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We study the soft behavior of two seemingly different particles that are both referred to as dilatons in the
literature, namely the one that appears in theories of gravity and in string theory and the Nambu-Goldstone
boson of spontaneously broken conformal invariance. Our primary result is the discovery of a soft theorem at
subsubleading order for each dilaton, which in both cases contains the operator of special conformal
transformations. Interesting similarities aswell as differences between the dilaton soft theorems are discussed.
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I. INTRODUCTION

The word dilaton is currently used in particle physics for
two different particles that, a priori, seem unrelated. One is
the dilaton that appears in (super)gravity and string theories.
This dilaton is a massless scalar particle accompanied by the
graviton and the Kalb-Ramond antisymmetric tensor in the
massless sector of the closed bosonic string and in theNeveu-
Schwarz sector of the closed superstring. We refer to this
particle as the “gravity dilaton.” The other dilaton is a
Nambu-Goldstone (NG) boson arising from the spontaneous
breaking of scale and conformal invariance, which is
frequently encountered in many phenomenological scenar-
ios, for example in beyond-the-standard-model physics
and inflationary cosmology. We refer to this as the “NG
dilaton.”Although they are different particles, they share the
feature of satisfying soft theorems, according to which the
scattering of a low-energy particle is entirely determined by
symmetry properties. We demonstrate that both dilatons
obey soft theorems through subsubleading order in the low-
energy expansion, i.e., through Oðq1Þ in the soft-dilaton
momentum q.
The leading and subleading soft behavior of the gravity

dilaton has been known since the seventies [1,2].
Furthermore, recent work has shown the leading and sub-
leading behavior to be a direct consequence of the same
gauge invariance that reveals the soft theorems for the
graviton [3]. In this article, we extend this analysis to
subsubleading order, revealing the role of special conformal
transformations. In the case of a NG dilaton, the leading soft
behavior vanishes for massless external states, while the
subleading soft behavior is known to be a consequence of
theWard identity of broken scale invariance [4]. (See also the
recent work of Refs. [5–6].) In this article, we show that the
subsubleading behavior is entirely fixed by theWard identity
of broken special conformal invariance.

The article is organized as follows. In Sec. II, we
demonstrate that the low-energy behavior of the gravity
dilaton through Oðq1Þ is entirely determined by gauge
invariance when the other (hard) particles are all either
(massive) scalars or all gravitons or dilatons. In Sec. III, we
show that theWard identities of broken scale and conformal
invariance completely determine the soft behavior of the
NG dilaton through Oðq1Þ. Finally, in Sec. IV, we compare
the two behaviors and provide some conclusions. We note
that our derivation for the gravity dilaton soft theorem is
valid at tree level. For the NG dilaton, the formal arguments
in our derivation hold at tree level in classically conformal
theories. We also expect similar behavior at the quantum
level in theories without a conformal anomaly.

II. GRAVITY DILATON

We consider the low-energy behavior of the dilaton that
appears in theories of (super)gravity and in string theories.
The behavior in either case can be obtained using two
different methods that, apart from possible string correc-
tions, turn out to give the same result.
The first method that we employ is completely inde-

pendent of string theory. It consists of determining the low-
energy behavior of a tensorMμνðq; kiÞ that, when saturated
with the polarization ϵμν of the graviton or of the dilaton,
describes the scattering amplitude of a graviton or a dilaton
with momentum q and n other particles with momenta ki.
In this case, the soft behavior through Oðq1Þ of Mμνðq; kiÞ
is fixed by imposing the following conditions,

qμMμνðq; kiÞ ¼ qνMμνðq; kiÞ ¼ 0; ð1Þ

dictated by gauge invariance. The procedure is the one
discussed in Ref. [7] without restricting oneself to the
assumption that the polarization of the soft particle is
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traceless as in the case of the graviton. Proceeding in this
way, when the other particles are (massive) scalars, i.e. not
dilatons, one gets the following soft behavior:

Mμνðq; kiÞ ¼ κD
Xn
i¼1

�
kμi k

ν
i

ki · q
− i

kμi qρL
νρ
i

2ki · q
− i

kνi qρL
μρ
i

2ki · q

−
1

2

qρL
μρ
i qσLνσ

i

ki · q

þ 1

2

�
ημνqσ − qμηνσ −

kμi q
νqσ

ki · q

� ∂
∂kσi

�

× T nðk1;…; knÞ þOðq2Þ; ð2Þ

where κD is related to the D-dimensional Newton’s con-

stant by κD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGðDÞ

N

q
, T nðk1;…; knÞ is the scattering

amplitude of n scalar particles and

Lμν
i ¼ i

�
kμi

∂
∂kiν − kνi

∂
∂kiμ

�
: ð3Þ

When instead the other particles are gravitons and/or
dilatons, one gets an extra polarization-dependent piece:

Mμνðq; kiÞ ¼ κD
Xn
i¼1

�
kμi k

ν
i

ki · q
− i

kμi qρJ
νρ
i

2ki · q
− i
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−
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i qσJνσi
ki · q

þ 1
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ϵρi
∂
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×Mnðk1;…; knÞ þOðq2Þ; ð4Þ

where Mnðk1;…; knÞ is the n-point scattering amplitude
involving gravitons and/or dilatons and

ðJiÞμν ¼ ðLiÞμν þ ðSiÞμν;

ðSiÞμν ¼ i

�
ϵiμ

∂
∂ϵνi − ϵiν

∂
∂ϵμi

�
: ð5Þ

It is easy to check that both tensorsMμνðq; kiÞ satisfy Eq. (1).
By saturating the two previous tensors with the polariza-
tion of the dilaton, given by ϵμνd ¼ ðημν − qμqν − qνqμÞ=ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

p
, where q2 ¼ q2 ¼ 0 and q · q ¼ 1, we get the soft

behavior of a dilaton in an amplitude with n scalars:

ϵμνd Mμνðq; kiÞ ¼
κDffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

p
�
−
Xn
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ki · q

�
1þ qρ
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þ 1
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���
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where mi is the mass of the ith scalar particle.
Similarly, by saturating Eq. (4) with the dilaton polari-

zation, one gets the soft behavior of a dilaton in an
amplitude with hard gravitons and/or dilatons:

ϵμνd Mμνðq;kiÞ¼
κDffiffiffiffiffiffiffiffiffiffiffi
D−2

p
�
2−

Xn
i¼1

�
kμi

∂
∂kμi þ

qρ

2

�
2kμi

∂2

∂kμi ∂kρi
−kiρ

∂2

∂kμi ∂kiμ
�
− iqρSðiÞμρ

∂
∂kiμ

�

þ
Xn
i¼1

qρqσ

2ki ·q

�
ðSðiÞρμÞημνðSðiÞνσ ÞþDϵiρ

∂
∂ϵσi

��

×MnþOðq2Þ: ð7Þ

In all of our expressions, whenever a momentum derivative
is acting on an amplitude, it is implicitly assumed that
momentum conservation is applied to one of the external
momenta in the amplitude.
The second method is to consider a string theory,1

compute an amplitude with a dilaton and study its behavior
when the momentum of the dilaton is soft. It turns out that,
if the other particles are tachyons of the bosonic string, one
gets exactly the behavior in Eq. (6) with m2

i ¼ − 4
α0, as

shown in Ref. [3]. On the other hand, if the other particles
are also dilatons and/or gravitons, one finds the behavior
given in Eq. (7) [1,3,16].

