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Force-free electrodynamics (FFE) is a nonlinear system of equations modeling the evolution of the
electromagnetic field, in the presence of a magnetically dominated relativistic plasma. This configuration
arises on several astrophysical scenarios which represent exciting laboratories to understand physics in
extreme regimes. We show that this system, when restricted to the correct constraint submanifold, is
symmetric hyperbolic. In numerical applications, it is not feasible to keep the system in that submanifold,
and so it is necessary to analyze its structure first in the tangent space of that submanifold and then in a
whole neighborhood of it. As has been shown [1], a direct (or naive) formulation of this system (in the
whole tangent space) results in a weakly hyperbolic system of evolution equations for which
well-posedness for the initial value formulation does not follow. Using the generalized symmetric
hyperbolic formalism of Geroch [2], we introduce here a covariant hyperbolization for the FFE
system. In fact, in analogy to the usual Maxwell case, a complete family of hyperbolizers is found,
both for the restricted system on the constraint submanifold as well as for a suitably extended system
defined in a whole neighborhood of it. A particular symmetrizer among the family is then used to write
down the pertaining evolution equations, in a generic (3þ 1) decomposition on a background spacetime.
Interestingly, it turns out that for a particular choice of the lapse and shift functions of the foliation, our
symmetrized system reduces to the one found in [1]. Finally, we analyze the characteristic structure of the
resulting evolution system.
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I. INTRODUCTION

Force-free electrodynamics (FFE) describes a particular
regime of magnetically dominated relativistic plasmas which
are believed to play a key role in the physics of pulsars and
active galactic nuclei (AGNs). In those regimes, the electro-
magnetic field dominates over the matter interactions and
effectively decouples its dynamics from the matter degrees
of freedom. Thus, the electromagnetic field obeys a modified
(nonlinear) version of Maxwell equations, while the plasma
only accommodates to locally cancel out the Lorentz force.
There are two main conditions for the force-free approxi-

mation to be a good description of a particular astrophysical
situation: first, it is necessary to justify the presence of the
plasma on the surroundings of the central object, and,
second, it has to be shown that the plasma mass density is
much lower (by orders of magnitude) than the electromag-
netic field energy density. Such requirements are indeed
fulfilled in certain realistic astrophysical settings.
In a seminal work, Goldreich-Julian [3] studied the

consequences of assuming a vacuum outside of a spinning
neutron star with a dipolar magnetic field configuration and
noticed that an electric component along the magnetic field
lines was rotationally induced close to the stellar surface. It
was strong enough to be capable of pulling charges into the

surrounding space and, thus, generating a plasma. In the
context of black holes, Wald [4] found an exact solution of
vacuum electrodynamics for a stationary and axisymmetric
spacetime “immersed” on a uniform magnetic (test) field
aligned with the rotation axis. He observed that this
solution possesses a nonzero value for the electromagnetic
invariant ~E · ~B near the black hole horizon, analogous to the
neutron star scenario. Later, Blandford and Znajek connect
this two ideas on a foundational paper [5] where it was
argued that vacuum solutions are unstable to a pair
production cascade under typical astrophysical situations,
and that a force-free magnetosphere would thus be pro-
duced near a rotating black hole (with a magnetized
acreation disk supporting the external magnetic field).
The idea is that this mechanism for generating the plasma

regulates itself: the produced charges will accommodate so
as to locally cancel out the Lorentz force.1 And then, the
electric component of the field in themagnetic direction gets
gradually reduced (screened) until the production mecha-
nism is eventually aborted. This assumption allows us to
estimate a characteristic density of particles (the so-called
Goldreich-Julian density [3]) and, hence, to infer that the
inertial effects should be negligibly small under typical
conditions. This was later supported by numerical simu-
lations of the full MHD systems (see e.g. [6–8]).
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1In a time scale much shorter than the one associated with the
dynamics of the electromagnetic structure.
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In spite of the fact that the force-free equations have been
around for several years, their causal structure have been
only recently started to be uncovered [1,9,10].2 We now
know that this system of equations is not only strongly
hyperbolic, but also symmetric hyperbolic, since a suitable
system has been found in a particular (3þ 1) decomposi-
tion [1]. In the present work, we shall fully analyze this
system in a covariant fashion, and, following the lines of
[2], find its hyperbolizations and constraints. Our interest is
not only mathematical, but rather practical, for in many
instances, when numerically implementing these equations,
this knowledge is needed.
FFE has two constraints which are very different in

nature: a differential one, in common with Maxwell’s
equations (i.e., the divergence-free character of the mag-
netic field) and an algebraic one, particular to the theory,
namely, the vanishing of the invariant G ≔ F�

abF
ab. The

differential constraint is easy to deal with, either analyti-
cally or numerically, and in particular it fits well into
Geroch’s theory. So we shall deal with it in what is now a
days a standard form (see Sec. III B), and we shall not
discuss it here any further. The algebraic one, on the other
hand, is in a way more subtle and we shall devote to its
treatment a more careful analysis.
The condition G ¼ 0 implies the Maxwell field is

degenerate, so the FFE system consists of five evolution
equations for five unknowns. Thus, in principle, one could
find variables adapted to the submanifold G ¼ 0 so that the
set of equations is intrinsic to it and there is no algebraic
constraint left.3 With these variables, one should analyze the
well-posedness of the initial value formulation. We show, by
geometrical constructions which avoid the task of finding
adapted variables, that the restricted system is well posed.
This conclusion is reached by finding a symmetrizer for the
restricted system: that is, when we only allow perturbations
(vector fields in the appropriate fiber) to be tangent to the
G ¼ 0 submanifold. But this restricted scheme might not be
useful in many practical situations. It requires the choice of
new variables different from the Maxwell tensor, and those
might not be global as sections of the restricted fiber. Thus it
is important to extend the system just outside of the restricted
submanifold in some way so that it remains well posed in a
whole neighborhood of G ¼ 0.4

