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We use uniform matrix product states to study the (1þ 1)D Oð2Þ and Oð4Þ rotor models, which are
equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a
“Hawaiian earring” graph for Uð1Þ and SUð2Þ, respectively. Applying tangent space methods to obtain
ground states and determine the mass gap and the β function, we find excellent agreement with known
results, locating the Berezinskii-Kosterlitz-Thouless transition for Oð2Þ and successfully entering the
asymptotic weak-coupling regime for Oð4Þ. To obtain a finite local Hilbert space, we truncate in the space
of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find
that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian
theory, where entanglement also suddenly increases. This could have important consequences for tensor
network state studies of Yang-Mills on higher-dimensional graphs.
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I. INTRODUCTION

Non-Abelian gauge theories describe the interactions
responsible for most of the matter we experience in our
everyday lives. In particular, they explain the hadrons—
bound states of quarks—which include neutrons and
protons among their most famous examples [1].
Curiously, the quarks inside hadrons behave as free
particles for the purposes of high-energy scattering (asymp-
totic freedom), yet they are never observed in isolation
(confinement [2]). These properties are also present in
matter-free non-Abelian gauge theory (pure Yang-Mills
theory). This apparently simple theory, despite its huge
symmetry group of local gauge transformations, resists
exact solution and must so far be approached with
approximate methods such as perturbation theory and
numerical tools such as Monte Carlo sampling [3], albeit
with convincing successes, such as the determination of
hadron masses using lattice simulations [4].
Monte Carlo techniques are also extremely useful in

condensedmatter physics, and advances have benefited both
fields. However, in recent decades new, highly general
techniques have arisen in condensed matter and quantum
information that open up whole new avenues of numerical
investigation. These techniques exploit tensor network
states (TNSs) [5], which efficiently represent many-body
states with limited entanglement. The best-known example
is the density-matrix renormalization group (DMRG) [6],
which can be viewed [7] as a variational algorithm applied to
one-dimensional TNSs, also known as matrix product states
(MPSs) [8]. These methods are inherently free of the sign
problem that plagues Monte Carlo sampling [9] and offer
themselves naturally to simulation of real-time dynamics.

In the last years, as TNS techniques have advanced (higher
dimensions,more sophisticated networks, improved numeri-
cal tools) [10], efforts have increased to transfer their
successes in condensed matter to quantum field theory,
particularly with an eye toward non-Abelian gauge theory.
Important steps in this direction include ground state, real-
time, and finite-temperature simulations of ϕ4 theory
[11,12], the Schwinger model [13–16], SUð2Þ gauge theory
with matter [17] in (1þ 1) dimensions, and quasi-one-
dimensional Abelian gauge theories [18], all using MPS
orDMRG, as well as proposals for representing lattice gauge
theory states in higher dimensions, with a view toward
numerics as well as analytics [19–23]. The tensor renorm-
alization group algorithm [24] has also been applied to ϕ4

(a) (b)

FIG. 1. Illustration of lattice gauge theory (a) on a Hawaiian
earring and (b) the same theory visualized differently as living on
the surface of a 3D object. The Hamiltonian is the Kogut-
Susskind [29] formulation of lattice gauge theory for a gauge
group G | example plaquette operators are shown in blue. The
Hilbert space H (including nonphysical states) is made up of
systems living on the (black) edgesHedge ≅ L2ðGÞ. For the gauge
groups G ≅ Uð1Þ and G ≅ SUð2Þ this model is equivalent to the
(1þ 1)-dimensional quantum rotor model [30] for the rotation
groups Oð2Þ and Oð4Þ, respectively.*ashley.milsted@itp.uni‑hannover.de
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theory [25], the Schwinger model [26], and the Oð2Þ and
Oð3Þ models [27,28].