III. DILATON OF BROKEN
CONFORMAL INVARIANCE

We consider a field theory whose action is invariant
under some transformation, with corresponding Noether
current jμ, and we study the matrix element
T�h0jjμðxÞϕðx1Þ…ϕðxnÞj0i, where T� denotes the T-
product with the derivatives placed outside of the time-
ordering symbol. For the sake of simplicity, here and in the
following we restrict ourselves to scalar fields. Taking the
derivative of this quantity with respect to the variable x and
subsequently performing a Fourier transformation in x
yields a form of the Ward identity that we use to derive
low-energy theorems,

1String theory soft theorems have been recently studied
in [8–15].
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Z
dDxe−iq·x½−∂μT�h0jjμðxÞϕðx1Þ…ϕðxnÞj0i

þ T�h0j∂μjμðxÞϕðx1Þ…ϕðxnÞj0i�

¼ −
Xn
i¼1

e−iq·xiT�h0jϕðx1Þ…δϕðxiÞ…ϕðxnÞj0i; ð8Þ

where δϕ is the infinitesimal transformation of the field ϕ
under the generators of the symmetry. We consider the case
where the Noether current corresponds to scale and special
conformal transformations of a spontaneously broken
conformal field theory in D space-time dimensions.2

Let us start by discussing the scale transformation. The
Noether current and its divergence are equal to

jμD ¼ xνTμν; ∂μj
μ
D ¼ Tμ

μ; ð9Þ
where Tμν is the energy-momentum tensor of the theory.
The action of the generator of scale transformation D on a
scalar field is given by

δϕðxÞ ¼ ½D;ϕðxÞ� ¼ iðdþ xμ∂μÞϕðxÞ; ð10Þ
where d is the scaling dimension of the scalar field ϕðxÞ.
Considering the left-hand side of Eq. (8), we may neglect

the first term by only keeping terms up to Oðq0Þ in the soft
expansion, assuming that T�h0jjμðxÞϕðx1Þ…ϕðxnÞj0i does
not have a pole at q ¼ 0. In a theory with spontaneously
broken conformal symmetry, the second term contributes.
Notably, in such a theory the NG dilaton ξðxÞ, which is the
massless fluctuation around the nonconformal vacuum, is
by its equation of motion related to the trace of the energy-
momentum tensor in the following way:

Tμ
μðxÞ ¼ −v∂2ξðxÞ; ð11Þ

where v is related to the vacuum expectation value of the
dilaton field, denoted by hξi. [In the specific theory
considered in Ref. [5], we find that v ¼ D−2

2
hξi, where

Eq. (11) is a consequence of the classical equations of
motion. See also Sec. II of Ref. [18] and Sec. III of
Ref. [19].] It follows from Eq. (9) that

∂μj
μ
DðxÞ ¼ vð−∂2ÞξðxÞ: ð12Þ

To translate the correlation function identity in Eq. (8) to
an identity among amplitudes, we apply the Lehmann-
Symanzik-Zimmerman (LSZ) reduction. We define the
LSZ operator,

½LSZ�≡ in
�Yn

j¼1

lim
k2j→−m2

j

Z
dDxje−ikj·xjð−∂2

j þm2
jÞ
�
;

where the limits k2j → −m2
j put the external states on shell,

which has to be performed only at the end. Inserting
Eq. (12) into Eq. (8) and applying the LSZ reduction we
find the left-hand side of Eq. (8) to yield

½LSZ�
Z

dDxe−iq·xT�h0j∂μj
μ
DðxÞϕðx1Þ…ϕðxnÞj0i

¼ ð−iÞvð2πÞDδðDÞ
�Xn

j¼1

kj þ q

�
T nþ1ðq; k1;…; knÞ;

ð13Þ

where we have Fourier transformed and extracted the poles
of the correlation function to identify the amplitude T nþ1.

3

Notice that the operator ð−∂2Þ from the divergence of the
current effectively amputates the dilaton propagator
hξξi ∼ 1=q2. It is implicitly assumed that this expression
holds only up to terms of Oðq0Þ, and that the ki on-shell
limits are taken after the soft expansion.
Next, performing the same operations on the right-hand

side of Eq. (8) gives

½LSZ�
�
−
Xn
i¼1

e−iq·xiT�h0jϕðx1Þ � � � δϕðxiÞ � � �ϕðxnÞj0i
�

¼ −
Xn
i¼1

�
lim

k2i→−m2
i

ðk2i þm2
i Þi

�
d −D − ðki þ qÞμ ∂

∂kμi
�

×
ð2πÞDδðDÞðPn

j¼1 kj þ qÞ
ðki þ qÞ2 þm2

i
T nðk1;…; ki þ q;…; knÞ

�
;

