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We study the phase diagram for staggered quarks using chiral perturbation theory. In beyond-the-
standard-model simulations using a large number (>8) of staggered fermions, unphysical phases appear for
coarse enough lattice spacing. We argue that chiral perturbation theory can be used to interpret one of these
phases. In addition, we show that only three broken phases for staggered quarks exist, at least for lattice
spacings in the regime a2 ≪ Λ2

QCD.
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I. INTRODUCTION

The fact that unphysical phases may arise in lattice
simulations for coarse lattice spacings has been known for
some time [1–5]. Such phases arise when the squared mass
of a meson becomes negative in a region of the relevant
parameter space. When this occurs we must find the true
minimum of the potential so that we can expand about the
true ground state of the theory. Doing so for lattice
simulations is important as the continuum limits cannot
be properly taken unless they are performed in the
unbroken, physical phase, where the vacuum state has
the symmetries of the action.
For staggered quarks, the case of interest here, unphys-

ical phases appear when ca2 < −m, where m is the light
quark mass, for some parameter c (the specific form is
discussed in Sec. III) arising from the Oða2Þ taste-sym-
metry breaking potential. This implies that these unphysical
phases can be studied using rooted staggered chiral
perturbation theory (rSχPT) [3,4], which requires a2 to
be fine enough such that the low-energy effective theory is
valid. Thus, we are interested in a region such that

m
ΛQCD

≲ a2Λ2
QCD ≪ 1: ð1Þ

The first condition assumes the parameter c < 0 and that
ca2 is large enough that one of the squared meson masses
has become negative, while the second condition is
necessary for our low-energy effective theory to be valid.
If simulations are performed in the broken phase, one

cannot use thenumerical results to describephysical systems.
As such, understandingwhere these unphysical phases occur
and how to detect them is essential in understanding the
system being simulated. InRef. [5], one unphysical phase for
staggered quarks was studied, and an analysis of the mass

spectrum was performed, noting the possibility of additional
broken phases in the system. However, it is clear that the
phase in Ref. [5] is not seen in the 2þ 1-flavor simulations
(see Refs. [6,7] for examples).
In recent work looking into beyond-the-standard-model

(BSM) theories in Ref. [8] using 8 or 12 flavors of
degenerate staggered quarks,1 two broken phases were
seen in addition to the standard physical phase. One of the
phases examined in Ref. [8] shares several features with the
phase studied in Ref. [5], as we discuss in this work.
In Ref. [8], the authors found three distinct phases

appearing in the staggered theory for 12 flavors of
staggered quarks. The first phase, seen at weaker coupling,
is the unbroken phase, as it retains the discrete shift
symmetry of staggered fermions, and has the expected
mass spectrum, at least approximately. The intermediate
phase, at slightly stronger coupling, falls within the window
in Eq. (1) so that rSχPT is applicable and is the broken
phase seen in Ref. [5]. Finally, the phase that arises at the
strongest coupling in Ref. [8] is outside the chiral regime
and thus cannot be studied using the methods of this paper.
One can use the replica method for rSχPT [9] to

generalize the results of Ref. [5] for nf degenerate flavors
and nt tastes per flavor. We define nq ≡ nfnt as the number
of quarks in our resulting theory. The phase studied in
Ref. [5], which we refer to as the “A phase,” appears when

a2δ0A− < −
4

3
ð2μmþ a2ΔAÞ; ð2Þ

where m is the light quark mass, and we are denoting δ0A,
the hairpin term of Refs. [4,5], as δ0A−. This is assuming
three flavors of degenerate rooted-staggered quarks, but if
we generalize this using the replica method to nf flavors
and nt tastes, we can rewrite the condition for the broken
phase as
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1These would then be 4þ 4-flavor or 4þ 4þ 4-flavor
simulations.
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nfnt ¼ nq > 4