A. This work

Here we present an MPS study of the Oð2Þ and Oð4Þ
quantum rotor models in 1þ 1 dimensions, which are
equivalent, respectively, to the Uð1Þ and SUð2Þ principal
chiral field (PCF) models. The PCF model is in turn
equivalent to a pure lattice gauge theory on a “Hawaiian
earring” graph in the Kogut-Susskind formulation (see
Fig. 1), insofar aswe do not restrict to gauge-invariant states.
The Hamiltonians possess a global gauge-group sym-

metry rather than a local gauge symmetry but nevertheless
have a lot in common with Yang-Mills on more sophis-
ticated graphs. Most importantly, the OðN > 2Þmodels are
known to possess a single, gapped phase ending at the
weak-coupling limit g → 0 [30]. This is also observed in
simulations of (3þ 1)-dimensional non-Abelian lattice
gauge theory, in which the gapped phase is confining
[2]. In contrast, the Oð2Þ model has a phase transition (of
Berezinskii-Kosterlitz-Thouless (BKT) type [31]) at finite
coupling, transitioning into a deconfined, gapless phase at
weaker couplings.
The continuum limit of the rotor models, the so-called

OðNÞ nonlinear sigma model [30], can be solved using the
Bethe ansatz for N > 2 making the lattice weak-coupling
scaling of the mass gap computable [32]. The OðNÞ model
has also been thoroughly investigated using strong-coupling
expansions [33,34], which operate on the same 1þ 1-
dimensional Hamiltonian model we study here, as well
as high-temperature expansions (for example, Ref. [35]) and
Monte Carlo numerics (Refs. [36–39] are an incomplete
selection) applied to the 2D classical OðNÞ model. Lanczos
diagonalization with finite size scaling has also been used
[40]. In this work, we use uniformMPS to represent infinite,
translation-invariant states, applying the nonlinear conju-
gate gradient method [12] to obtain ground states and the
MPS tangent space as an ansatz for low energy excitations
[41,42], determining the mass gap and the β function at
finite couplings and thus obtaining the phase diagram.

II. MODEL

A. Kogut-Susskind Hamiltonian

The Kogut-Susskind Hamiltonian [29] on the Hawaiian
earring graph is given by

HKSðgÞ ¼
ffiffiffi
η

p
g2

2a

Xþ∞

k¼−∞
E2
k −

2
ffiffiffi
η

p
g2a

Xþ∞

k¼−∞
Reðtrðuku†kþ1ÞÞ; ð1Þ

where g is the coupling, a the lattice spacing, and η an
anisotropy parameter required to ensure the renormalized
theory is Lorentz invariant in the continuum limit [43]. The
Hilbert space is the tensor product of spaces

Hk ¼ L2ðGÞ
assigned to each edge e in the graph, and G is the gauge
group. We define λα to be the Hermitian generators of G
[for SUð2Þ these are the Pauli matrices λα ¼ 1

2
σα with

α ¼ 1, 2, 3, and for Uð1Þ there is only one λ ¼ 1]. The
operator

E2
k ¼

X
α

E2
α;k

is the quadratic Casimir operator representing the kinetic
energy within the gauge group at edge k. The Eα represent
the infinitesimal group action

Eα ≔ ∂ϵLeiϵλα jϵ¼0;

where Lx implements rotations from the left, acting on a
“position” basis as

Lxjvi ¼ jxvi
for x; v ∈ G. The uij are gauge-group position operators
defined as

uijjvi ¼ tðvÞijjvi;
with tðvÞ an irreducible representation of G [we choose eiθ

for Uð1Þ and the spin-half representation for SUð2Þ]. This
results in the commutator

½Eα; uij� ¼
X
j0
λα;ij0uj0j:

B. Quantum rotor Hamiltonian

The model (1) is known to be equivalent to a chain of
coupled OðNÞ rotors (see e.g. Ref. [43]), given by

HRð~gÞ ¼
ffiffiffi
η

p
~g

2a

Xþ∞

k¼−∞
J2k −

ffiffiffi
η

p
~ga

Xþ∞

k¼−∞
nk · nkþ1; ð2Þ

where nk is an N-dimensional unit vector representing the
kth rotor and J2k is the rotor kinetic energy. The normali-
zation of J2 is chosen to match [33]. The Hamiltonian (2) is
manifestly invariant under a global OðNÞ symmetry. The
relations which underlie HKS ¼ HR are given in Table I.
The continuous position basis jvi does not lend itself to

use with MPS numerics, for which we require a discrete,
finite basis ≅ Cd. Instead we make use of the generalized
Fourier basis given by the Peter-Weyl theorem [44], in
which the matrix elements of the irreducible representa-
tions (irreps) of a compact Lie group G label generalized
Fourier modes jijil (the matrix element i, j of irrep l). The
kinetic term E2 is diagonal in this basis, with