We shall perform this program in two steps. We shall
first analyze the equations at the submanifold G ¼ 0 but
allow for equations in the whole tangent space (in fact in a

slightly larger space to accommodate also for the diver-
gence free constraint). We shall find there families of
symmetrizers, in the sense of Geroch, that not only show
that the system is well posed, but also provide with
covariant symmetrizers to be used to evolve the equations
in any (3þ 1) spacetime decomposition. However, this is
not enough for that presupposes evolution would remain
at the G ¼ 0 submanifold, while numerically this is never
the case. In other situations, where the equations are
smooth in a whole manifold there is not much of an issue
for extending the result to a whole neighborhood outside
the constraint submanifold, this is so because the set of
positive matrices (symmetrizers) is open. Here the sit-
uation is different and a straightforward extension would
mean the Maxwell field would change from having a
kernel to being invertible and so effectively changing the
system from two equations to four (i.e. going to
Maxwell’s equations outside G ¼ 0). To overcome this
problem we have extended the system by an appropriate
field redefinition, so that outside the constraint submani-
fold only two equations are enforced, resembling even
there the force-free condition. Even more, the principal
part of system has the same algebraic structure than
the restricted one, thus symmetric hyperbolicity for
such extended system follows trivially from the previous
result.
This article is organized as follows: We begin in Sec. II

with a brief description of the force-free theory, particu-
larly, we discuss three different set of equations which we
shall refer to as the restricted, augmented, and extended
systems. In Sec. III, following Geroch, we start by
providing a formal definition of a hyperbolization and
symmetric hyperbolicity. While in subsections IIIB–IIID,
we present suitable hyperbolizations for each of the three
systems. Section IV is devoted to perform a generic (3þ 1)
decomposition on a given background spacetime, for the
extended version of the FFE system, corresponding to a
particular symmetrizer. We shall make contact here with
the evolution equations found in [1]. We end with some
conclusions and further comments in Sec. V.
Appendix A provides a brief, though complete, study of

the characteristic structure of our evolution system, and
finally, in Appendix B, a complete analysis of the con-
straints in their covariant version is included.

II. FORCE-FREE ELECTRODYNAMICS

We begin with the Maxwell equations,

∇bF�ab ¼ 0 ð1Þ

∇bFab ¼ ja; ð2Þ

where Fab is the electromagnetic field and F�
ab is the

Faraday tensor. When both the electric and magnetic
susceptibility of the medium vanish, like in vacuum or

2To the best of our knowledge, very little is known about the
initial-boundary value formulation, and most of what is done
concerning boundary conditions seems to rely on Maxwell
characteristic structure instead of the genuinely force-free one
(see e.g. [11,12]).

3As it can be the case of the Euler-potential formulation of the
FFE theory, for example. See Refs. [13–15].

4This observation has been also raised in Ref. [10], where an
alternative system (AU2) was proposed to that end.
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highly ionized plasma, the Faraday tensor is simply the
Hodge dual of the Maxwell tensor [16],

F�
ab ≔

1

2
ϵabcdFcd; ð3Þ

where ϵabcd ≡ ffiffiffiffiffiffi−gp
eabcd, is the volume element associated

with the metric (eabcd, being the Levi-Civita symbol).
The exchange of energy when interacting with charged

matter is expressed by ∇bTEM
ab ¼ −Fabjb, where Fabjb is

just the 4-force density and with TEM
ab being the electro-

magnetic energy-momentum tensor,

TEM
ab ¼ FacFb

c −
1

4
gabFcdFcd ð4Þ

Force-free electrodynamics (FFE) represents “a regime in
which the transfer of energy and momentum from the field
to the plasma can be neglected, not because the current is
unimportant, but because the field energy momentum
overwhelms that of the plasma” [15]. Maxwell’s linear
theory then gets modified by the force-free condition,

Fabjb ¼ 0: ð5Þ

Notice that this condition, for a nonzero current jb,
implies the Maxwell field to be degenerated (noninverti-
ble), which in turns implies that

G ≔ FabF�
ab ¼ 0: ð6Þ

Indeed, detFa
b ¼ G2 so that whenG ¼ 0 the kernel of Fa

b
has dimension two or four. In the case of physical interest,
namely, when the magnetic field is much bigger than the
electric field

F ≔ FabFab > 0; ð7Þ

the G ¼ 0 condition means that there is a timelike vector,
ua (proportional to ja) for which Fabub ¼ 0, that is, in the
corresponding frame the electric field vanishes. Therefore,
there exists a 4-vector va, such that

F�
ab ¼ 2v½aub�:

Notice that any linear combination of ua and va can also be
taken to define F�

ab as long as some condition on the
relative norms is fixed. So, the individual vectors are not
important, but the plane they define is. Thus, in the
degenerate case, the Maxwell field corresponds geometri-
cally (up to its overall strength) to a two-plane in spacetime.
Since one of the vectors is timelike, the plane is also
timelike. It is customary to take ua timelike and normal-
ized, and va perpendicular to it (so spacelike), in that case
va represents the magnetic field in that frame and F ¼ 2v2.

A. Restricted system

In a force-free situation, when G ¼ 0 and F > 0, the
electromagnetic field can be evolved autonomously [9,15].
This is achieved by removing the plasma current, ja,
combining together Eqs. (2) and (5), i.e.,

Fa
b∇cFbc ¼ 0: ð8Þ

Notice that the double degeneracy of Fa
b means that

these are just two equations, instead of the customary four
of Maxwell’s; and together with (1), they make a set of six
equations. But one of them is just the ∇ · ~B ¼ 0 constraint,
so it should be the case that the remaining five equations are
evolution equations for the surviving five components of
Fab. And we see that this is indeed the case. We shall call
this the restricted system, and study how to hyperbolize it
along the lines of Geroch’s formalism in the next section.

