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3Physics Department, University of Białystok, Konstantego Ciołkowskiego 1L, 15-245 Białystok, Poland

(Received 5 January 2016; published 4 April 2016)

It has recently been understood that the hydrodynamic series generated by the Müller-Israel-Stewart
theory is divergent and that this large-order behavior is consistent with the theory of resurgence.
Furthermore, it was observed that the physical origin of this is the presence of a purely damped
nonhydrodynamic mode. It is very interesting to ask whether this picture persists in cases where the
spectrum of nonhydrodynamic modes is richer. We take the first step in this direction by considering the
simplest hydrodynamic theory which, instead of the purely damped mode, contains a pair of non-
hydrodynamic modes of complex conjugate frequencies. This mimics the pattern of black brane
quasinormal modes which appear on the gravity side of the AdS/CFT description ofN ¼4 supersymmetric
Yang-Mills plasma. We find that the resulting hydrodynamic series is divergent in a way consistent with
resurgence and precisely encodes information about the nonhydrodynamic modes of the theory.
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I. INTRODUCTION

Recent years have seen significant advances in the
formulation of relativistic hydrodynamic theories [1,2].
This is the result of great interest in the heavy ion collision
program, which aims to establish bulk properties of nuclear
matter in extreme conditions [3]. Relativistic hydrody-
namic models have been essential in uncovering the basic
features observed in experiments at the Relativistic Heavy
Ion Collider and LHC. As a result, it has become clear that
the hydrodynamic approach can be viewed in the same
spirit as the effective field theory paradigm of quantum
field theory. This has led to posing (and sometimes
answering) foundational questions about the meaning of
hydrodynamics.
The point of departure is the idea that the expectation

value of the energy-momentum tensor can be expanded in
gradients of hydrodynamic variables. It has recently been
shown in some specific cases that this hydrodynamic
gradient series is divergent [4,5]. Furthermore, the precise
way in which the series diverges encodes information about
the nonhydrodynamic modes which are not included
explicitly in the hydrodynamic description. This pattern
is reminiscent of what has been noted in the context of
divergent perturbation expansions in other contexts.
The first example of such behavior of the hydrodynamic

gradient expansion was the case of N ¼ 4 supersymmetric
Yang-Mills theory (SYM), where the series was calculated
to high order using the AdS/CFT correspondence [4]. To
make the problem manageable, the specific case of boost-
invariant flow [6,7] was considered. The gradient expan-
sion was computed up to order 242, and it was observed
that the series diverges in factorial fashion. Applying the
Borel transform revealed singularities in the Borel plane

occurring precisely at the locations corresponding to the
complex frequencies of the leading quasinormal modes of
the dual black brane geometry. The singularities are related
by complex conjugation and are off the real axis, which
means that the corresponding degrees of freedom have
oscillatory as well as decaying features.
The second example where this kind of behavior was

observed is the hydrodynamic series generated by Müller-
Israel-Stewart (MIS) theory [8,9]. In this case, the series is
again divergent, but the singularities in the Borel plane lie
on the real axis, which would correspond to purely
decaying quasinormal modes. Since in this example one
has full control of the problem it is possible to resum the
series using ideas from the theory of resurgence [5]. This
example is very interesting from the point of view of Borel
summation, since the naive application of the inverse Borel
transform leads to an imaginary ambiguity. Proper account-
ing of the nonhydrodynamic degrees of freedom in a way
precisely consistent with resurgence theory yields a real
and unambiguous result (up to a constant of integration).
This result was shown to be consistent with an attractor
solution in the original MIS equation, which constitutes a
natural definition of the meaning of hydrodynamics beyond
the gradient expansion. This gives a strong indication that
in cases where a numerical solution is not available
resurgence techniques may be used to mine the hydro-
dynamic gradient expansion for universal features at times
well before hydrodynamic behavior is typically expected.
The pattern seen in this problem is actually rather typical

of the way resurgence theory clarified the role and meaning
of perturbative expansions in physics. The role of resur-
gence in the cancellation of ambiguities in quantum
mechanics is well known. In the perturbative study of
observables such as the ground state energy of the
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anharmonic oscillator [10,11], the observable studied was
seen to be “non-Borel summable” along the positive real
line, since this was a so-called Stokes line with singularities
in the corresponding Borel plane. Nevertheless, once all
nonperturbative sectors associated with higher multi-
instanton corrections were taken into consideration, a
process called median resummation was seen to provide
a real and unambiguous result (see, e.g., Refs. [12–18] for
examples of ambiguity cancelation in the context of
quantum mechanics1 and Refs. [21,22] for its generaliza-
tion to quantum field theory). This process consists in the
proper summation of all existing sectors (perturbative and
nonperturbative) for a given observable, in what is called a
transseries. The use of median resummation for the case of
transseries with one and two real instanton actions was
studied in detail in Ref. [23], and examples of recent
applications are Refs. [5] and [24,25].
The cancellation of nonperturbative ambiguities is just

one application of a much larger structure behind the
asymptotic behavior of perturbative series. In fact, resur-
gent analysis and transseries give us a straightforward,
systematic path of determining the analytic properties of
the observables, the Stokes phenomena associated with
singular directions, and the resummation properties leading
to unambiguous results.2 The crucial role of resurgence in
the study of the analytic properties and Stokes phenomena
within physical contexts is exemplified in Ref. [44], where
from a large-N expansion one can retrieve the properties of
the corresponding transseries solution not only for real
finite N but also as an analytic function in the variable N
(see also Ref. [45] for another toy example of strong-weak
coupling interpolation).
One can ask moreover about the usefulness of the

transseries and resurgence in cases where the resummation
procedure in the direction of interest is not singular. When
our interest is in the result along the positive real line, and
the singular directions (Stokes lines) are in the complex
plane away from this axis, one could be led to believe that
only the perturbative series would be necessary. But as it is
known from resurgent theory, and evidence was seen, for
example, in Ref. [46], the existence of Stokes lines with a
positive real component will introduce nonperturbative
sectors which need to be added to the original asymptotic
perturbative series in the form of a transseries in order to
obtain a consistent result.