ð14Þ

where all states j ≠ i have already been amputated and put
on shell. The next step is to commute the differential
operator past the ith propagator and the δ-function, using
the identity

Xn
i¼1

kμi
∂

∂kiν
�
δðDÞ

�Xn
j¼1

kj

�
T nðk1;…; knÞ

�

¼ δðDÞ
�Xn

j¼1

kj

��
−ημν þ

Xn
i¼1

kμi
∂

∂kiν
�
T n

×

�
k1;…;−

Xn−1
j¼1

kj

�
: ð15Þ

To ensure a simple form, notice the need to apply
momentum conservation on one of the momenta of the
n-point amplitude before differentiating. As we remarked
in the previous section, it is necessary to enforce this
condition whenever a derivative is acting on the amplitude.

2For a review on the conformal Ward identities, see Coleman’s
beautiful book [17].

3For more details, see for instance Ref. [20], whose con-
ventions we follow up to an immaterial factor i.
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We denote this procedure for brevity by kn ¼ −
P

n−1
j¼1 kj

(see also Ref. [21] for a more general discussion).
Expanding T n in the soft momentum q and following
through with this procedure, we find Eq. (14), up to terms
ofOðq1Þ, to be equal to (the δ-function is kept unexpanded
because it appears in the same form on the left-hand side)

− ið2πÞDδðDÞ
�Xn

j¼1

kj þ q

��
D − nd −

Xn
i¼1

kμi
∂
∂kμi

−
Xn
i¼1

lim
k2i→−m2

i

2m2
i ðk2i þm2

i Þ
½ðki þ qÞ2 þm2

i �2
�
1þ qμ

∂
∂kμi

��

× T nðk1;…; knÞ; ð16Þ

where we have used d ¼ ðD − 2Þ=2, and neglected terms of
Oðq1Þ. The second line clearly has a singularity problem,
and it would be incorrect to expand the denominator in the
soft momentum q, since the on-shell limit is then divergent.
The soft momentum here must instead be understood as a
physical regulator that leaves the on-shell limit finite, which
physically means that we should identify ki ≃ ki þ q,
leaving us with

− ið2πÞDδðDÞ
�Xn

j¼1

kj þ q

��
D − nd −

Xn
i¼1

kμi
∂
∂kμi

−
Xn
i¼1

m2
i

ki · q

�
1þ qμ

∂
∂kμi

��
T nðk1;…; knÞ: ð17Þ

As we will see, this regulation leads to physically
sensible results when one considers the decomposition
of T nþ1 as

T nþ1 ¼
�Xn
i¼1

Sð−1Þ
i ðqÞ
ki · q

þ Sð0Þ þ qμSð1Þ
μ

�

× T nðk1;…; knÞ þOðq2Þ; ð18Þ

where the Sð0Þ and Sð1Þ
μ are operators dependent only on the

momenta kj, while Sð−1Þ may depend on q as well. Then,
from equating Eqs. (13) and (17), we find

vSð−1Þ
i ¼ −m2

i

�
1þ qμ

∂
∂kμi

�
þOðq2Þ; ð19aÞ

vSð0Þ ¼ D − nd −
Xn
i¼1

kμi
∂
∂kμi : ð19bÞ

The previous expressions agree with Eq. (4) of Ref. [4] for
the four-dimensional massless case. One can see that the
Ward identity for the scale transformation completely
determines the Oðq−1Þ and Oðq0Þ contributions of the

amplitude with a soft dilaton in terms of the amplitude
without the dilaton.
We now show that the Ward identity of the special

conformal transformation [22] determines also the Oðq1Þ
contribution of the amplitude with a soft dilaton. In this
case, the Noether current and its divergence are given by

jμðλÞ ¼ Tμνð2xνxλ − ηνλx2Þ;
∂μjμðλÞ ¼ 2xλTμ

μ ¼ 2vxλð−∂2ÞξðxÞ; ð20Þ

while the action of a special conformal transformation on a
scalar field is equal to