B. Augmented system

We now want to enlarge the system in a way that
guarantees that if we allow for evolution in the full field
manifold, that is without restricting it to the degenerated
submanifold, then at least at points along that submanifold,
the evolution flow will remain tangent to it. The natural
strategy seems to be the promotion of the algebraic
constraint (6) into a differential equation like ∇aG ¼ 0.
This is what essentially is done in [9], and constitutes what
they call the augmented system. Thus, we shall consider

Fab∇cFbc ¼ 0 ð9Þ

∇bF�ab ¼ 0 ð10Þ

F�bc∇aFbc ¼ 0: ð11Þ

Notice this enlargement provides the “missing” evolution
equation for the sixth Maxwell tensor degree of freedom,
but, at the same time, introduces three new constraints into
the system. We shall refer the reader to Appendix B for a
more detailed discussion on constraints, where it is shown
that they are integrable.

C. Extended system

As discussed at the introduction, in any numerical
simulation, the constraints will only be satisfied to trunca-
tion error, or round-off error at best. Hence, we would like
to extend the system beyond the constraint submanifold
G ¼ 0. In doing so, we do not want to alter the structure of
the equations and constraints dramatically: the subtlety
arises in Eq. (9), where we see that an extension to a
neighborhood of the constraint submanifold is by no means
trivial.
Here we present one possible extension which has the

property that gives simpler equations and resemble what
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people usually impose in the noncovariant versions. It is
worth notice in performing these extensions there is a
significant freedom, since physically, the equations are only
relevant at the submanifold. We want to ensure two things
which we consider very important: first, we want to keep
covariance so that regardless of the (3þ 1) decomposition
used to evolve the equations, one is evolving the same set of
equations, and, second, we want to keep the equations well
posed, so that they evolve in a controlled and unique
fashion.
We start defining a background tensor field extension,

namely,

~Fab ≔ Fab þ σF�
ab; σ ¼ G

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG2

p ; ð12Þ

Notice that at the G ¼ 0 submanifold it coincides with the
original field. This tensor is now degenerate and magneti-
cally dominated by construction. In fact, using that
F��
ab ¼ −Fab, and F�

abF
�ab ¼ −FabFab it is easy to see that,

~G≡ ~Fab ~F�
ab ¼ 0;

~F≡ ~Fab ~Fab ¼
2ðF2 þG2Þ

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p ≥ F > 0

Analogously to the previous construction,5 we can define
now vectors ð ~ua; ~vaÞ as satisfying,

~Fab ~ub ¼ 0; ~ua ~ua ¼ −1;

~va ¼ − ~F�
ab ~u

b; ~F�
ab ¼ 2~v½a ~ub�

The extended system may be written explicitly,

~Fab∇cFbc ¼ 0 ð13Þ

∇bF�ab ¼ 0 ð14Þ

~F�bc∇aFbc ¼ 0 ð15Þ
In the next section, we shall study the possible hyper-

bolizations of these three formulations.

III. HYPERBOLIZATION

A formal definition of a symmetric hyperbolic system
can be cast in an intrinsic geometrical formulation of PDEs.
The main goal of such a geometric treatment is to get a
better control on the structural features of the partial
differential equations of physics while keeping explicit
the covariant nature of them. More specifically, following

Geroch [2], it is convenient to write first order quasi-linear
systems of equations in a unified manner as,

Kc
Aα∇cΦα þ JAðΦÞ ¼ 0 ð16Þ

where Kc
Aα is called the principal symbol of the system,

which generically will depend on some background tensor,
like for instance the background metric gab, and on point-
wise values of the set of fieldsΦα. Here capital latin indices,
A, stand for the space of tensorial equations, lower latin
indices c stand for the spacetime index, and greek indices
for multitensorial unknowns. Typically, solutions of the
PDE (16) are interpreted as cross sections ΦαðxÞ over a
smooth fiber bundle B with points κ ¼ ðxa;ΦαÞ. We
interpret the fiber over xa as the space of allowed physical
states at the spacetime point xa, i.e., as the space of possible
field values at that point. In the case of electromagnetic
fields, we have κ ¼ ðxa; FabÞ, dimðBÞ ¼ 10, and a cross
section over a submanifold of M becomes the electromag-
netic field FabðxÞ at that region.
Following Geroch’s definition, by a hyperbolization of

(16), we mean a smooth symmetrizer hαA such that
(1) the field hαAKc

Aβ is symmetric in α, β,
(2) and there exists a covector wc in M such that the

tensor wchαAKc
Aβ is positive-definite.

If a system of PDEs admits a symmetrizer satisfying the
above conditions, we say that it is symmetric hyperbolic. In
that case such a system admits a well-posed initial value
formulation along surfaces whose normals satisfies con-
dition (2) above.
In what follows, we are going to construct a family of

such symmetrizers for the restricted and augmented FFE
systems, similarly to what is done in the usual Maxwell
theory and in Ref. [17], for nonlinear electrodynamics
theories. Then, wewill show that for the extended system, it
can be easily generalized from the results on the aug-
mented case.

A. Hyperbolization of the restricted system

The system we want to start with, is the one defined by
Eqs. (1) and (8). The fields are smooth tensor fields (cross
sections) Φα ↔ fFabjF� · F ¼ 0g. Notice that there is no
current in this case. The principal symbol is

Km
Aα ↔

�
Fa½bgc�m;

1

2
ϵambc

�
: ð17Þ

Contracting with a variation δFbc (which we shall denote
by Xbc for convenience) one gets

Km
AβδΦ

β ¼ ðFabXb
m; X�amÞ: ð18Þ

We now introduce our symmetrizer. Like in Maxwell
theory, it depends on an arbitrary vectorial parameter ta,

5Provided the original field is magnetically dominated, i.e.,
F > 0.
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δΦ̂αhαA ¼ ðX̂�
abF

�b
ctc; X̂

�
abP

b
ctcÞ; ð19Þ

where we have denoted X̂ab ≡ δΦ̂α and Pa
b ≔

1
2
Fδab þ

FacFcb (proportional to the projector onto the dual plane).
Recalling A��

ab ¼ −Aab, with Aab any antisymmetric
tensor, and using the following important identity,