E2jijil ¼ lðlþ 1Þjijil; l ∈
1

2
Z�
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for SUð2Þ and

E2jni ¼ n2jni; n ∈ Z

for Uð1Þ. In the strong-coupling regime g2 ≫ 1, the E2

term strongly penalizes higher irreps, so we can neglect
them to good approximation at larger g2, expecting them to
become more relevant as we near weak coupling.
Importantly, truncating the basis at a certain irrep level
(Fourier mode) does not prevent representation of states
invariant under the global gauge-group symmetry (since
rotations do not mix irreps).

III. NUMERICAL METHODS

The uniform MPS variational class consists of states

jΨðAÞi ¼
Xd
s¼1

v†L

� YþM

k¼−M
Ask

�
vRjs−M…s0…sþMi;

where As is a D ×D matrix and d the dimension of the
chosen local basis and we make the chain length infinite:
M → ∞. For a given basis element s ¼ ðs−M;…; sþMÞ, the
matrix product in square brackets determines the value of
hs−M…s0…sþMjΨðAÞi, hence the name “matrix product
states.” Two key features of MPS are the efficiency with
which quantities such as expectation values of local
operators and correlation functions can be computed
[requiring OðD3Þ multiplications] and the fact that the
restriction to the MPS form serves only to limit the amount
of entanglement that can be present in the state. The
dimension D is called the bond dimension and serves to
control the degree of spatial correlations, placing an
upper bound S ≤ logD on the entanglement entropy, for
example. For more background, see, for example, Ref. [5].
To make the limit M → ∞ behave appropriately, we

require A such that the transfer operator

E ≔
X
s

As ⊗ As

has spectral radius ρðEÞ ¼ 1 with a unique eigenvalue of
largest magnitude (injectivity) equal to 1. With this

condition, the boundary vectors vL and vR drop out of
all relevant calculations, and hΨðAÞjΨðAÞi ¼ 1. For more
details on using infinite, uniform MPS, see Ref. [10].
We set d to accommodate the dimensions of all Fourier

modes up to a cutoff. With Uð1Þ all irreps are one
dimensional, and we may label Fourier modes as n ∈ Z,
so that a cutoff is given by jnj ≤ nmax and

d ¼ 2nmax þ 1:

For SUð2Þ we must set

d ¼
Xlmax

l¼0

dimðVlÞ2 ¼
Xlmax

l¼0

ð2lþ 1Þ2;

with l ¼ 0; 1
2
; 1; 3

2
;….

In this study we use values of nmax up to 10 and lmax up to
2. The former requires d ¼ 21, while the latter implies
d ¼ 55, which is unusually high for MPS numerics. In the
algorithms of Refs. [12,41,45] the cost of computations
involving nearest-neighbor operators, such as the potential
term ueu

†
eþ1, scales as Oðd4Þ. We reduce this to Oðd2mÞ,

where m is the number of terms in the tensor product
decomposition, by implementing them as two-site matrix
product operators [7] of dimensionm, where m ≤ 4 for our
purposes. We further accelerate our implementation by
computing the iterands of iterative parts using general
purpose graphics processing units [46].
With these optimizations, we apply the nonlinear

conjugate gradient (CG) method to obtain ground states
[12], with the time-dependent variational principle [45]
used in a preoptimization step to provide good starting
points for the CG algorithm. We converge all states up to
jjPTðAÞHjΨðAÞijj ≤ 10−8, where PTðAÞ projects the energy
gradient vector onto the MPS tangent space at jΨðAÞi. We
then obtain low-lying excited states using the methods of
Ref. [41], always operating directly in the space of infinite,
uniform MPS. All MPS algorithms used here are imple-
mented as part of the open source evoMPS project [47].