It would clearly be interesting to apply the ideas of
resurgence theory to the case ofN ¼ 4 SYM. Applications
of resurgence for supersymmetric gauge theories were
already seen in the case of localizable observables [47]
and relations to quantum mechanical systems [48]. Here,
we turn to a hydrodynamic model which shares some of the
simplicity of MIS theory but contains a richer spectrum of
nonhydrodynamic modes in a way which resembles some
aspects of what is known about N ¼ 4 SYM.
It is important to recall here the philosophy behind

Ref. [5]: models like MIS are regarded as a means of
generating the hydrodynamic gradient expansion which is
then analyzed as if it came from a microscopic theory.
Specifically, we will study a hydrodynamic theory which
contains analogs of quasinormal modes of which the
frequencies contain both real and imaginary parts, as is
the case for N ¼ 4 SYM (and unlike MIS). In such a case,
one would expect that the singularities of the Borel trans-
form would be off the real axis. The simplest such example
is one of the models put forth in Ref. [49], where
nonhydrodynamic modes corresponding to quasinormal
modes of N ¼ 4 SYM were incorporated into a MIS-like
theory. This model generates the same hydrodynamic
expansion as MIS theory up to second order in gradients
(higher orders differ, of course). We show that also in this
case one can identify attractor behavior which sets in well
before the hydrodynamic limit of large times.
We study the hydrodynamic series in this model in the

spirit of Ref. [5] and find a similar picture, albeit with novel
elements. The hydrodynamic series is divergent, and its
summation requires exponentially suppressed corrections
reflecting in a quantitative manner the spectrum of non-
hydrodynamic modes present. These exponential correc-
tions to the hydrodynamic series can be viewed as a
completion to a transseries. By using the formalism
elaborated in Ref. [33], we show that the divergent series
satisfy relations expected on the basis of resurgence theory.
From this perspective, there is a novel aspect: the “actions”
are complex, as is the leading nonanaliticity exponent. This
introduces some technical difficulties in applying conver-
gence acceleration. The physical reason for these features
is, however, entirely clear: they correspond to the fact that
the nonhydrodynamic modes present in this theory are not
purely decaying (i.e., the quasinormal mode frequencies are
not purely imaginary).
The structure of this paper is as follows. We start by

reviewing the important aspects of hydrodynamic theories
in Sec. II, followed by more specific properties of the MIS
causal hydrodynamic theory in Sec. III. Section IV then
presents the natural contact between resurgence and the
ambiguity cancellation of the MIS theory (reviewing the
results of Ref. [5] in light of Refs. [23,33]) as a warmup
example toward the extended theories of hydrodynamics.
Section V introduces the hydrodynamic model which we
will consider in the main part of this article. The application

1It was seen in that in many quantum mechanical systems a
very simple exact quantization condition can be derived for the
energy eigenvalues [19,20], relating perturbative and nonpertur-
bative phenomena, which complements the usual large-order
relations coming from resurgence.

2See, for example, Refs. [26–31] for reviews on resurgent
analysis and transseries and Refs. [32–35] for introductions to
resurgence in physical settings. For recent applications to
topological strings, supersymmetric quantum mechanics and
quantum field theories, see also Refs. [36–43].
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of resurgence techniques to this theory is the main focus of
our work and is described in Sec. VI. We will close with a
brief summary and ideas for the future in Sec. VII.

II. HYDRODYNAMICS

Phenomenological equations of hydrodynamics are
designed to reproduce the gradient expansion of the
energy-momentum tensor in some microscopic theory up
to some order (typically 1 or 2). The evolution equations
are the conservation equations,

∇μTμν ¼ 0; ð1Þ

of the energy-momentum tensor expressed in terms of
the hydrodynamics variables. Specifically, the energy-
momentum tensor in the hydrodynamic theories considered
here can be presented as

Tμν ¼ Euμuν þ PðEÞðημν þ uμuνÞ þ Πμν; ð2Þ

where Πμν is the shear stress tensor (discussed in detail
below), E is the energy density, and P is the pressure,
expressed in terms of the energy density by an assumed
equation of state. In conformal theories in d ¼ 4 dimen-
sions, it takes the form