A�aqB�
am ¼ −

1

2
ðA ·BÞδqm − AmaBaq; ð20Þ

one can show that the full contraction reduces to

δΦ̂αhαAKm
AβδΦ

β ¼ tcPb
c

�
X̂maXba þXmaX̂ba −

1

2
ðX̂ ·XÞδmb

�

−
1

2
taF�

abX
bmðF� · X̂Þ: ð21Þ

Since the fields are restricted to the degeneracy surface, the
variations must be orthogonal to the dual field. That is,

0 ¼ δG ¼ 2F� · X̂: ð22Þ

And, therefore, expression (21) becomes symmetric under
the exchange of X ⇄ X̂.
It only remains to check whether the second condition of

the definition also holds, namely: positive definiteness of
the bilinear form Hαβ ≔ hαAKc

Aβwc,

δΦαHαβδΦβ ¼ 2~tawb

�
XðacXbÞc −

1

4
ðX ·XÞgab

�
ð23Þ

which is just the Maxwell energy momentum tensor
contracted with the projected ~ta ≡ Pabtb and covector
wb. This expression is positive definite for arbitrary
antisymmetric tensors provided both ~ta and wb are timelike
and future directed.
But notice that whenever the field is magnetically

dominated (i.e., F > 0), for some choice of pairs of vectors
in the kernel of Fab, ðua; vaÞ, with uaua ¼ −1, vaua ¼ 0,
vava ¼ v2,

Pab ¼ ½vavb − v2uaub�;

and so ~ta ¼ Pabtb is timelike future-directed whenever ta

is. Thus the above expression, is positive definite for any
timelike future directed pair ðta; waÞ.

B. Hyperbolization of the augmented system

The system we want to symmetrize is (9)–(11). We shall
incorporate at this point an extra dynamical scalar field ϕ,
in order to handle the divergence-free constraint. The idea
is not to enforce the constraint exactly but to promote a
natural evolution towards a divergence-free state; Eq. (10)
is then modified as in Refs. [16,18–20],

∇bF�ab þ∇aϕ ¼ κnaϕ ð24Þ
Notice the constraint, and the new variable will satisfy a
telegraph equation of the form

□ϕþ κ∂tϕ ¼ 0; ð25Þ
which both fields will propagate like waves and at the same
time dissipate away, thus dynamically enforcing the diver-
gence-free condition.
It is important to remark that, contrary to the case in ideal

magnetohydrodynamics, the inclusion of this divergence-
cleaning field is by no means essential for the hyper-
bolization itself. We have decided to include it at this point,
because its presence is important when discretizing the
system. Hyperbolizations for the original system follow by
essentially setting ϕ ¼ 0 and a few minor rearrangements.
The fields are the same as before, but we now allow for

the whole tangent space at each point, namely δΦα ↔
fδFab; δϕg, and the principal symbol reads

Km
Aα ↔

��
Fa½bgc�m;

1

2
ϵambc; F�bcgam

�
; ð0; gam; 0Þ

�
; ð26Þ

where parentheses divide between different components of
the equation index A, and brackets distinguish tensorial
index α from the field variables. The current is now JA ↔
ð0;−κnaϕ; 0Þ As before, we have constructed a family of
symmetrizers with parameter ta. Contracted with a general
variation fX̂ab; δϕ̂g≡ δΦ̂α, we get

δΦ̂αhαA ¼
�
X̂�
abF

�b
ctc; X̂

�
abP

b
ctc − Pabtbδϕ̂;

−
1

2
X̂abF�b

ctc −
1

2
ktaðF� · X̂Þ

�
; ð27Þ

where k is an extra free parameter of the symmetrizer. Then
the full contraction results in

δΦ̂αhαAKm
AβwmδΦβ ¼ taPa

bwm

�
X̂cmXcb þ XcmX̂cb −

1

2
ðX̂ ·XÞδmb

�

−
1

2
taF�

abwm½XbmðF� · X̂Þ þ X̂bmðF� ·XÞ� − 1

2
ktawaðF� · X̂ÞðF� ·XÞ

þ Pabtbwm½X̂�maδϕþ X�maδϕ̂� − ðtaPa
mwmÞδϕδϕ̂; ð28Þ

which is clearly symmetric under the exchange δΦ̂ ⇄ δΦ.
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To see if our symmetrizer constitutes a positive-definite
bilinear form, we are going to assume the background
electromagnetic field is degenerate and magnetically domi-
nated. This will allow us to find a particular symmetrizer
(among the family), wherewe can explicitly ensure positivity.
When a tensor Fab satisfies conditions (6)–(7), then a

unit timelike vector ua exists, such that

Fabub ¼ 0;

that is, it belongs to the kernel of Fab. Thus, Pabub¼ 1
2
Fua.

A second (spacelike) vector can be built from ua as

va ≔ −F�abub:

Notice that va is also in the kernel of Fab by construction,
and its norm is given by vava ¼ 1

2
F. Furthermore, the dual

tensor can be expressed in terms of these two vectors like

F�
ab ¼ 2v½aub�:

Fixing a symmetrizer by choosing ta ¼ ua and setting
the covector to wa ¼ ua, (28) reduces to

δΦαhαAKm
AβnmδΦ

β ¼ 1

2
Fuaub

�
2Xa

cXbc −
1

2
ðX ·XÞgab

�
− 2ðvaubXabÞ2 þ 2kðvaubXabÞ2

þ 1

2
Fδϕ2

¼ 1

2
FðδE2 þ δB2 þ δϕ2Þ; ð29Þ

where the free parameter was set to unity (i.e., k ¼ 1), and
we have defined δEa ≔ Xabub and δBa ≔ −X�

abu
b, the

electric and magnetic components of the field variation.
Clearly, it is a positive quantity for any nonzero variation
δΦα and, therefore, the system is symmetric hyperbolic.