δðλÞϕðxÞ ¼ ½Kλ;ϕðxÞ�
¼ iðð2xλxν − ηλνx2Þ∂ν þ 2dxλÞϕðxÞ: ð21Þ

(Note that, in general, the special conformal transformation
has an extra term when acting on fields with spin.)
Analyzing the right-hand side of Eq. (8), mirroring the

procedure for scale transformations utilized above, we find
an expression analogous to Eq. (17),

½LSZ�
�
−
Xn
i¼1

e−iq·xiT�h0jϕðx1Þ � � � δðλÞϕðxiÞ � � �ϕðxnÞj0i
�

¼ ð2πÞDδðDÞ
�Xn

j¼1

kj þ q

�
× 2

Xn
i¼1

�

×
m2

i

ki · q

�
kiλ
ki · q

−
∂
∂kλi

��
1þ qμ

∂
∂kμi þ

1

2
qμqν

∂2

∂kμ∂kν
�

−
�
kμi

� ∂2

∂kμi ∂kλi −
1

2
ημλ

∂2

∂kiν∂kνi
�
þ d

∂
∂kλi

�

þOðqÞ
�
T nðk1;…; knÞ; ð22Þ

where again we use d ¼ ðD − 2Þ=2. This calculation is
very similar to that of scale transformations except that the
action of the differential operators on the δ-function does
not introduce extra terms, like D in the case of scale
transformations. Similarly, analyzing the left-hand side of
Eq. (8), we find an expression analogous to Eq. (13), but
now with a derivative of q acting on the amplitude,

½LSZ�
Z

dDxe−iq·xT�h0j∂μj
μ
ðλÞðxÞϕðx1Þ…ϕðxnÞj0i

¼ 2vð2πÞDδðDÞ
�Xn

j¼1

kj þ q

�

×
∂
∂qλ T nþ1

�
q; k1;…;−q −

Xn−1
j¼1

kj

�
: ð23Þ

Equating Eqs. (23) and (22) and contracting with qλ, we
find
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vqλ
∂
∂qλ T nþ1

�
q; k1;…;−q −

Xn−1
j¼1

kj

�

¼
Xn
i¼1

�
m2

i

ki · q

�
1 −

1

2
qμqλ

∂2

∂kμ∂kλ
�

−qλ
�
kμi

� ∂2

∂kμi ∂kλi −
1

2
ημλ

∂2

∂kiν∂kνi
�
þ d

∂
∂kλi

��

× T nðk1;…; knÞ þOðq2Þ: ð24Þ
With Eqs. (19) in hand, we may use Eq. (18) to replace
T nþ1. The Oðq−1Þ terms then exactly cancel on both sides
of the above equation, leading to an equation that uniquely
determines the Oðq1Þ terms of T nþ1, i.e.

vSð−1Þ
i jOðq2Þ ¼ −m2

i

�
1

2
qμqλ

∂2

∂kμ∂kλ
�
; ð25aÞ

vSð1Þ
λ ¼ −

Xn
i¼1

�
kμi

� ∂2

∂kμi ∂kλi −
1

2
ημλ

∂2

∂kiν∂kνi
�
þ d

∂
∂kλi

�
:

ð25bÞ

In conclusion, the Ward identities of the scale and con-
formal transformations determine completely the low-
energy behavior, through the Oðq1Þ, of an amplitude with
a soft dilaton in terms of the amplitude without the dilaton.
Inserting the results from Eqs. (19) and (24) into Eq. (18),
we have in total