PðEÞ ¼ 1

3
E: ð3Þ

The energy density E is often expressed in terms of the
“effective temperature” T ∼ E1=4. The field u is the flow
velocity, defined as a timelike eigenvector of the energy-
momentum tensor. The spacetime dependent energy den-
sity (or effective temperature) and flow velocity are the
hydrodynamic variables, the evolution of which one wishes
to describe. Their precise definition away from equilibrium
is what constitutes a choice of the hydrodynamic frame
(see, e.g., Ref. [50]). We adopt the Landau frame, which
means that we impose the condition that the shear stress
tensor is transverse to the flow:

uμΠμν ¼ 0: ð4Þ

The hydrodynamic gradient expansion is the approxima-
tion of Πμν by a series of terms, graded by the number of
spacetime gradients of the hydrodynamic fields uμ and T.
To proceed, it is highly advantageous to exploit to the

fullest the constraints imposed by conformal symmetry.
This desire has led to the development of the so-called
Weyl-covariant formulation [51] of conformal relativistic
hydrodynamics, in which the evolution equations assume a
very compact form. We will not review this formalism here,
but we will mention some of its basic features. The essential
idea is to introduce a (nondynamical) “Weyl connection,”

Aμ ¼ uλ∇λuμ −
1

3
∇λuλuμ; ð5Þ

to define a derivative operator, denoted here byDμ, which is
covariant under Weyl transformations (spacetime depen-
dent rescalings) of the metric. The action of the Weyl-
covariant derivative depends on the tensor on which it acts.
A general formula can be found in Ref. [51].
It will also be convenient to define

D≡ uμDμ ð6Þ

and

σμν ¼ Dμuν þDνuμ; ωμν ¼ Dμuν −Dνuμ: ð7Þ

These objects are transverse and transform homogeneously
under Weyl transformations [51].
The Landau-Lifschitz formulation of relativistic viscous

hydrodynamics [52] asserts that

Πμν ¼ −ησμν; ð8Þ

where η is the shear viscosity. Unfortunately, the resulting
theory does not have a well-posed initial value problem due
to superluminal signal propagation [53,54]. The same
problem will occur if on the right-hand side of Eq. (8)
one includes any finite number of terms graded by the
number of derivatives of T and uμ. In principle, these
problems appear at short distances, where hydrodynamics
is not expected to apply [55,56], but for practical applica-
tions, this is no consolation because acausality leads to
numerical instabilities. For practical purposes, it is there-
fore necessary to replace Eq. (8) by a prescription which
effectively generates all orders in the gradient expansion.

III. MIS CAUSAL HYDRODYNAMICS

MIS theory resolves the causality problem by promoting
the shear stress tensor Πμν to an independent dynamical
field which satisfies a relaxation type differential equation
[8,9] chosen to augment the conservation law Eq. (1).
Consistency with the gradient expansion requires that terms
of at least second order be included, since the derivative of
the shear stress tensor is of second order.
If all terms admitted by symmetry are incorporated, the

leading terms in the gradient expansion of the shear stress
tensor can be written as

Πμν ¼ −ησμν þ ητΠDσμν þ λ1σ
<μ

λσ
ν>λ þ λ2σ

<μ
λω

ν>λ

þ λ3ω
<μ

λω
ν>λ; ð9Þ

where < � � � > denotes symmetrization and subtracting the
trace and τΠ and λi are phenomenological parameters [1]
(the second-order transport coefficients). If the energy-
momentum tensor is calculated in some microscopic
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conformal theory and expressed in terms of the hydro-
dynamic variables up to second order in gradients, the
result will be of the form of Eq. (9) with some specific
values of the transport coefficients. It has, for example,
been obtained as the long-wavelength effective description
of strongly coupled N ¼ 4 SYM plasma in the framework
of the AdS/CFT correspondence [1,7,57,58].
The main idea of treating hydrodynamics as an effective

theory is to write down an evolution equation, the gradient
expansion of which generates Eq. (9), together with
additional terms which are of third order and above.
This can be done by eliminating σνλ in the second-order
terms in favor of Πμν using Eq. (8). The result can be
written as

ðτΠDþ 1ÞΠμν ¼ −ησμν þ λ1
η2

Π<μ
λΠν>λ −

λ2
η
Π<μ

λω
ν>λ

þ λ3ω
<μ

λω
ν>λ: ð10Þ

Solving this iteratively yields Eq. (9) up to higher-order
terms, as desired.The coefficients of these higher-order terms
will all be expressed in terms of the second-order transport
coefficients which appear explicitly in Eq. (10).
Linearization of the resulting theory reveals a single,

purely decaying, nonhydrodynamic mode in addition to
hydrodynamic modes [1]. This mode (which we refer to as
the MIS mode) decays on a scale set by τΠ. Furthermore,
the resulting theory is causal as long as TτΠ ≥ 2η=s. This
approach has enjoyed great success in describing the
evolution of quark-gluon plasma [59].
In Ref. [5], the special case of Bjorken flow [6] was

considered, and we do the same in our work. Due to a very
high degree of symmetry imposed, the hydrodynamic
equations reduce to a set of ordinary differential equations.
The symmetry in question, boost invariance, can be taken
to mean that in proper time-rapidity coordinates τ, y
(related to Minkowski coordinates t, z by the relations
t ¼ τ cosh y and z ¼ τ sinh y) the energy density, flow
velocity, and shear stress tensor depend only on the proper
time τ. The MIS equations, Eq. (10), then reduce to

τ_ϵ ¼ −
4

3
ϵþ ϕ;