IV. RESULTS

A. Phases observed

Since our choice of truncated basis is most appropriate at
strong coupling,we study the system starting at 1=~g → 0 and
then approach weak coupling as far as possible, while
maintaining accuracy. We find, for both the Oð2Þ and the
Oð4Þ rotors, that the MPS approximate ground state breaks
the global OðNÞ symmetry for 1=~g < 1=~gSB for constant,
finite D. The onset of symmetry breaking (SB), for the
values ofD in use, is confined to a relatively narrow region of
parameter space. Since the breaking of a continuous
symmetry is forbidden by the Mermin-Wagner theorem
[48], this must be a symptom of finite-entanglement effects

TABLE I. This table shows how quantities in the rotor model
(2) must be set to obtain equivalence to the Kogut-Susskind
model (1) for the gauge groups G ≅ Uð1Þ and G ≅ SUð2Þ.
HR; OðNÞ HKS; G ≅ Uð1Þ HKS; G ≅ SUð2Þ
N 2 4

~g g2=
ffiffiffi
2

p
g2=4

J2 E2 4E2

nμ ðReðuÞ; ImðuÞÞμ −itrðλμuÞ
μ ¼ 1, 2 μ ¼ 0…3; λ0 ¼ i

2
I
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[49]: The bond dimension needed to accurately represent the
symmetric state must suddenly grow as we approach weak
coupling.
The Oð2Þ rotor is known to possess a gapless phase at

weak coupling, characterized by algebraically decaying
correlations, such that the correlation length is infinite [30].
As defined above, a uniformMPS would requireD → ∞ to
accurately represent such a ground state, thus explaining
nonphysical SB at finite D. The existence of a phase
transition at finite ~g also explains the narrowness of the
region where SB begins. We expect the symmetry-breaking
location ~gSBðDÞ to converge to the location of the phase
transition as D → ∞, and indeed this convergence can be
seen in Fig. 2, where the extrapolated transition point ~g ¼
1.119� 0.004 agrees well with a known estimate from
strong-coupling expansions of the mass gap ~g ≈ 1.12 [33]
and less well with an estimate ~g ≈ 1.05 based on Padé
approximations of β-functions from strong-coupling
expansions [34], as well as a number of other methods
[50] that indicate ~g ≈ 1.00 (the parameter given in these
studies is usually x ¼ 2=~g2). It is worth noting that
estimating the transition point of a BKT transition is
notoriously difficult due to the exponential scaling of the
mass gap near the transition [31], and it is possible that our
estimate would shift given data at larger bond dimensions
or by the use of more reliable indicators than the onset of
nonphysical SB. An accurate determination of ~gBKT is,
however, beyond the scope of this work.
Despite the impossibility of representing the ground state

precisely in the gapless phase at weak coupling, the scaling
of von Neumann entropy and correlation length in MPS
ground states with a range of finite D can be used to

estimate the central charge c of the conformal field theory
describing the phase [51,52]. We fit data for D ¼
22; 28; 34;…; 80 at 1=ð~g ffiffiffi

2
p Þ ¼ 0.75, 0.8, 0.85, 0.9 and

find c ¼ 0.992� 0.009, matching the known result of
c ¼ 1 for the 2D classical XY model [53], which is
identical with the classical Oð2Þ rotor.
We now turn to theOð4Þ rotor, which is known to exist in

a single, gapped phase down to the weak-coupling limit
~g → 0 [30]. Here we expect our choice of basis to become
increasingly bad as we approach weak coupling, due to the
occupation of higher Fourier modes. We also expect greater
entanglement in the exact ground state as the potential term,
coupling nearest-neighbor edges, begins to dominate, and
the lattice correlation length grows. This is not enough,
however, to explain the very sudden occurrence of non-
physical SB. This is likely due to the “crossover”
phenomenon, a property of the OðN > 2Þ models and of
non-Abelian gauge theories, referring to the persistence of
strong-coupling behavior up to a certain region of parameter
space, where weak-coupling behavior rapidly takes over.
Despite the sudden onset of the weak-coupling regime, we
still expect the nonphysical symmetry-breaking transition to
disappear as D → ∞, as we indeed observe in Fig. 2.

