration of time but not eternally.
This subject will be analyzed in a future work. However,
the assumption of the eternal acceleration will not drasti-
cally change our results when the acceleration time is much
longer than the relaxation time. This is confirmed at least
for the random motions of a charged particle [11].
There are other problems that need to be investigated

further, the first of which is the possible contamination of
the longitudinal fluctuations. In the present paper, we have
only investigated the transverse random motions of the
particle, which follow the energy equipartition relation.
Longitudinal fluctuations are motions in the x1 direction.
Longitudinal random motions do not follow the energy
equipartition relation, and the variance of the velocity is of
the order ða=mÞ3, as in the case of the scalar field [11,22].
Therefore, the longitudinal mode may not make a signifi-
cant contribution to the quantum radiation.
Another problem might come from the divergent terms

in the energy-momentum tensor and the energy flux, which
appear due to our theoretical framework based on the point

3 2 1 0 1 2 3

3

2

1

0

1

q

G
q

,F
q

FIG. 2. Functions GðqÞ (dashed curve) and FðqÞ (solid curve)
plotted without the divergent terms.

3 2 1 1 2 3
x

3

2

1

1

2

3

y

FIG. 3. Angular distribution of the classical radiation
sin−4 θGðτx−; θÞ (blue dotted curve) and the quantum radiation
sin−4θFðτx−; θÞ (black solid: positive values; red dashed curve:
negative values) at aτx− ¼ 0. The coordinates x and y are x1 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2Þ2 þ ðx3Þ2
p

, respectively.
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particle, reflecting its short-distance dynamics [22]. Here,
we have assumed that the divergent terms can be removed
by taking into account the finite-size effect. More careful
discussion about this divergent term might be necessary.
However, we can observe the following point. One can read
that the divergent terms are odd functions of P [see
Eq. (34)]. This property is the same as that of the model
consisting of a particle and a scalar field in Ref. [12]. This
means that the divergent terms contribute to the energy flux
as odd functions of t − r at a large distance, which vanish if
one integrates them over the time.
Finally, it is useful to compare our results with those of

the previous works [4,6,7], which investigated the Unruh
radiation from an accelerated charged particle. As noted in
the first part of this paper, the different point of the present
paper is the inclusion of the interference term. In the two-
point function of electromagnetic field, the term
hAα

inhðxÞAβ
inhðyÞi cancels out. Therefore, the nontrivial

signature of our results comes from the remaining inter-
ference term. This has resulted in the difference between
our results and the previous works. For our reference, we
have investigated the flux which comes from the term
hAα

inhðxÞAβ
inhðyÞi (see the Appendix for details). The energy

flux from this term is positive and is dominantly emitted in
the direction of the acceleration. These features do not
contradict with those reported in Refs. [4,6,7], which are
quite opposite to those of Eq. (32).
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APPENDIX: SCREENED INHOMOGENEOUS
TERM

We find that the two-point function hAα
inhðxÞAβ

inhðyÞi is
explicitly written as

hAα
inhðxÞAβ

inhðyÞi

¼ −
e2ηijEαi

ð−ÞðxÞEβj
ð−ÞðyÞ

ð4πÞ2ρ0ðxÞρ0ðyÞ
a

2πm
; ðA1Þ

which cancels due to the interference term in our compu-
tation. However, it might be useful to compute the flux
from this term. We find the flux from Eq. (A1),

fS ¼
�

e
4π

�
2 a3

2πm
1

r2
1

sin4θ
HðqÞ; ðA2Þ

with HðqÞ defined by

HðqÞ ¼ 1

ð1þ q2Þ2
�
2P2 −

4P2

1þ q2
þ 1

1þ q2

�
: ðA3Þ

Figure 4 compares the angular distribution of the classical
radiation sin−4θGðτx−; θÞ (blue dotted curve) and the quan-
tum radiation sin−4θHðτx−; θÞ (black solid: positive values)
at aτx− ¼ 0. The screened radiation fS is dominantly
emitted in the direction of the acceleration.
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