τΠ _ϕ ¼ 4η

3τ
−
λ1ϕ

2

2η2
−
4τΠϕ

3τ
− ϕ; ð11Þ

where the dot denotes a proper time derivative and
ϕ≡ −Πy

y, the single independent component of the shear
stress tensor.
In a conformal theory, ϵ ∼ T4, and the transport coef-

ficients satisfy

τΠ ¼ CτΠ

T
; λ1 ¼ Cλ1

η

T
; η ¼ Cηs; ð12Þ

where s is the entropy density and CτΠ, Cλ1 , Cη are
dimensionless constants. In the case of N ¼ 4 SYM, their
values are known from fluid-gravity duality [58]:

CτΠ ¼ 2 − logð2Þ
2π

; Cλ1 ¼
1

2π
; Cη ¼

1

4π
: ð13Þ

To simplify the discussion, we will consider the case
Cλ1 ¼ 0. This choice does not modify the nonydrodynamic
sector in a qualitative way, so our study of resurgence is not
affected. The hydrodynamic theory still matches N ¼ 4
SYM at the level of first-order (viscous) hydro, which is
physically by far the most significant point.
Using Eq. (12), one can turn the system of equations,

Eq. (11), into a single second-order differential equation for
the proper time dependence of the temperature TðτÞ. It
proves fruitful to introduce the dimensionless variables

w ¼ Tτ; f ¼ τ

w
dw
dτ

: ð14Þ

In terms of these, the second-order ordinary differential
equation for TðτÞ implies a first-order equation for fðwÞ,

CτΠff0þ4CτΠf2þ
�
w−

16CτΠ

3

�
f−

4Cη

9
þ16CτΠ

9
−
2w
3
¼0;

ð15Þ

where f0 stands for the derivative of fðwÞ with respect to w.
It is this equation which is the starting point for our analysis
of MIS theory.
The late proper time behavior of the system is governed

by hydrodynamics. In terms of the dimensionless variable
w, this translates to the limit w → ∞. One can easily
determine the coefficients of the series solution valid for
large w:

fðwÞ ¼ 2

3
þ 4Cη

9w
þ 8CηCτΠ

27w2
þO

�
1

w3

�
: ð16Þ

This expansion corresponds to the hydrodynamic gradient
expansion [60]. By examining the behavior of the coef-
ficients in Eq. (16), one can show that the series is
divergent. This fact reflects the presence of the nonhydro-
dynamic MIS mode. As shown in Ref. [5], the series
solution can be summed using Borel techniques by incor-
porating exponential corrections to the hydrodynamic
expansion. The result is a transseries, as described in detail
in the following section.

IV. RESURGENCE AND AMBIGUITY
CANCELLATION

As an introduction to the methods of resurgence theory,
we first consider the case of MIS reviewed in the previous
section. Unlike the analysis presented in Ref. [5], we will
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not discuss ambiguity cancellation at the level of the
analytic continuation of the Borel transform. We will
instead make use of the consistency conditions derived
from alien calculus (for a recent review and derivations of
the formulas used in this section, see Refs. [30,33,35]).
As was already seen in Ref. [5], this example presents
some remarkable resurgent properties, while being a
very simple application of the expressions derived in
Refs. [23,33].
In order to capture the full solution to the first-

order differential equation, Eq. (15), from a perturbative
expansion, one needs a transseries ansatz with one
parameter,

fðw; σÞ ¼
Xþ∞

n¼0

σne−nAwΦnðwÞ; ð17Þ

where σ is a parameter to be fixed by the physical properties
of our system—in our case, these are reality and initial
conditions. The constant A is often referred to as the
instanton action, due to its interpretation in applications to
perturbation expansions in quantum field theory [12–18].
The ΦnðwÞ are perturbative expansions around the

nonperturbative, exponentially suppressed sectors with
contributions weighted by e−nAw,

ΦnðwÞ ¼ wβn
Xþ∞

k¼0

aðnÞk w−k: ð18Þ

The “instanton” action A and coefficients βn (the first
associated with the position of the cuts appearing in the
Borel plane and the latter associated with the type of these
branch cuts) were determined in Ref. [5] to be

A ¼ 3

2
CτΠ; βn ≡ nβ ¼ −n

Cη

CτΠ
: ð19Þ

These coefficients, as well as the perturbative coefficients

aðnÞk , can be determined iteratively by substituting the
transseries ansatz (18) into the differential equation (15).
For the perturbative series Φ0ðwÞ, this leads to

að0Þ0 ¼ 2

3

að0Þ1 ¼ 4Cη

9

að0Þkþ1 ¼CτΠ

�
16

3
að0Þk −

Xk
n¼0

ð4−nÞað0Þk−na
ð0Þ
n

�
; k > 1: ð20Þ

This recursion relation makes it manifest that the series is
indeed divergent.
The expansions ΦnðwÞ are asymptotic, and the coeffi-

cients aðnÞk are seen to grow factorially for large enough

order k. The corresponding Borel transforms, schematically
of the form3

B½Φn�ðsÞ ¼
Xþ∞

m¼mmin

aðnÞm
sm−nβ−1

Γðm − nβÞ ; ð21Þ

have a nonzero radius of convergence. The radius of
convergence is in fact given by the position of the first
branch cut in the Borel plane, which is at a distance s ¼ A.
Following the analysis presented in Ref. [33] (see Sec. II of
this paper for more details), we know that in the case of a
one-parameter transseries with real positive instanton
action A the sectors Φ0, Φ1 will have cuts starting at
positions s ¼ lA for l ≥ 1 in the positive real axis, while
the sectorsΦn with n ≥ 2will have cuts both in the negative
and positive real lines on the Borel plane: a finite number in
the negative real axis at s ¼ l1A with l1 ¼ 1;…; n − 1,
and an infinite number in the positive real axis at s ¼ l2A
with l2 ≥ 1.
Given the Borel transforms, Eq. (21), one can use

suitable Padé approximants (see Ref. [33]) and resum each
sector via the Laplace transform. The resummation can be
easily performed in directions θ in the complex plane where
the Borel transforms B½Φn� do not have singular behavior:

SθΦnðwÞ ¼
Z þ∞eiθ

0

ds e−swB½Φn�ðsÞ: ð22Þ

This resummation can then be trivially analytically con-
tinued up to the singular directions in the Borel plane, also
known as Stokes lines. The resummed transseries can then
be defined by

Sθfðw; σÞ ¼
Xþ∞

n¼0

σne−nAwSθΦnðwÞ: ð23Þ

The transseries parameter σ is free at this stage. Its (in
general complex) value can be determined by enforcing
some physical constraints on the transseries—in this case
suitable initial and reality conditions for Eq. (40).
For physical reasons, we are ultimately interested in real

and positive values of the expansion parameter w. For the
particular case in this section, we have one further problem:
the Borel transforms of the perturbative and nonperturba-
tive sectors have branch cuts in the positive real axis
starting at positions s ¼ lA. This means that the positive
real axis is a Stokes line, a singular direction in the complex
plane where the Stokes phenomenon occurs. The Laplace
transform in (22) is ill defined, because of these branch
cuts, and we have to define lateral resummations by

3The rule is to substitute w−α → sα−1=ΓðαÞ, but one needs to
remove any initial terms with α < 0 and add them separately at a
later stage, hence the mmin introduced in Eq. (21). This does not
change the asymptotic nature of the series.
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avoiding these singularities either from above or from
below the real axis:

S�ΦnðwÞ ¼
Z þ∞e�iϵ

0

ds e−swB½Φn�ðsÞ: ð24Þ

This introduces a nonperturbative ambiguity: if the coef-
ficients anm are real, then the difference between these two
lateral resummations for each sector is pure imaginary and
of the order of e−Aw. For example, starting with the lateral
resummation above the real axis, we can define its real and
imaginary contribution

SþΦ ¼ 1

2
ðSþ þ S−ÞΦþ 1

2
ðSþ − S−ÞΦ

≡ SRΦþ iSIΦ; ð25Þ

where SIΦnðwÞ ∼ e−Aw. One is interested in having a
nonambiguous real transseries solution, i.e., a transseries
of the type (23) but where now the resummation should be
thought of as one of the lateral resummations S → S�.
Because σ is a complex number, the real and imaginary
contributions from each sector SR;IΦn will mix with the
real and imaginary parts of the parameter σ ≡ σR þ iσI, and
one can determine the total real and imaginary contribu-
tions to the transseries coming from every sector. This was
done in detail in Ref. [23].
Due to the resurgent properties of the transseries,

choosing the parameter σ properly will cancel the imagi-
nary “ambiguous” contribution to the transseries, leaving
us with a nonambiguous real result. This procedure
coincides with the so-called median resummation. In
Ref. [23], it was seen that for a one-parameter transseries
with real coefficients and singularities in the Borel plane
lying in the positive real axis4 the median resummation was
achieved by setting the imaginary part of the transseries
parameter to

iσI ¼ −
1

2
S1: ð26Þ

Here, S1 is the so-called Stokes constant associated with the
Stokes transition across the positive real axis. The real part
of the parameter σ does not get fixed by these requirements
and remains as an integration constant, to be fixed by some
initial condition. The nonambiguous real transseries sol-
ution to this problem is therefore given by

SRf ¼ Sþf
�
w; σR −

1

2
S1

�

¼
Xþ∞

n¼0

�
σR −

1

2
S1

�
n
e−nAwSþΦnðwÞ: ð27Þ

The Stokes constant can be determined directly by using
resurgence formulas predictions for the large-order behav-
ior of the perturbative series (as well as higher sectors).
From the resurgent analysis of the one-parameter transs-
eries, it was seen in Ref. [33] that the discontinuity of the
sectors Φk in the positive real direction w ¼ jwjeiθ with
θ ¼ 0 is given by

Disc0Φk ¼ −
Xþ∞

l¼1

ðkþ lÞ!
k!l!

ðS1Þle−lAwΦkþlðwÞ: ð28Þ

For the particular case of the perturbative expansion, we
need only to set k ¼ 0. For k ≥ 2, the sectors Φk will also
have discontinuities in the direction θ ¼ π. The full
expressions for these discontinuities were also derived in
Ref. [33] (in Sec. 2), but given the length of such
expressions, we refer the reader to that reference for more
details. The fact that our transseries is resurgent translates
directly to the existence of large-order relations between the

coefficients aðnÞk and aðmÞ
k0 of neighboring sectors n, m.