B. Mass gap

Our next source of information is the mass gap. Here we
can directly compare our results with the results of eighth-
order and sixth-order strong-coupling series expansions
(SCEs) for the Oð2Þ and Oð4Þ models, respectively [33].
We find excellent agreement for both models up to the
vicinity of theOð2Þ phase transition and theOð4Þ crossover
region. Moving closer, Fig. 3 shows that the mass gap
descends toward zero at a finite coupling forOð2Þ, whereas
forOð4Þ the log-linear plot shows linear behavior, indicating
a finitemass gap for all finite couplings. For comparison, we
plot the exact asymptotic weak-coupling scaling for Oð4Þ
[32], taking into account speed-of-light renormalization
effects due to the stark space-time asymmetry of the
Hamiltonian discretization [43]. We find very good agree-
ment with the weak-coupling prediction, showing that we
are successfully entering the asymptotic scaling regime,
although we also see from the plot that finite-entanglement
effects start to limit the accuracy (the D ¼ 140 curve
remains accurate for longer than the D ¼ 91 curve for
lmax ¼ 2), as indeed does the Fourier mode truncation (the
lmax ¼ 2 curve is more accurate than the lmax ¼ 3=2 curve
for D ¼ 140).
In theOð4Þ case it is also interesting to note that, holding

the Fourier cutoff at l ≤ 2, increasing the bond dimension
appears to interpolate between the SCE result and the weak-
coupling result. The effect is even clearer when more values
of D are considered. This makes sense if we recall that the
SCE for the mass gap perturbs the ~g → ∞ ground state and
first excited state, both product states without entangle-
ment in the Fourier basis, by repeatedly applying the

FIG. 2. The location g2SB of the onset of MPS ground state SB as
a function of the bond dimension D. We plot the Kogut-Susskind
coupling g2SB rather than ~gSB to aid comparison. Values of g2SB
were found using bisection up to a precision in g−2 of �0.005.
For Uð1Þ ∼Oð2Þ, g2SB tends toward a finite value. This value
should correspond to the location of the BKT transition [30].
In terms of the Oð2Þ rotor parameter the fit gives
~gBKT ¼ 1.119� 0.004. For SUð2Þ ∼Oð4Þ the transition does
not converge for the data available. This is consistent with it
occurring at g ¼ ~g ¼ 0.
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nearest-neighbor term in the Hamiltonian up to some order
[29,33]. The higher the order, the less local the correlations
introduced into the states will be. In the same way, raising
the bond dimension of an MPS ground state utilizing the
Fourier basis allows longer-range correlations to be repre-
sented. In this sense, our MPS methods and SCEs are very
similar techniques, and it is not surprising that the MPS
results at smaller bond dimensions match low-order SCE
results well.
Using similar reasoning, we can understand why the SCE

results and the lower-DMPS results underestimate the mass
gap in the Oð4Þ weak-coupling regime. Given that the
ground state in this region consists of highly nonlocal
structures (Wilson loop excitations of various sizes) [29],
limiting the order of the SCE or restricting the amount of
entanglement in the MPS should both work against achiev-
ing these low-energy configurations, resulting in an over-
estimation of the ground state energy. Indeed, we observe
significant differences on the order of 10−2 in the ground
state energy with D as we enter the crossover regime.
Assuming the first excitation is represented relatively
accurately, this explains the underestimation of the gap.
We note here that using a symmetric tensor network

ansatz [54] might significantly extend the range of acces-
sible effective bond dimensions and so enable further
penetration into the Oð4Þ weak-coupling regime, although
it would not allow access to the lowest-lying excitations of
the Oð4Þ model, which break the Oð4Þ symmetry. For a
model with truly local gauge symmetry, methods such as
that of Ref. [16] are required.