�
2μmþ a2ΔA

−a2δ0A−

�
: ð3Þ

Given a sample set of parameters in MILC Collaboration
simulations for the a ¼ 0.125 fm and a ¼ 0.09 fm asqtad
ensembles for these values on the right-hand side [10], we
show the maximum number of allowed quarks, nq;max, for
the simulation to remain in the unbroken phase as a
function of mπ5 (the Goldstone pion mass) in Figs. 1
and 2. The shaded region shows allowed values of nq as a
function of the pion mass. The dashed lines in these figures

indicate nq ¼ 3, which is well below the limit for being in
the unbroken phase (except for mπ ≲ 128 MeV on the
coarse ensemble and mπ ≲ 90 MeV on the fine ensemble).
A simulation is more likely to be in the A phase when we

simulate 8 or 12 quarks than when we simulate fewer
quarks. More specifically, if the (Goldstone) pion mass is
around 500 MeV, the simulation would most likely be in
the unbroken phase for 8 quarks (2 flavors, 4 tastes per
flavor), while in the A phase for 12 quarks. Figures 1 and 2
were generated using parameters from the asqtad MILC
Collaboration ensembles for various lattice spacings. The
specific picture changes with different staggered quarks
such as Hypercubic smeared (nHYP) staggered quarks
[11,12], as are used in Ref. [8], but qualitatively we would
expect similar results.
In this paper we study the staggered phase diagram for

all values of the rSχPT parameters that may arise during a
simulation. In Ref. [5], a third possible phase was discussed
(which we refer to as the A0 phase) and we show that it
cannot occur. Instead, in addition to the A phase, there are
two other broken phases that we label the V phase and the T
phase. We also show that one of the two broken phases seen
in Ref. [8] is most likely the A phase discussed in Ref. [5]
and suggest other ways to check if indeed this is the case.
We organize this paper as follows. In Sec. II, we define

the staggered chiral Lagrangian for an arbitrary number of
flavors, nf, and summarize the results of previous work
with the notation we use in this paper. Then in Sec. III, we
find all of the minima of the potential in the relevant region
[see Eq. (1)]. We focus on the A phase as that has the
features seen in one of the broken phases in Ref. [8].
Finally, we conclude in Sec. IV. We include two appendixes
where we list the masses in the A phase and the T phase in
Appendix A and Appendix B, respectively.

II. THE STAGGERED CHIRAL LAGRANGIAN

The starting point of our analysis is the SχPT Lagrangian
for nf flavors of quarks [4]. The Lagrangian is written in
terms of the field Σ ¼ expðiΦ=fÞ, a 4nf × 4nf matrix, with

Φ ¼

0
BBBBB@

U πþ Kþ � � �
π− D K0 � � �
K− K0 S � � �
..
. ..

. ..
. . .

.

1
CCCCCA
: ð4Þ

The elements shown are each 4 × 4 matrices that are linear
combinations of the Hermitian generators

Ta ¼ fξ5; iξμ5; iξμν; ξμ; ξIg: ð5Þ

In Euclidean space, the gamma matrices ξμ are Hermitian,
and we use the notations ξμν ≡ ξμξν [μ < ν in Eq. (5)],
ξμ5 ≡ ξμξ5, and ξI ≡ I is the 4 × 4 identity matrix. Under

FIG. 1. The maximum allowed number of quarks as a function
of pion mass to ensure a simulation is in the unbroken phase for
the coarse asqtad MILC Collaboration ensembles (a ≈ 0.125 fm).
The dashed line is nq ¼ 3, and the shaded region shows allowed
values of nq as a function of the pion mass.