C. Hyperbolizations for the extended system

The above positivity result relies on the degenerate
character of the background electromagnetic field. Thus,
what we have proved so far is that the system (9)–(11) is
symmetric hyperbolic when restricted to the constraint
submanifold. Since the extended system has a principal part
which by construction incorporates a degenerate Maxwell
field,6 all the previous positivity results for the augmented
system follows naturally. We will simply use such a
degenerate (tilde) field in the construction of the symmetr-
izer like the one of expression (27) in the augmented case.
Now, in preparation for the next section’s results, we will

explicitly write down a particular hyperbolization for the
extended system and then apply it to the set of equations.
Splitting hαA on its field index, as a couple of antisym-
metric spacetime indices cd and a scalar component ϕ,

hαA ¼ fhA½cd�; hAϕg;
the particular symmetrizer with ta ¼ ~ua reads

hpqA ¼
�
−
1

2
~vbϵabcd;−

1

2
~v2 ~ubϵabcd;−

1

2
ð ~v½cgd�a þ ~ua ~F

�
cdÞ

�
ð30Þ

hϕA ¼ ð0;−~v2 ~ua; 0Þ; ð31Þ

where we have used ~Pa
b ~u

b ≡ ~F�ac ~F�
cb ~u

b ¼ ~v2 ~ua, and
~v2 ¼ 1

2
~F.

When applied to the extended system (with the diver-
gence-cleaning field ϕ included), we obtain the following
equations:

ϵabcd½ ~vcld þ ~v2 ~ucpd� ¼ ~v½arb� þ ~F�
abucrc ð32Þ

~v2 ~uapa ¼ 0; ð33Þ
where we have denoted

la ≡ ~Fac∇bðFcbÞ; pa ≡∇bðF�abÞ þ∇aϕ − κϕna;

ra ≡ ~F�bc∇aFbc:

Written in this way, it is straightforward to see that these
equations are equivalent to the original ones within the
constraint submanifold. Indeed, suppose we are in a region
of spacetime over which the background electromagnetic
field is degenerate and magnetically dominated. Thus, in
that region, it must happen that G ¼ 0 and ∇aG ¼ 0; and
therefore ra ¼ 0. Moreover, the vectors ~ua and ~va coincides
there with ua and va, respectively. It is not hard to see from
these observations that, in such a case, Eqs. (32)–(33)
enforce la ¼ 0 and pa ¼ 0. But these are exactly the initial
force-free equations we start with, namely, (8) and (24). In
other words, the solutions of our evolution equations will
satisfy the original covariant system of equations.

IV. 3þ 1 DECOMPOSITION AND EVOLUTION
EQUATIONS

In order to present a system suitable for numerical
discretization and subsequent evolutionwe perform an initial
value formulation for the symmetrized version of the
augmented system. Among all possible symmetrizers we
shall stick to the most natural one, namely the one given by
taking ta ¼ ~ua. It turns out that, under certain circumstances,
this choice gives the (3þ 1) evolution equations found in [1].

A. Foliation and frames

Following [21], we consider a spacetime region foliated
by the level hypersurfaces of a smooth time function t,
fΣtgt∈R, and an everywhere transversal vector field ta,
which we normalize so that ta∇at ¼ 1. Given any local

6Namely, ~Fab, as defined in Eq. (12), which coincides with the
original field Fab at the G ¼ 0 submanifold.
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coordinate patch in Σ0, fxig, we can extend it to a local
coordinate patch in fΣtgt∈R by constantly propagating the
values of the coordinates atΣ0 along the integral curves of ∂

∂t:

∂
∂t · dx

i ¼ 0;
∂
∂xi · dx

j ¼ δji : ð34Þ

In this way, we get a complete set of coordinates ft; xig for
which the “spatial” coordinates xi are preserved along the
vector field ta ≔ ð∂tÞa (time vector).
The normal to the surface is obtained by promoting ∇at

to a vector using the spacetime metric and normalizing it to
(minus) unity:

na ≔ −αgabðdtÞb: ð35Þ
The normalization factor α is called the lapse function. It is
useful to define the shift vector as the departure of ∂

∂t to the
normal vector,

βa ¼ ta − αna:

The vector βa lies at the tangent spaces of the foliations.
In the coordinate systems constructed this way, the

metric can be written

ds2 ¼ ðβ2 − α2Þdt2 þ 2βidxidtþ hijdxidxj; ð36Þ
where hij is the spatial metric induced on the hypersurfaces
Σt. Notice also a useful relation that follows from the
construction above: ffiffiffiffiffiffi

−g
p ¼ α

ffiffiffi
h

p
:

In components, the normal vector reads

na ¼ ð−α; 0; 0; 0Þ; na ¼ 1

α
ð1;−βiÞ:

We shall define the electric and magnetic components of
the electromagnetic field with respect to this normal,

Ea ≔ Fabnb ð37Þ

Ba ≔ −F�
abn

b; ð38Þ

from which one can obtain the following useful relations:

Fab ¼ 2n½aEb� þ ϵabcdncBd; ð39Þ

F�
ab ¼ 2B½anb� þ ϵabcdncEd: ð40Þ

Finally, we define the Poynting vector:

Sa ≔ neϵeabcEbBc: ð41Þ

It plays an important role in what follows as the third
member of a preferred orthogonal tetrad. Notice the
identical definitions ~Ea, ~Ba, ~Sa are valid for the degenerate
tensor ~Fab. But now, since ~Fab is degenerate, these three
spatial vectors are orthogonal to each other and orthogonal
to na as well. Thus, the four of them constitute an
orthogonal basis which is going to be very useful in what
follows. The relations between the spatial vectors with and
without the tilde are as follows:

~Ei ¼ Ei − σBi; ð42Þ

~Bi ¼ Bi þ σEi; ð43Þ

~Si ¼ ð1þ σ2ÞSi: ð44Þ

In terms of this “tilde” frame, we can also express ~ua and
~va in a unique way,

~ua ≔ λ

�
na þ

~Sa

~B2

�
; λ ≔

ffiffiffiffiffiffiffiffi
2 ~B2

~F

s

~va ≔ − ~F�ab ~ub ¼
1

λ
~Ba;

where λ is just a dimensionless normalization factor chosen
so that ~ua ~ua ¼ −1.