These large-order relations can be derived using Cauchy’s
theorem,

FðwÞ¼
I
z¼w

dz
2πi

FðzÞ
z−w

¼
X
θ−sing

Z þ∞eiθ

0

dz
2πi

DiscθFðzÞ
z−w

þ
I
∞

dz
2πi

FðzÞ
z−w

; ð29Þ

where the sum is over all singular directions θ of the
asymptotic expansion FðwÞ. On the rhs, we have deformed
the contour of integration to encircle all the discontinuities
(associated with the singular directions θ) and the con-
tribution at infinity. Under certain conditions [11,61], the
contribution at infinity can be seen to vanish by scaling
arguments, and we are left with the integration over the
discontinuities of FðwÞ.
As an example, choose the perturbative sector Φ0, and

use variables x ¼ w−1 ≪ 1. We can easily write

xΦ0ðxÞ ¼
I
z¼x

dz
2πi

zΦ0ðzÞ
z − x

¼
Z þ∞

0

dz
2πi

zDisc0Φ0ðzÞ
z − x

: ð30Þ

In the above formula, we used that the perturbative series
has only a discontinuity in the direction θ ¼ 0.5 We can4Recall that higher nonperturbative sectors Φn with n ≥ 2 will

naturally have singularities also in the negative real line, as it is
expected from a one-parameter transseries. This is a natural part
of the resurgent analysis, and its consequences are already
integrated in the analysis presented in Refs. [23,33].

5Recall again that for FðwÞ ¼ ΦkðwÞ with k ¼ 0, 1 we have
only one singular direction θ ¼ 0, while for k ≥ 2, we have two
singular directions θ ¼ 0, π.
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now use (28) and expand both sides for small x. Comparing
equal powers of x, we find

að0Þm ≃ −
Xþ∞

k¼1

ðS1Þk
2πi

Γðmþ kβÞ
ðkAÞmþkβ

×
Xþ∞

h¼0

aðkÞh

Yh
l¼1

kA
ðmþ kβ − lÞ ; m ≫ 1: ð31Þ

This is a large-order relation which connects coefficients of

the perturbative series að0Þm for large-order m with coef-

ficients of the one-instanton series að1Þh at low order, up to

contributions of the two-instanton series að2Þh exponentially
suppressed by 2−m, and so on. Note that each of the
sums appearing above is asymptotic. Similar expressions
have been derived for the coefficients of the other sectors
and can be found in Ref. [33]. For the coefficients of the
higher sectors Φk, k ≥ 2, other Stokes constants will appear
in the large-order relations because of the discontinuity in
the direction θ ¼ π (see Sec. 2 of Ref. [33] for more
details).
Returning to the perturbative series, we can write

the large-order relations more explicitly in the following
way:

2πiAmþβ

Γðmþ βÞ a
ð0Þ
m

≃ −S1
Xþ∞

h¼0

að1Þh

Yh
l¼1

A
ðmþ β − lÞ þOð2−mÞ

≃ −S1
�
að1Þ0 þ A

m
að1Þ1 þ A2að1Þ2 − Aðβ − 1Það1Þ1

m2
þ � � �

�

þOð2−mÞ: ð32Þ

To obtain the second line, we expanded the first line for
large m. Now it becomes clear how one can determine the

Stokes constant. Having calculated the coefficients að0Þm and

að1Þn iteratively from the differential equation, we can now
analyze the convergence of the lhs to the Stokes constant

(times the value of að1Þ0 ) and thus determine S1.
To carry out this calculation, we make use of the

accelerated convergence of the Richardson transforms
[62–64] (see Fig. 1). This leads to the determination of
the Stokes constant as S1 ¼ −0.00547029853i, which
matches the result in Ref. [5].
It is important to note that we can check the predictions

obtained by resurgence techniques for the large-order
behavior of the perturbative series even without the knowl-
edge of the Stokes constant. To do so, we analyze the
convergence of the ratio of coefficients to the predicted
values

Rm ≡ að0Þmþ1A

að0Þm m
: ð33Þ

On the basis of the analysis we have presented above, we
expect

Rm ≃
�
1þ β

m

��
1 −

A
m
að1Þ1

að1Þ0

þ A2ðað1Þ1 =að1Þ0 Þ2 þ ð2β − 1ÞAað1Þ1 =að1Þ0 − 2A2að1Þ2 =að1Þ0

m3
þ � � �

�
: ð34Þ

This quantity is clearly of the form

Rm ≃Xþ∞

k¼0

ck
mk ; ð35Þ

where the coefficients ck are directly determined from the
large m expansion of the large-order relation given above.
This makes it possible to use Richardson transforms to

accelerate convergence. As seen in Fig. 2, the ratio,
Eq. (33), converges to unity c0 ¼ 1 rather quickly. If the
Richardson transform (of order 10) is used, already at
m ¼ 20, this ratio differs from unity no more than one part
in 108 (and at m ¼ 100, the Richardson transform of order
10 has an error of 10−16).
Finally, note that one can easily check for consistency the

value of any coefficient ck predicted by resurgence by
checking the convergence of

FIG. 1. Convergence of the large-order perturbative series (in
blue) to the Stokes constant, using Richardson transforms of
order 2 (green) and 5 (red).
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~RmðkÞ≡
�
Rm −