FIG. 2. The maximum allowed number of quarks as a function
of pion mass to ensure a simulation is in the unbroken phase for
the fine asqtad MILC Collaboration ensembles (a ≈ 0.09 fm).
The dashed line is nq ¼ 3, and the shaded region shows allowed
values of nq as a function of the pion mass.
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the chiral SUð4nfÞL × SUð4nfÞR symmetry, Σ → LΣR†.
The components of the diagonal (flavor-neutral) elements
(Ua, Da, Sa, etc.) are real, while the off-diagonal (flavor-
charged) fields are complex (πþa , K0

a, etc.), such that Φ is
Hermitian.
From Ref. [4], the Lagrangian is given by

L ¼ f2

8
Trð∂μΣ∂μΣ†Þ − 1

4
μf2TrðMΣþMΣ†Þ

þ 2m2
0

3
ðUI þDI þ SI þ…Þ2 þ a2V; ð6Þ

where μ is a constant with dimensions of mass, f is the tree-
level pion decay constant (normalized here so that
fπ ≈ 131 MeV), and the m2

0 term includes the nf flavor-
neutral taste-singlet fields. Normally, in physical calcula-
tions, we would take m0 → ∞ at the end to decouple the
taste-singlet η0I . However, in a broken phase, there is no
physical reason to assume a large value form0, so we retain
that parameter in our calculations. Finally, V ¼ U þ U 0 is
the taste-symmetry breaking potential given by

−U ¼ C1TrðξðnfÞ5 ΣξðnfÞ5 Σ†Þ

þ C3

1

2

X
ν

½TrðξðnfÞν ΣξðnfÞν ΣÞ þ H:c:�

þ C4

1

2

X
ν

½TrðξðnfÞν5 ΣξðnfÞ5ν ΣÞ þ H:c:�

þ C6

X
μ<ν

TrðξðnfÞμν ΣξðnfÞνμ Σ†Þ; ð7Þ

−U 0 ¼ C2V
1

4

X
ν

½TrðξðnfÞν ΣÞTrðξðnfÞν ΣÞ þ H:c:�

þ C2A
1

4

X
ν

½TrðξðnfÞν5 ΣÞTrðξðnfÞ5ν ΣÞ þ H:c:�

þ C5V
1

2

X
ν

½TrðξðnfÞν ΣÞTrðξðnfÞν Σ†Þ�

þ C5A
1

2

X
ν

½TrðξðnfÞν5 ΣÞTrðξðnfÞ5ν Σ†Þ�: ð8Þ

The ξ
ðnfÞ
B terms in V are the block-diagonal 4nf × 4nf

matrices

ξ
ðnfÞ
B ¼

0
BBBBB@

ξB 0 0 � � �
0 ξB 0 � � �
0 0 ξB � � �
..
. ..

. ..
. . .

.

1
CCCCCA
; ð9Þ

with B ∈ f5; μ5; μνðμ < νÞ; μ; Ig. The mass matrix, M, is
the 4nf × 4nf diagonal matrix M ¼ mI4nf×4nf , as we are

only interested in the degenerate case that is relevant for
these BSM studies.
As is well known [3,4], while this potential breaks the

taste symmetry at Oða2Þ, an accidental SOð4Þ symmetry
remains. This implies a degeneracy in the masses
among different tastes of a given flavor meson, which is
seen in the tree-level masses of the pseudoscalar mesons.
We can classify these mesons into irreducible representa-
tions of SOð4Þ. The mass for the meson M (composed of
quarks a and b) with taste B is given at tree level by2

m2
MB

¼ μðma þmbÞ þ a2ΔB; ð10Þ

for mesons composed of different quarks, and

m2
MB

¼ 2μma þ a2ΔB þ nfnt
4

a2δ0B−; B ¼ V; A; ð11Þ

for the flavor-neutral mesons. The ΔB values are
given in Ref. [4] and are linear combinations of the
coefficients in the potential U, and we have the hairpin
terms

δ0VðAÞ� ≡ 16

f2
½C2VðAÞ � C5VðAÞ�: ð12Þ

The difference in Eq. (11) from previous works
is that we have the factor nfnt=4 in front of the hairpin
parameter. This arises using the replica method [9]
to write our expressions for general numbers of flavors
and tastes. Of course, nf is the number of (degenerate)
staggered flavors in our calculation, while nt is the number
of tastes per flavor we wish to keep (hence the factor of
1=4). The factor nfnt ≡ nq is the number of degenerate
fermions we have in our theory.3