B. Evolution equations

The task now reduces to extracting the evolution
equations from the covariant expressions (32)–(33).
Basically, we shall take their components using the
orthogonal tetrad fna; ~Ea; ~Ba; ~Sag, which is naturally
adapted to the foliation. This results in a set of equations
involving the projections of the field’s temporal derivatives
along the three (orthogonal) spatial directions f ~Ei; ~Bi; ~Sig.
After a tedious but rather straightforward calculation, we
get the evolution system:

∂tϕ ¼ βk∂kϕ − α2djðBj=αÞ − ακϕ − α
~F
~Ekrk

∂tðEi=αÞ ¼
�
δik −

~Bi ~Bk
~B2

�
½βkdjðEj=αÞ þ djðFkjÞ� þ ~Bi

~B2
~EkdjðF�kjÞ − α ~Si

~B2 djðEj=αÞ

− ~Bi

~B2

�
~EβdjðBj=αÞ − βk

2α rk − ~Ek∂kϕ

�

∂tðBi=αÞ ¼ −djðF�ijÞ þ βidjðBj=αÞ þ 1
~F
ϵ̂ijkrj ~Bk þ ~Ei

~F ~B2
~Skrk − hij∂jϕ
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where

ri ≔
α2

2
ð∂iðG=α2Þ þ σ∂iðF=α2ÞÞ: ð45Þ

Also, we have denoted ϵ̂ijk ≡ naϵabcd (the induced volume
element on the hypersurface) and djð·Þ≡ 1ffiffiffiffi−gp ∂jð ffiffiffiffiffiffi−gp

·Þ
Naturally, Fij and F�ij can be rewritten in terms of electric
and magnetic fields through Eqs. (39)–(40). Notice that all
derivatives are acting on fields without a tilde, while the
(nonlinear) structure is written in terms of the tilde variables.

C. Comparison with Pfeiffer’s result

We shall now show that our system reduces to the one
obtained in Ref. [1] under certain conditions. Assuming we
are within the constraints’ submanifold, namely, G ¼ 0 and
∇ · ~B ¼ 0, then it is easy to see the tilde vectors reduce to the
nontilde (original) ones, that is, ð ~Ea; ~Ba; ~SaÞ → ðEa; Ba; SaÞ.
Further, we can set ϕ ¼ 0 and fix the lapse and shift to

α ¼ 1, βi ¼ 0. Taking all these conditions together, one gets

∂tEi ¼ ϵ̂ijk∇jBk þ
Bi

B2
½Elϵ̂

ljk∇jEk − Blϵ̂
ljk∇jBk�

−
Si

B2

1ffiffiffi
h

p ∂kð
ffiffiffi
h

p
EkÞ ð46Þ

∂tBi ¼ −ϵ̂ijk∇jEk −
Si

B2

1ffiffiffi
h

p ∂kð
ffiffiffi
h

p
EkÞ

−
1

B2
ϵ̂ijkBj∂kðElBlÞ: ð47Þ

These are exactly equations (48)–(49) appearing in [1], also
referred to as the AU system in Ref. [10]. Comparison with
the AU2 system in [10] is, however, more involved, and thus
we will not pursue it here.

V. FINAL COMMENTS

The force-free approximation has been vastly used
(analytically and numerically) in the description of several
astrophysical scenarios. Curiously, the mathematical details
regarding the initial and boundary value formulation of the
theory are not yet fully developed. Moreover, it has been
shown [1] that a direct (or naive) formulation of the system
renders a weakly hyperbolic set of evolution equations and,
hence, an ill-posed problem. However, in that same paper
and in a subsequent work [10], the authors have found
suitable reformulations of the theory in a particular (3þ 1)
decomposition,7 in which the systems are shown to be not
only strongly hyperbolic but also symmetric hyperbolic. In
this paper, we tackle the problem in a fully covariant fashion,
relying to that end on a framework developed byGeroch [2].
It is worth mentioning here that, in Ref. [17], this program

was applied successfully to nonlinear electrodynamics
(NLE) theories arising from general Lagrangians.
Unfortunately, FFE does not fit (at least directly) into the
theories included there, mainly due to the fact that the
underlying causal geometry of both set of theories is quite
different. Following the framework mentioned above, we
have shown it is possible to construct families of symmetr-
izers for both the restricted and augmented FFE systems. For
some symmetrizers, namely those closed to that having
ta ¼ ua, wemanage to prove the positive definitenesswithin
the constraint G ¼ 0 submanifold. Thus establishing well
posedness of the force-free equations. We further argue that
this is not enough for most practical applications, and so we
show a way to extend these results beyond this constraint
submanifold. This is done in two steps: in the first, we extend
the tangent space of the fiber at each point beyond theG ¼ 0
submanifold. This allows to use the complete Maxwell
tensor and the resulting evolution equations for all its
components. Thus, ordinary variables can be used in the
evolution, which is important when coupling this system
with others. In a second step we extend the evolution system
to Maxwell’s fields not satisfying the algebraic constraint.
This second step is very important for numerical simulations
for it is never the case (due to numerical errors) that the
evolution stays within the submanifold. This is done by
redefining in a co-variant way the Maxwell tensor outside
that surface so that the new tensor remains degenerate even
outside the surface and it is identical to the original one at it.
This redefined tensor is then used in the principal part of the
equations. Thus, the new system, since it has the same
algebraic properties as the original one, is also (trivially)
symmetric hyperbolic, and coincides with the original one
on G ¼ 0. We then write down the explicit set of evolution
equations for a particular symmetrizer, in an arbitrary 3þ 1
splitting of spacetime. Interestingly, the system found in [1]
appears as a particular limiting case from the evolution
equations that symmetrizer. Finally, in preparation for its use
in discussing boundary conditions and some aspects related
to our future numerical implementations, we performed the
characteristic decomposition of our evolution system and
then analyzed the possible degeneracies in the eigensystem.
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APPENDIX A: CHARACTERISTIC STRUCTURE