Xk−1
r¼0

cr
mr

�
mk ≃ ck þOðm−1Þ: ð36Þ

In Fig. 3, this convergence can be seen to the predicted value
of c5 ¼ −31.1456818997329. For a Richardson transform
of order 5, the error of the predicted value is 10−8.
This section has served as a warmup for some of the

resurgence techniques that we will be using in what
follows. We needed to resolve a nonperturbative ambiguity
due to a singularity on the positive real axis and obtained
results consistent with Ref. [5]. The following section
applies resurgence techniques to an extended hydrody-
namic theory which involves a second-order differential
equation with two Stokes lines in the complex plane, both
away from the positive real axis. Even though there will be
no ambiguities in the resummation procedure along the
positive real axis, resurgence plays a determinant role in the

construction of the full transseries answer. The methods of
resurgence that will be used to study this problem are a
generalization of what was presented in this section and in
Ref. [33] (a review of nonlinear resurgent transseries with
two and more parameters can be found in Ref. [35]).
Note finally that one can of course solve Eq. (15)

numerically. These exact solutions rapidly converge to
an attractor which determines universal behavior which
emerges after nonhydrodynamic degrees of freedom decay.
The transseries solution captures this behavior; adding just
the lowest order in the transseries makes it possible to
match the attractor solution by choosing the real part of the
transseries parameter σ appropriately [5].
While this work was in preparation, the authors became

aware of Ref. [65] which has some overlap with this section.

V. EXTENDED THEORIES
OF HYDRODYNAMICS

As reviewed in Sec. III, MIS theory contains a single
purely damped nonhydrodynamic mode, the presence of
which is reflected in the divergence of the gradient
expansion. The occurrence of this mode is enough to
furnish a causal hydrodynamic theory close to local equi-
librium. This theory has been very successful in describing
the evolution of quark-gluon plasma produced in heavy ion
collisions, beginning with proper times of less than a
fermi/c. It has, however, been noted by many authors
[60,66,67] that the pressure anisotropy at these early times
is still very large, and the system is not close to equilibrium.
It is natural to suspect that the nonhydrodynamicMIS mode
not only regulates the causality and stability issues of
Navier-Stokes hydrodynamics but contributes in a very
nontrivial way to the physical implications of this model.
This provides strong motivation to try to understand better
the role of nonhydrodynamic modes and how they can be
matchedwith amicroscopic description. For modeling early
nonequilibrium dynamics, one would expect that incorpo-
rating further nonhydrodynamic degrees of freedom should
provide a better description.
A significant step leading in this direction was taken

in Ref. [49], where extended hydrodynamic theories were
formulated in the context of N ¼ 4 SYM. These theories
attempted to match the effective theory to the pattern of the
least damped black brane quasinormal modes which govern
the approach to hydrodynamics.
In this paper, we focus on the simplest model discussed

in Ref. [49] in which there is a pair nonhydrodynamic
modes which are not purely decaying. The familiar
relaxation equation MIS theory, Eq. (10), is replaced by

��
1

T
D
�

2

þ2ΩI
1

T
Dþ jΩj2

�
Πμν

¼ −ηjΩj2σμν − cσ
1

T
DðησμνÞ þ � � � ; ð37Þ

FIG. 3. Convergence of the ratio (32), in blue, to the large-
order relation coefficient c5 (light blue). The accelerated con-
vergence is shown using Richardson transforms of order 2 (green)
and 5 (red).

FIG. 2. Convergence of the ratio (32), in blue, to the leading
term in the large-order relation c0 ¼ 1 (light blue). The accel-
erated convergence is shown using Richardson transforms of
order 2 (green) and 5 (red).

INÊS ANICETO and MICHAŁ SPALIŃSKI PHYSICAL REVIEW D 93, 085008 (2016)

085008-8



where the ellipsis denotes contributions of second and
higher order in gradients. The parameter

Ω≡ΩR þ iΩI ð38Þ
is the complex “quasinormal mode” frequency. The coef-
ficient cσ affects the region of stability in parameter space
[49]. By solving Eq. (37) in the gradient expansion, one can
also check that cσ contributes to second-order transport
coefficients. However, in our work, this coefficient does not
play a qualitative role, and we will set it to zero.
The appearance of the second derivative in Eq. (37) is

what leads to nonhydrodynamic modes which are not
purely decaying. Indeed, the linearization of equations
Eq. (1) and Eq. (37) around flat space reveals a pair of
nonhydrodynamic modes with complex frequencies Ω and
−Ω̄. In the case of N ¼ 4 SYM, the leading quasinormal
mode frequencies have the values [68]

ΩR ≈ 9.800; ΩI ≈ 8.629; ð39Þ

and these are the values we assume in our calculations.6

As in the case of MIS theory, upon imposing boost
invariance, the hydrodynamic equations reduce to an
ordinary differential equation for the temperature. Of
course, in the present case, the equation is of third
order. Introducing new variables as in Eq. (14), one can
rewrite it as a second-order differential equation for the
function fðwÞ,

wf2f00 þαff0 þ12f2f0 þwff02þβþγfþδf2þ12f3

w
¼ 0;

ð40Þ

where f0 and f00 are the first and second derivatives of fðwÞ
with respect to w, and

α≡ −8þ 2wωI;

β≡ −
128

27
−
32

27
CηCτΠ −

4

9
wðCηjΩj2 − 8ΩIÞ −

2

3
w2jΩj2;

γ ≡ 176

9
þ 4

3
CηCτΠ −

32

3
wΩI þ w2jΩj2;