Given that empirically the ΔB values are all positive in
the simulations, δ0V− is consistent with zero and δ0A− < 0

[6,7,10]; focus has been on the possibility of a negative
mass-squared arising with the η0A meson. It was shown in
Ref. [5] that in current 2þ 1-flavor simulations, it is very
unlikely that the simulation is performed in this phase.
Instead, there has been evidence of this phase appearing
in BSM simulations [8], and this can easily be understood
from Eq. (10). As discussed in the Introduction, and
shown in Figs. 1 and 2, assuming that the actual value of
δ0A− is, to a first approximation, dependent only upon the
specific fermion formulation and not the number of
flavors (or tastes), then as nq increases, the simulations

2Note we do not include the m0 term here for simplicity.
3We note that in our calculations, if nt ¼ 4, then we are not

rooting the underlying theory, and as such the theory does not
correspond to “rooted” staggered quarks.
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are more likely to be performed in the phase described
in Ref. [5].4

As discussed in Ref. [5], in the A phase, all of the squared
meson masses are positive given the relationships between
the different parameters, except possibly for the tensor taste
flavor singlet, η0ij. Specifically, we have (rewriting this
expression with our notation)

m2
η0ij

¼ −
nfnt
4

a2δ0A− −
nfnt
4

a2δ0Vþ

þ 16m2μ2ða2ΔT − a2ΔA þ nfnt
4
a2δ0VþÞ

ða2ΔA þ nfnt
4
a2δ0A−Þ2

: ð13Þ

The parameter δ0Vþ in this expression has not yet been
measured, and as such, m2

η0ij
has the possibility of going

negative. This new phase, which we denote the A0 phase,
could, in principle, arise in the staggered phase diagram. In
the next section we study the phase diagram, in general, and
find that this is not the case, while additional phases other
than the A0 phase do exist.

III. GENERAL PHASE DIAGRAM

To find the vacuum state of the theory, we must minimize
the potential,

W ¼ −
1

4
μmf2TrðΣþ Σ†Þ þ a2U þ a2U 0; ð14Þ

where we have already substituted M ¼ mI4nf×4nf . This
calculation is most simply done in the physical basis, where
everything is written in terms of (for three flavors) π0, η,
and η0 instead of the flavor-basis mesons U, D, and S. For
degenerate quarks, we define the singlet as

η0B ¼ 1ffiffiffiffiffinf
p ðUB þDB þ SB þ…Þ; ð15Þ

for any number of flavors or tastes. As these are the mesons
most likely to acquire a negative mass squared, we focus
solely on these. From here on we remark that in the
degenerate quark mass limit the octet meson masses of a
given taste have equal masses which we denote with mπ ,
while the η0 masses are distinct from these. We note that the
number of flavors nf (so long as it is greater than 1) does
not affect our results; nf only indicates a greater likelihood
of being in the broken phase at this point.
Generally, δ0A− and δ0V− are the parameters likely to be

negative, and they only arise in the η0 masses. We infer the
symmetry breaking to only occur in the η0 direction in

flavor space. Therefore, we keep only this meson in our
expression for Φ when looking for the minima of the
potential in Eq. (14). This is valid near the critical point,
and since we are looking at this perturbatively, we are
looking only at small fluctuations about the minimum. So
long as no other squared mass goes negative in the phase,
our results should give us the correct mass spectrum for the
broken phase. If a squared mass does go negative, as in
Eq. (13) for certain values of δ0Vþ, we are not near a
minimum of the potential, and thus such additional phases
are not stable.
Keeping only the η0B, Φ and Σ are block-diagonal in

flavor space. We can write the condensate hΣi in terms of
the 16 real numbers σI , σμ5, σμνðμ < νÞ, σμ, and σ5,

hΣi ¼ σIðI4nf×4nfÞ þ iσμ5ðiξðnfÞμ5 Þ þ iσμνðiξðnfÞμν Þ þ iσμξ
ðnfÞ
μ

þ iσ5ðiξðnfÞ5 Þ; ð16Þ

with the condition that
P

Bσ
2
B ¼ 1. Upon substituting this

into the potential, we find the potential (not surprisingly) is
only dependent upon the magnitudes of these sets of
coefficients, given by