In this appendix, we perform a characteristic decom-
position of the extended system with respect to a generic

7basically, by recombining the evolution equations with the
constraints in an appropriate way.
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wave front propagation direction, given by ka ¼ ðλ; miÞ
where mi is a normalized unit vector. That is, we
look for the linearized perturbations ðϕ̂; Êi; B̂iÞ, over a
fixed background solution ðEi; BiÞ.8
To this end, we first introduce some convenient nota-

tional abbreviations,

Am ≡miAi; Ai
p ≡ Ai − Ammi; Ai

l ≡mkϵ
kijAj;

ðA1Þ

for any given vector Ai.
The characteristic system then reads,

ðλ − βmÞ=αϕ̂ ¼ −B̂m −
~Em

Δ2
ð ~EkB̂

k þ ~BkÊ
kÞ

ðλ − βmÞ=αÊi ¼ −B̂i
l þ

~Bi

~B2
½ ~BkB̂

k
l − ~EkÊ

k
l þ ~Emϕ̂� −

~Si

~B2
Êm

ðλ − βmÞ=αB̂i ¼ Êi
l −

1

Δ2

�
~Bi
l −

~Sm
~B2

~Ei

�
ð ~EkB̂

k þ ~BkÊ
kÞ −miϕ̂

where Δ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~B2 − ~E2

p
.

The solution to this eigenvalue/eigenvector problem is:

U�
1 ¼

�
1;

� ~Em

ð ~B2
p � ~SmÞ

~Bi
p;

~Em

ð ~B2
p � ~SmÞ

~Bi
l∓mi

�
; λ�1 ¼ βm � α

U�
2 ¼ f0; ~Ei

p � ~Bi
l; ~B

i
p � ~Ei

lg; λ�2 ¼ βm � α

U�
3 ¼ f0; ~B2ni − σ�A ð ~Si � Δ ~BiÞ; ~Sil � Δ ~Bi

lg; λ�3 ¼ βm − ασ�A

U4 ¼ f0; ~Bi;− ~Eig; λ4 ¼ βm − α
~Sm
~B2

;

where σ�A ≔ 1
B2 ð ~Sm � Δ ~BmÞ. And we have expressed the eigenvectors generically by, U ≡ fϕ̂; Êi; B̂ig. The first set of

eigenvectors correspond to the unphysical modes associated with the magnetic divergence-free constraint coupled to ϕ. The
second pair are identified as the fast magneto-sonic modes, and they also belong to the same subspace with light-speed
propagation velocities. The third pair, represents the force-free limit of the MHDAlfven waves. While the last one is related
with the algebraic constraint G ¼ 0, and thus, unphysical as the first pair.
Since generically the eigenvalues of these subspaces are different among each other, the above set form a complete basis

of the full solutions tangent space. The associated co-basis is,

Θ�
1 ¼ 1

2

�
1;∓ ~Em

Δ2
~Bi;∓

~Em

Δ2
~Ei∓mi

�

Θ�
2 ¼ 1

2ð ~E2
p þ ~B2

p � 2~SmÞ

�
a�; ð ~Bm � a�Þ

~Em

Δ2
~Bi − ~Epi∓ ~Bli; ð ~Bm � a�Þ

�
~Em

Δ2
~Ei þmi

�
− ~Bpi∓ ~Eli

�

Θ�
3 ¼ 1

2Δ ~B2ð1 − ðσ�A Þ2Þ

�
∓ ~Em;Δmi þ

~Bm

Δ
~Bi∓ ~Eli;

~Bm

Δ
~Ei � ~Bli

�

Θ4 ¼
1

Δ2
f0; ~Bi; ~Eig

where we have defined, a� ¼ ∓ ~Bm
~E2
m

ð ~B2
p� ~SmÞ.

1. Degenerate cases

Here we analyze in detail those cases in which some
of the above subspaces degenerate and mix with the

others. That is, the cases where two (or more) eigenvalues
of different subspaces coincide, and their associated
eigenvectors become singular or linearly dependent.
Since the system is symmetric hyperbolic, hence strongly
hyperbolic, we know at each point we can choose a
complete set of eigenvectors, but as subspaces cross
some become singular and a different choice needs to be
made.8With their associated tilde fields, namely, ð ~Ei; ~BiÞ.
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The three possible degeneracy’s are:

1. σþA ¼ σ−A ¼
~Sm
~B2

2. σþA ¼ �1 or σ−A ¼ �1

3. σþA ¼ �1 and σ−A ¼ ∓1ðsimultaneouslyÞ

(1) Here the Alfven subspace collapse with itself and
with the unphysical mode U4 (algebraic constraint).
Since we are considering magnetically dominated
background fields, Δ > 0, such degeneracy only
occurs if ~Bm ¼ 0. It is easy to see, from the general
eigenvector expressions, that the corresponding
vectors remain linearly independent in this limit;
and hence, we still have a full basis for the character-
istic system.