vT nþ1ðq; k1;…; knÞ

¼
�
−
Xn
i¼1

m2
i

ki · q

�
1þ qμ

∂
∂kμi þ

1

2
qμqν

∂2

∂kμi ∂kνi
�

þD − nd −
Xn
i¼1

kμi
∂
∂kμi

−qλ
Xn
i¼1

�
1

2

�
2kμi

∂2

∂kμi ∂kλi − kiλ
∂2

∂kiν∂kνi
�
þ d

∂
∂kλi

��

× T nðk1;…; knÞ þOðq2Þ: ð26Þ
Notice that the terms proportional to m2

i can be considered
as the expansion of T nðk1;…; ki þ q;…; knÞ in q. Indeed,
this is exactly what we expect from the structure of tree-
level amplitudes; however, here it comes out as a conse-
quence of the Ward identities. We have checked the above
expression against three-, four-, five- and six-point ampli-
tudes in a simple four-dimensional two-scalar model, and
against 3-, 4-, and 5-point amplitudes in the generalized
D-dimensional model, discussed in Ref. [5]. The term of
order Oðq0Þ agrees with the one proposed in Ref. [6].4

IV. COMPARISON AND CONCLUSIONS

In this paper, we have extracted the tree-level soft
behavior of two, a priori, different objects that are both
referred to as dilatons in the literature. We have shown that
in both cases the symmetry properties determine the soft
behavior through the Oðq1Þ in the dilaton momentum. In
the case of the gravity dilaton, the symmetry is the same
gauge invariance that determines the soft behavior of the
graviton, while the soft behavior of the NG dilaton is
determined by the Ward identities of scale and special
conformal transformations. The soft behavior of the gravity
dilaton is given in Eq. (6) in an amplitude with scalar
particles and in Eq. (7) in an amplitude with other massless
particles, while that of a NG dilaton is given in Eq. (26). In
both cases, we get a term of Oðq−1Þ, which is proportional
to the squared mass of the other particles. This follows from
the fact that, in both cases, there is a three-point amplitude
involving a dilaton and two identical particles, which is
proportional to their squared mass.
Furthermore, for both dilatons we have a term of Oðq0Þ

and a term of Oðq1Þ that are fixed by the symmetry
properties and which contain terms connected to the
conformal operators D and Kμ. The generators of space-
time scale transformations, D̂, and special conformal space-
time transformation K̂μ, are equal to

D̂ ¼ xμP̂
μ; K̂μ ¼ ð2xμxλ − x2ημλÞP̂λ: ð27Þ

where P̂μ is the generator of space-time translations. Going
to momentum space they become

D̂ ¼ −ikμ
∂
∂kμ ;

K̂μ ¼ −
�
2kν

∂2

∂kν∂kμ − kμ
∂2

∂kν∂kν
�
; ð28Þ

which are precisely the operators that appear in both soft
behaviors. Apart from these similarities, there seems to be
some difference in the soft behavior as well; looking at the
term of Oðq0Þ in Eqs. (6) and (26), we find that in the first
case the kinematically invariant part equals 2, while in the
second case it is equal to D − nd. The term D − nd ¼
D − n D−2

2
represents the fact that T n has exactly this mass

dimension. In fact, for dimensional reasons, the amplitude
T n has the following form:

T nðm; kiÞ ¼ mD−nD−2
2 gn−2Gnðki=mÞ; ð29Þ

where m is the mass scale of the theory, which is typically
given by ðgvÞ 2

D−2, where v is related to the vacuum expect-
ation value of the dilaton field, hξi, and g is a typical
dimensionless coupling constant of the theory. It follows
immediately from Eq. (29) that the term of Oðq0Þ in
Eq. (26) can be rewritten as

4We thank Congkao Wen for communicating to us that the
dilaton actions constructed for proving the a-theorem [23–25]
satisfy the complete soft behavior in Eq. (26).
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1

v

�
D − n

D − 2

2
−
Xn
i¼1

kμi
∂
∂kμi

�
T n

¼ m
v

∂
∂m T n ¼

�
D − 2

2

� ∂
∂v T n ∼

∂
∂hξi T n; ð30Þ

where ∼ means up to a numerical constant.
The term of Oðq0Þ in Eq. (6) instead seems to have

another meaning. In string theory Mn has, of course, the
same physical dimension as T n and the following form:

Mn ¼
4π

α0

�
κD
π

�
n−2

Fnð
ffiffiffiffi
α0

p
kiÞ

¼ Cnm
D−nD−2

2
s gn−2s Fnðki=msÞ; ð31Þ

where α0 is the inverse string tension, and in the second line
we rewrote the expression into a form similar to Eq. (29),
with Cn being a numerical constant, ms ≡ 1=

ffiffiffiffi
α0

p
, gs the

string coupling constant and

κD ¼ 1

2
D−10
4

gsffiffiffi
2

p ð2πÞD−3
2 ð

ffiffiffiffi
α0

p
ÞD−2

2 : ð32Þ

In the field theory limit (gravity and supergravity), Mn
behaves as follows:

lim
α0→0

Mn ∼
�
κD
π

�
n−2

lim
α0→0

4πFnð
ffiffiffiffi
α0

p
kiÞ

α0
; ð33Þ

where the limit is finite and, for dimensional reasons, has to
provide a homogenous function in the momenta of the
particles of degree 2. This means that, in this limit, the
action of the full term of Oðq0Þ in Eqs. (6)–(7) gives zero.
In other words, in the field theory limit, the amplitude with
one soft dilaton is vanishing and this is consistent with the
fact that an amplitude with an odd number of dilatons in
(super)gravity vanishes. However, in the full string theory
this is no longer true. Equation (31) implies that the Oðq0Þ
term in Eqs. (6)–(7) can be written as

κD

�
2 −

Xn
i¼1

kμi
∂
∂kμi

�
Mn

¼ κD

�
D − 2

2
gs

∂
∂gs −

ffiffiffiffi
α0

p ∂
∂ ffiffiffiffi

α0
p

�
Mn

¼
�
D − 2

2

�
κD

d
dϕ0

Mn; ð34Þ

where we used the relation between gs and the vacuum
expectation value of the string dilaton, ϕ0, i.e. gs ≡ eϕ0 .
[Equation (34) is valid also when the amplitude Mn

contains massless open strings.] The operator that appears
in the second line leaves κD invariant, which can be
explicitly checked (see also [26,27]). This implies that in
string theory one does not have two fundamental constants
gs ≡ eϕ0 and α0 that can be fixed independently from each
other; the physical amplitudes depend on α0 and on κD
where a change of ϕ0 can be reabsorbed in a rescaling of α0.
Thus, the last step in Eq. (34) means that we should
differentiate with respect to ϕ0 keeping κD fixed. To
compare with the field theory dilaton, we should canoni-
cally normalize ϕ0 ¼

ffiffiffi
2

p
κDϕc:n:, and since κD is kept fixed

we simply get up to a numerical constant,

κD

�
2 −

Xn
i¼1

kμi
∂
∂kμi

�
Mn ∼

d
dϕc:n:

Mn: ð35Þ

Thus in both cases we find that, up to numerical constants,
the Oðq0Þ term of the soft-dilaton amplitude is simply
given by the derivative of the lower-point amplitude with
respect to the vacuum expectation value.
Before we leave the term ofOðq0Þ, let us conclude with a

more intuitive argument for the kinematically invariant
terms ofOðq0Þ. In the case of a NG dilaton, all dimensional
factors are rescaled by a scale transformation, while in
string theory one rescales the factor 1

α0 in the front of
Eq. (31) without rescaling κD. That is the reason why in one
case one gets D − n D−2

2
, while in the other case one gets 2.

Finally, the terms of Oðq1Þ are equivalent up to a single
piece; in the case of the NG dilaton, Eq. (26), there is a term
with a single derivative, which is not present in the case of
the gravity dilaton. As mentioned, however, they both
contain the operator related to special conformal space-time
translations.
It would be interesting to extend our considerations to the

loop diagrams of both dilatons. In string theory, the dilaton
stays massless to any order of perturbation theory, while in
field theory, the dilaton, in general, gets a mass because
conformal invariance is explicitly broken in the quantum
theory. (For a perturbatively controllable example, see for
instance Refs. [28,29].) There are, however, theories such as
N ¼ 4 super Yang-Mills on theCoulomb branch that are not
plagued by a conformal anomaly. In these theories, it would
be especially compelling to investigate the extent of agree-
ment with our soft theorem at the quantum level.
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