σA ¼
�X

μ
σ2μ5

�
1=2

; ð17Þ

σT ¼
�X

μ<ν
σ2μν

�
1=2

; ð18Þ

σV ¼
�X

μ
σ2μ

�
1=2

; ð19Þ

so that we have, up to an unimportant constant and for
arbitrary numbers of flavors or tastes,

W ¼ −
3f2

2

�
4μmσI − σ2A

�
a2ΔA þ nfnt

4
a2δ0A−

�

− σ2V

�
a2ΔV þ nfnt

4
a2δ0V−

�
− σ2Ta

2ΔT

�
: ð20Þ

When minimizing this potential we find three distinct
nontrivial phases:

A phase : a2ΔA þ nfnt
4

a2δ0A− < −2μm; ð21Þ

V phase : a2ΔV þ nfnt
4

a2δ0V− < −2μm; ð22Þ

T phase : a2ΔT < −2μm: ð23Þ

The A phase was discussed in detail in Ref. [5], and the
results for the V phase are identical to those for the A phase
with the replacement A↔V in all of the relevant equations.

4As these parameters are nonperturbative low-energy con-
stants, they would have a dependence upon the number of quarks
in the simulation, but without knowing that dependence a priori,
we take them to be independent of nq as an initial approximation.
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The T phase is distinct here, and it is unlikely that a
simulation is performed in this phase. This is because all of
the parameters ΔB are positive in the simulations, so these
conditions are only likely to hold for the A and V phases
because the parameters δ0A− and δ0V− tend to be negative.
Nevertheless, we discuss this phase briefly in the Appendix
for completeness. We note that, in principle, more than one
of the conditions in Eqs. (21)–(23) may hold simultane-
ously, but in fact we only see these three phases. This
implies that only one condition points to the true minimum
about which to expand. In the unlikely case that two of the
left-hand sides are equal, for example,

a2ΔT ¼ a2ΔA þ nfnt
4

a2δ0A−; ð24Þ

this would introduce a symmetry between (in this case) the
axial and tensor tastes, but this does not introduce a
distinct phase.
We note that none of these three broken phases corre-

sponds to the A0 phase discussed in the previous section.
Approaching this phase from the A phase, we find a saddle
point in the potential, and as such this is an unstable
equilibrium point. Thus, we do not explore that case
further.
We have for the A phase,

σT ¼ σV ¼ 0;

σI ≡ cos θA ¼ −2μm
a2ΔA þ nfnt

4
a2δ0A−

;

σA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2I

q
; ð25Þ

the V phase,

σT ¼ σA ¼ 0;

σI ≡ cos θV ¼ −2μm
a2ΔV þ nfnt

4
a2δ0V−

;

σV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2I

q
; ð26Þ

and for the T phase,

σA ¼ σV ¼ 0;

σI ≡ cos θT ¼ −2μm
a2ΔT

;

σT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2I

q
: ð27Þ

These break the remnant SOð4Þ symmetry [to SOð3Þ for
the A and V phases and to SOð2Þ × SOð2Þ for the T phase].
The direction of each of the vectors aμ, aμ5, and aμν is
arbitrary, and we choose a particular direction in Eqs. (28)
and (29).

In each of these cases, we have the condensate of the
form

hΣi ¼

0
BBBBB@

exp ½iθBTB� 0 0 � � �
0 exp ½iθBTB� 0 � � �
0 0 exp ½iθBTB� � � �
..
. ..

. ..
. . .

.