(2) The second possibility is whenever one of the
Alfven speeds coincides with one of the fast mag-
neto-sonic. It can be seen that the two corresponding
eigenvectors collapse to zero in all of the four
possible cases. We shall start the analysis from
the following general observation:

1 − ðσ�A Þ2 ¼
1

~B4
ð ~Sip � Δ ~Bi

pÞ2:

Thus, using the orthogonality of ~Ei, ~Bi, ~Si and the
magnetically dominance condition, whenever there
is an eigenvalue coincidence, it follows that:

~Em ¼ 0; ~Ei
p⊥ ~Bi

p;

~E2
p ¼ ~B2

p and Δ≡ j ~Bmj

In all the possible coincidence cases, it can be
found the following general structure for the char-
acteristic system,

U�
1 ¼ f1; 0;∓mig; Θ�

1 ¼ 1

2
f1; 0;∓mig

U�
2 ¼ f0; ~Bi

l;∓ ~Bi
pg; Θ�

2 ¼ 1

2 ~B2
p

f0; ~Bli;∓ ~Bpig

U4 ¼ f0; ~Bi;− ~Eig; Θ4 ¼
1

~B2
m

f0; ~Bi; ~Eig

while the two remaining eigenvectors (and covec-
tors) might be cast into two different groups:

(a) σþA ¼ 1 or σ−A ¼ 1:

Uð1Þ
3 ¼f0; ~Bi

p; ~B
i
lg;

Θð1Þ
3 ¼ 1

2 ~B2
p

f0; ~Bpi; ~Blig

þ 1

2 ~B2
m

f0;− ~Bmmi− ~Bi; ~Blig

Uð2Þ
3 ¼ 1

~B2
p

f0; ~Bi
p; ~B

i
lgþ

1

~B2
m

f0; ~Bmmiþ ~Bi; ~Bi
lg;

Θð2Þ
3 ¼ 1

2
f0;− ~Bpi; ~Blig

with eigenvalues λð1Þ3 ¼ βm − α and λð2Þ3 ¼ βm−
αð1 − 2

~B2
m
~B2Þ, respectively.

(b) σþA ¼ −1 or σ−A ¼ −1:

Uð1Þ
3 ¼f0;− ~Bi

p; ~B
i
lg;

Θð1Þ
3 ¼ 1

2 ~B2
p

f0;− ~Bpi; ~Blig

þ 1

2 ~B2
m

f0; ~Bmmiþ ~Bi; ~Blig

Uð2Þ
3 ¼ 1

~B2
p

f0; ~Bi
p; ~B

i
lgþ

1

~B2
m

f0;− ~Bmmi− ~Bi; ~Bi
lg;

Θð2Þ
3 ¼ 1

2
f0; ~Bpi; ~Blig

with eigenvalues λð1Þ3 ¼ βm þ α and λð2Þ3 ¼ βmþ
αð1 − 2

~B2
m
~B2Þ, respectively.

(3) The final case is when the two degeneracies above
appear simultaneously, namely, each Alfven mode
collapses with one of the fast modes. It is not hard to
see that this case is only possible when ~Ei ¼ 0 and
~Bi
p ¼ 0. But then the resulting structure is exactly

that of Maxwell theory, i.e., transversal modes at
light speed. While the remaining unphysical modes
related with constraints will propagate along normal
directions.

Therefore, we corroborate that, as long as the back-
ground electromagnetic field remains magnetically domi-
nated, there will always exist a complete eigenbasis for the
characteristic system.

APPENDIX B: CONSTRAINTS

According to [2], a constraint at a point ðxa; FbcÞ of the
bundle manifold B is a tensor CAn such that

CAðnKmÞ
Aα ¼ 0: ðB1Þ

The set of all constraints form a vector space.
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For the augmented system of FFE, we obtain a space of
constraints characterized by a scalar C2 and an arbitrary
antisymmetric tensor Cab

3 ,

CAn ¼ f0; C2δ
n
a; C3

n
ag ðB2Þ

To check that (B2) does indeed satisfy (B1), we contract it
with the principal symbol to obtain,

CAnKn
Aα ¼

C2

2
ϵnmbc þ Cnm

3 F�bc ðB3Þ

which is clearly anti-symmetric in the indices n and m.

1. Completeness

The main role played by constraints is that they
signal the presence in (16) of differential conditions that
must be imposed on initial data. Indeed, let Σ be any
hypersurface, with normal na. Then, it is easy to see that the
combination,

naCAaKm
Aα∇mΦα ¼ 0; ðB4Þ

only contains derivatives tangent to Σ. In the (vacuum)
Maxwell case, for example, there are two independent
constraints which gives rise, via (B4), to the vanishing of
the divergence of the electric and magnetic fields. For our
case, (B4) imply that the vanishing of the divergence of the
magnetic field is still a constraint in FFE,

1ffiffiffi
h

p ∂kð
ffiffiffi
h

p
BkÞ ¼ 0; ðB5Þ

where h here is the determinant of the induced metric
of the hypersurface. Furthermore it also implies a vector
constraint,

∂iðEkBkÞ ¼ 0; ðB6Þ
which states that the scalar product of the magnetic and
electric fields (the Lorentz invariant quantity F�

abF
ab) has to

be constant along spatial hypersurfaces.
Completeness, in the sense of Geroch, means that the

dimension of the evolution equations (provided by the
symmetrizer) plus the dimension of the constraints must
equal the dimension of the original PDE system. In the case
of force-free electrodynamics, we see that the space of
constraints is four-dimensional; there are six evolution
fields (i.e., Ei and Bi); and the original space of equations
is ten-dimensional. Therefore, the constraints in the aug-
mented system are indeed complete.

2. Integrability

For the cases where JA ¼ 0, like ours, the general
integrability condition, [2], reduces to

CAnð∇nKm
AαÞð∇mΦαÞ ¼ 0: ðB7Þ

If it holds as a trivial algebraic consequence of the
equations of motion we say that our constraint is integrable.
To show that this is indeed the case for FFE, we explicitly
compute it obtaining,

CAnð∇nKm
AαÞð∇mΦαÞ ¼ Cnm

3 ∇nðF�abÞ∇mðFabÞ

¼ 1

2
Cnm
3 ϵabcd∇nðFcdÞ∇mðFabÞ

ðB8Þ

Now, because Cnm
3 is antisymmetric in n and m, this

quantity is identically zero. Thus, Eq. (B7) holds and
the constraints are, therefore, integrable in the sense of
Geroch.
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