C. Beta functions

Using the mass gap and its first derivative in the
coupling, one can calculate (see, for example, Ref. [33])
the β function as

−βð~gÞ=~g ¼
�
1 −

4

~g2
F0ð~gÞ
Fð~gÞ

�
−1
; ð3Þ

where Fð~gÞ ¼ 2aðE1ð~gÞ − E0ð~gÞÞ=~g. Using finite differ-
ences to compute F0, we may compute β functions from our
mass gap results.
It is also possible to use a SCE for the mass gap to

construct a Padé approximant for the β function.
Furthermore, the OðN > 2Þ weak-coupling behavior of
βð~gÞ is known from perturbation theory to be

−βð~gÞ ¼ ðN − 2Þ ~g
2

2π
þ ðN − 2Þ ~g3

4π2
; ð4Þ

allowing this information to be incorporated, resulting in an
approximate β function for all couplings for the OðN > 2Þ
rotor [33].
We compare the Padé approximants of Ref. [33] with our

MPS results in Fig. 4, observing excellent agreement at
stronger couplings, with the numerical results deviating
from the approximate curve as we near the phase transition.
In the case of Oð2Þ, the numerical data appear to predict a
higher value for the phase transition location than the Padé

FIG. 3. The MPS mass gap for (a) the Oð2Þ rotor and (b) the
Oð4Þ rotor for bond dimensionsD and Fourier cutoffs in jnj and l,
respectively. The strong-coupling expansion of Ref. [33] is
shown (SC), as is the weak-coupling result (WC) for the Oð4Þ
case, which is known exactly [32]. In (b), the curves are adjusted
by an anisotropy parameter

ffiffiffi
η

p
to account for the renormalization

of the speed of light [43] [for Oð2Þ, η is set to 1]. Near the phase
transition forOð2Þ, and as we enter the weak-coupling regime for
Oð4Þ, finite-entanglement effects and, for Oð4Þ, Fourier cutoff
effects become important.

FIG. 4. Beta functions determined from the MPS mass gap for
(a) the Oð2Þ rotor and (b) the Oð4Þ rotor, together with a Padé
approximant based on a strong-coupling expansion and the weak-
coupling result for the non-Abelian case [33]. The estimate ~gBKT
from Fig. 2 of the location of the Oð2Þ phase transition is marked
in (a) using a black rectangle. For Oð4Þ it is clear from the
D ¼ 140, lmax ¼ 3=2 curve that the numerical results begin to
qualitatively follow the weak-coupling behavior. However, there
are clearly systematic errors present. This is expected because the
beta function involves the numerical derivative of the mass gap,
making it sensitive to small inaccuracies due to finite entangle-
ment and Fourier mode truncation.
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approximant, in good agreement with our result from
Fig. 2. However, we also observe a shift in the results as
the bond dimension changes, with the higher-D results
corresponding to a smaller prediction for ~gBKT. This
supports the possibility mentioned in the previous section
that using higher bond dimensions would result in a better
correspondence with the majority of literature results.
TheOð4Þ data cease to follow the Padé curve as we enter

the crossover region but does not succeed in following the
weak-coupling result accurately either. This is not unex-
pected, as both approximations are likely inaccurate in the
crossover region. We do, however, see large variations
with D and lmax, particularly as we near the nonphysical
symmetry-breaking transition. That errors are more visible
for the β function than for the mass gap is expected since
the numerical derivative amplifies small errors in the mass
gap. We would need to reach higher bond dimensions and
Fourier mode cutoffs to achieve accurate results further into
the weak-coupling regime. A further way of reducing noise
would be to compute the derivative F0ðxÞ analytically from
the MPS excited state.

V. CONCLUDING REMARKS

We have shown that tensor network state methods, in this
case uniform matrix product states, can successfully
represent states of the non-Abelian quantum rotor model
into the weak-coupling regime. The finite local basis,
achieved through Fourier-mode truncation, successfully

and efficiently captures strong-coupling physics but
becomes a more severe limitation at weak couplings where,
additionally, the spatial entanglement grows substantially.
This is promising for TNS approaches to pure non-

Abelian gauge theory, which is believed to possess a very
similar phase diagram to theOðNÞ rotor models and, on the
Hawaiian earring graph, is indeed equivalent to the rotor
models studied here. Our study also shows that high spatial
entanglement is a feature of the theory from the crossover
region onward, into weak coupling. This may pose a
challenge for numerical approaches if it carries over to
higher-dimensional non-Abelian lattice gauge theory, since
large bond dimensions may be needed to access the
asymptotic scaling regime.
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