1
CCCCCA
;

ð28Þ

where B ¼ A, V, T, and

TB ¼

8>><
>>:

iξ45 A phase

ξ4 V phase

iξ12 T phase:

ð29Þ

In each of these cases, the shift symmetry [3–5] that
exists which has the form in the chiral theory,

Σ → ξ
ðnfÞ
μ ΣξðnfÞμ ; ð30Þ

is broken. Thus, as seen in Ref. [8], one can use the
difference between neighboring plaquettes and the differ-
ence between neighboring links to determine if we are in a
broken phase. However, those parameters are sensitive only
to the breaking of the single-site shift symmetry, so they
cannot distinguish between the A, V, or T phases. Thus, for
a complete understanding of the phase seen in the simu-
lation, the mass spectrum should also be studied.
The key difference between the unbroken phase and the

various broken phases is that the squared meson masses in
the broken phases have the generic form

m2
M ¼ Aþ Bm2: ð31Þ

Here, A and B are independent of the quark mass but are
dependent upon a. Unlike the unbroken phase, the squared
meson masses are linear in m2 as opposed to m. For some
mesons B ¼ 0, so that the mesons have a mass independent
of the quark mass.
Figure 3 is a reprint of Fig. 7 from Ref. [8], which shows

the masses for the pseudoscalar taste pion as well as the
taste-45 pion for two lattice spacings. Figure 3(a) shows
one of the two broken phases seen as a function of the input
quark mass for 12 quarks (in our notation we would set
nf ¼ 3, nt ¼ 4). Of the two phase transitions discussed in
that paper, chiral effective theory seems useful for under-
standing the second here (that appears at smaller lattice
spacing around β ≈ 2.7 in Ref. [8]). The authors of Ref. [8]
show that the single-site shift symmetry is broken in this
phase, and we now argue that this is likely the A phase.
The π5 in Fig. 3(a) has an approximately constant mass

as a function of the quark mass, which is consistent with the
calculation of Ref. [5]:
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m2
π5 ¼ −

nfnt
4

a2δ0A− ð32Þ

(recall δ0A− < 0 in this phase), and the taste-45 mass has the
form

m2
π45 ¼ m2

π5 þ a2ΔAμ
2m2; ð33Þ

where μ is defined in Eq. (A1). Were this the V phase, π5
would still have a constant mass, but π4 would have the
behavior of Eq. (33) (with ΔA → ΔV). Similarly, were this
the T phase, as seen in Appendix B, the π5 mass is
dependent upon the quark mass while the π45 mass is
constant.
We can see that asm → 0,mπ45 → mπ5 as rSχPT predicts.

This gives credence to the fact that the intermediate phase
seen in Ref. [8] is in fact this A phase, but a more detailed

analysis would require several things. First, one should
perform a fit to the forms above for the taste-45 and taste-
5 pions. More importantly, one should measure all of the
different tastemesonmasses to see the pattern as predicted in
Ref. [5] (and shown in Appendix A). Figure 3(b) shows the
other side of the transition (larger β, and thus a smaller lattice
spacing) and immediately shows a different pattern: the four
axial-taste pions are nearly degenerate, and the difference
m2

πμ5 −m2
π5 ≈ constant as a function of m. This is (roughly)

the pattern seen in the physical regime of rSχPT [3,4].
We show in Figs. 4 and 5 plots ofmπ vs.m andmη vs.m

for the different tastes in the A phase. The units in these
plots are arbitrary, chosen so that the values m > 2
correspond to the unbroken phase. The solid red lines in
Fig. 4 correspond to the π5 and π45 masses, which are
compared with the masses shown in the left-hand plot of
Fig. 7 in Ref. [8].

FIG. 3. Figure 7 from Ref. [8], showing the masses of π5 and π05 (π45 in our notation) as a function of the quark mass: (a) masses in the
broken phase discussed here and (b) masses in the unbroken phase.

FIG. 4. The quark mass vs. mπ in the A phase in arbitrary units.
These units are such that when m ≥ 2 the system is in the
unbroken phase again. The solid line corresponds to mπ5 and the
dashed line to mπ45 .

FIG. 5. The quark mass vs. mη in the A phase in arbitrary units.
These units are such that when m ≥ 2 the system is in the
unbroken phase again. The solid line at mη ¼ 0 corresponds to
the three Goldstone bosons in this phase.
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As for the phase at stronger coupling, it is unlikely that
rSχPT could explain this region. As we have seen in this
work, rSχPT shows that there should be at most four
phases: the unbroken phase as well as the A, T, and V
phases. However, these all are within the regime governed
by the constraint in Eq. (1), most importantly that
a2Λ2

QCD ≪ 1. The stronger coupling phase likely violates
this constraint, and thus chiral theory is not valid in this
regime. Nevertheless, it would be instructive to understand
more about the intermediate phase to be sure that rSχPT is
in fact describing the region as we expect it is.

IV. CONCLUSION

We have studied the complete phase diagram for
staggered quarks with an arbitrary number of degenerate
flavors, at least within the window given in Eq. (1). In this
regime, there are only four phases: one unbroken (physical)
phase, as well as three phases where the (approximate)
Oða2Þ accidental SOð4Þ symmetry is broken. Of these three
phases, as seen previously [5], only one phase (the A phase)
is likely to be seen in simulations but only if one looks at
theories with 8 or 12 flavors of quarks [8]. The additional
possible phase that was suggested to exist in Ref. [5] [when
the squared mass of the η0ij, Eq. (13), goes negative] does
not correspond to a stable region.
While rSχPT cannot fully explain both broken phases

seen in Ref. [8], it can give a picture of the broken phases
that are located close to the unbroken phase (as a function
of the lattice spacing). Studying the plaquette and link
differences as well as the staggered meson mass spectrum
would allow one to determine specifically which region of
the phase diagram the simulation is in. For BSM studies
this is essential as it is more likely to enter these unphysical
regimes for additional quark flavors.
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APPENDIX A: A PHASE

In this appendix we list the meson masses that appear in
the A phase [5]. Here we put them in terms of nfnt as
above, and we define

μ≡ −2μ
a2ΔA þ nfnt

4
a2δ0A−

: ðA1Þ

The first masses we list are constant in the quark mass:

m2
η0i5

¼ 0; ðA2Þ

m2
η0
5

¼ m2
π5 ¼ −a2ΔA −

nfnt
4

a2δ0A−; ðA3Þ

m2
πi5 ¼ −

nfnt
4

a2δ0A−; ðA4Þ

m2
πi4 ¼ m2

η0i4
¼ m2

π5 þ a2ΔT; ðA5Þ

m2
η0
4
¼ m2

π5 þ a2ΔV þ nfnt
4

a2δ0V−; ðA6Þ

m2
π4 ¼ m2

π5 þ a2ΔV: ðA7Þ

We note that Eq. (26) in Ref. [5] [corresponding to our
Eq. (A6)] has a typo, as the final term in that expression
should be þ 3

4
a2δ0V in that paper’s notation, not − 3

4
a2δ0V .

With the above, we can determine the constants

ΔA; δ0A−; ΔT; ΔV; δ0V−:

Then

m2
π45 ¼ m2

π5 þ a2ΔAμ
2m2 ðA8Þ

allows us to determine μ. With

m2
πI ¼ m2

π5 þ μ2m2ða2ΔI − a2ΔVÞ þ a2ΔV; ðA9Þ

m2
η0I
¼ ntm2

0 þm2
π5 −

nfnt
4

a2δ0Aþ þ a2ΔV

þ μ2m2

�
nfnt
4

a2δ0Aþ þ a2ΔI − a2ΔV

�
; ðA10Þ

we can determine ΔI and δ0Aþ, respectively,
5 and finally

m2
η0ij
¼μ2m2m2

πi4 −
nfnt
4

ð1−μ2m2Þða2δ0A−þa2δ0VþÞ ðA11Þ

for δ0Vþ.
The following four masses are then determined from

those above results,

m2
πi ¼ m2

π5 þ ðm2
π4 −m2

π5Þμ2m2 þ ðm2
η0i4

−m2
π5Þð1 − μ2m2Þ;

ðA12Þ

m2
πij ¼ m2

πi5 þ μ2m2ðm2
η0i4

−m2
πi5Þ; ðA13Þ

5Note that if we take them0 → ∞ limit seriously we would not
examine the η0I mass. However, given that we are in an unphysical
phase, there is no reason to assume that this is the case, so we
keep this mass in our theory. This expression allows us to obtain
δ0Aþ along with m0 at the same time as they have different
dependencies on the quark mass.
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m2
η0
45

¼ m2
π5ð1 − μ2m2Þ; ðA14Þ

m2
η0i
¼ m2

η0i4
− ðm2

η0i4
−m2

η0
4
Þμ2m2: ðA15Þ

This shows that we have nontrivial relationships between
the various masses. Additionally, as seen in Figs. 4 and 5
we have several crossings of the meson masses for both π
and η. While those figures are for a specific set of
parameters, they are indicative of the qualitative features
of the A phase.

APPENDIX B: T PHASE

In this appendix we list the masses for the mesons in the
T phase, where just as before, the octet masses are equal. In
this case we define

μ≡ 2μ

−a2ΔT
: ðB1Þ

Thus we have

m2
π5 ¼ m2

η0
5

¼ −a2ΔTμ
2m2; ðB2Þ

m2
πI ¼ μ2m2ða2ΔI − a2ΔTÞ; ðB3Þ

m2
η0I
¼ ntm2

0 þ μ2m2ða2ΔI − a2ΔTÞ; ðB4Þ

m2
π12 ¼ m2

η0
12
¼ −a2ΔTð1 − μ2m2Þ; ðB5Þ

m2
π34 ¼ m2

η0
34
¼ ða2ΔI − a2ΔTÞð1 − μ2m2Þ; ðB6Þ

m2
η0
1
¼ m2

η0
2
¼ a2ΔV − a2ΔT þ nfnt

4
a2δ0V−; ðB7Þ

m2
η0
3
¼ m2

η0
4
¼ a2ΔV − a2ΔT −

nfnt
4

ð1 − μ2m2Þa2δ0Aþ
þ nfnt

4
μ2m2a2δ0V−; ðB8Þ

m2
η0
15

¼ m2
η0
25

¼ a2ΔA − a2ΔT þ nfnt
4

a2δ0A−; ðB9Þ

m2
η0
35

¼ m2
η0
45

¼ a2ΔA − a2ΔT −
nfnt
4

a2δ0Vþ

þ nfnt
4

μ2m2ða2δ0A− þ a2δ0VþÞ; ðB10Þ

m2
πμ5 ¼ a2ΔA − a2ΔT; ðB11Þ

m2
πμ ¼ a2ΔV − a2ΔT; ðB12Þ

m2
η0
24
¼ m2

η0
23
¼ m2

η0
14
¼ m2

η0
13
¼ 0; ðB13Þ

m2
π24 ¼ m2

π23 ¼ m2
π14 ¼ m2

π13 ¼ 0: ðB14Þ

With ΔT “large and negative,” these are all positive or zero
with the exception of those with the δ0Aþ or δ0Vþ terms. As in
the A or V phase, if those parameters are such thatm2

η0
45

< 0

(for example), this leads to a phase that would not give rise
to a stable ground state.
The generic dependence m2

π ¼ Aþ Bm2 persists in this
phase, but for one we see a different pattern than in the A or
V phases. Additionally, there are no mixings between
different taste mesons. Nevertheless, it is unlikely, given
the empirical evidence, that one can run a simulation in this
phase, and as such we do not discuss this phase further.
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