δ≡ −
80

3
þ 8wΩI: ð41Þ

This is the analog of Eq. (15) of MIS theory.
For physical reasons, it is clear that at late times (large w)

the solution must tend to 2=3, which corresponds to ideal
fluid behavior. It is easy to see analytically that this is
indeed the asymptotic solution. One can easily determine
the large-w expansion of solutions:

fðwÞ ¼ 2

3
þ 4Cη

9

1

w
þ 8CηðCτΠ þ 2ΩIÞ

27jΩj2
1

w2
þ � � � : ð42Þ

As expected, the first two terms coincide with what one
obtains in MIS theory [see Eq. (20)], whereas the third term
is different. This series can be calculated up to essentially
any order and can be shown to be divergent, as discussed in
much detail in the following section.
At early times, which correspond to small values of w,

one finds a unique real power series solution of the form

fðwÞ ¼ 8

9
þ 9CηjΩj2 − 8ΩI

3ð20þ 9CηCτΠÞ
wþ � � � : ð43Þ

By examining numerical solutions of Eq. (40), it is clear
that (similarly to the case of MIS theory) this is the small
w behavior of an attractor solution valid in the entire
range of w.
Since Eq. (40) is of second order, one must specify both

f and f0 at the initial value of w. As seen in Fig. 4, setting
initial conditions at various values of w shows that the
numerical solutions converge to the attractor. However,
unlike in the MIS case, the numerical solutions do not
decay monotonically but oscillate around the attractor.

VI. RESURGENCE IN EXTENDED
HYDRODYNAMICS

We are interested in solving Eq. (40) as an expansion in
large values of w ≫ 1. If we use a transseries ansatz of the
type (18) and substitute it into this equation, we easily find
two complex conjugate values for the instanton action

A� ¼ 3

2
ðΩI � iΩRÞ: ð44Þ

FIG. 4. Numerical solutions converge (nonmonotonically) to
the numerical attractor (magenta).

6The values in Eq. (39) differ from those in Table 1 of Ref. [68]
(corresponding to an operator of conformal weight Δ ¼ 4) by a
factor of 2π.
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Equivalently, we can write Aþ ¼ 3
2
iΩ̄, while A− ¼ − 3

2
iΩ.

We then have two types of nonperturbative contributions,
and thus, following Refs. [33,35], we find that we need a
two-parameter transseries to fully describe the solutions to
this equation,

fðw; σ�Þ ¼
Xþ∞

n;m¼0

σnþσm−e−ðnAþþmA−ÞwΦðnjmÞðwÞ; ð45Þ

where ΦðnjmÞðwÞ are the perturbative expansions in w−1

around each sector. The perturbative sector is given by
taking n ¼ m ¼ 0. These expansions are of the form

ΦðnjmÞðwÞ ¼ wβn;m
Xþ∞

k¼0

aðnjmÞ
k w−k; ð46Þ

where the coefficients βn;m reflect the type of branch cut

singularities in the Borel plane and the aðnjmÞ
k are the

expansion coefficients which can be determined iteratively
by substituting Eq. (45) into Eq. (40). Assuming further-
more that βn;m ¼ nβþ þmβ−, we find

β� ¼ CηðΩI � iΩRÞ; ð47Þ

together with recursion equations for the coefficients aðnjmÞ
k .

Because A� are complex conjugate, as well as β�, and
given that the coefficients of Eq. (40) are all real, we see

that the coefficients aðnjmÞ
k will be complex conjugates of

aðmjnÞ
k (and consequently all aðnjnÞk will be real).
By studying numerically the behavior of the coefficients

of the perturbative series, we see that these grow factorially
for large enough order k. This is directly related to the
behavior of the Borel transforms. If we define the Borel
transform for each sector,

B½ΦðnjmÞ�ðsÞ ¼
X
k¼kmin

aðnjmÞ
k

sk−βn;m−1

Γðk − βn;mÞ
; ð48Þ

we find a nonzero radius of convergence and branch cuts
starting at positions s�;l ¼ lA�. Note that kmin is the
minimum value of k such that every power of s appearing in
the Borel transform is non-negative (this does not change
the asymptotic properties of the series). In Fig. 5, we see
this behavior for the Borel transform of the perturbative
series

B½Φð0j0Þ�ðsÞ ¼
X
k¼0

að0j0Þkþ1

sk

Γðkþ 1Þ : ð49Þ

In order to analyze the singularities of the Borel trans-
form, we use the method of Padé approximants, where the

series above is approximated by a ratio of polynomials.7

Positions of the zeros of the polynomial in the denominator
reflect the singular behavior of the Borel transform: these
poles condense in certain directions and indicate cuts in the
Borel plane.
We check the resurgent properties of the transseries

Eq. (45) by determining the large-order behavior predicted
by resurgence for the perturbative series Φð0j0Þ (the pro-
cedure can then be generalized for higher sectors). We first
need to determine the associated discontinuities and then
make use of Cauchy’s theorem (29), in the same manner as
for the one-parameter example previously studied.8

In the present case, we have two singular directions
defined by the two actions A�:

θ� ¼ � arctan

�
ΩR

ΩI

�
≡�θA: ð50Þ

Each of these directions will have a different Stokes
constant associated with it, which we will call S�.
Following the ideas of Refs. [33,35], we can write down
the discontinuities associated with the singular directions as

DiscθþΦð0j0ÞðwÞ ¼ −
Xþ∞

l¼1

ðSþÞle−lAþwΦðlj0ÞðwÞ;

Discθ−Φð0j0ÞðwÞ ¼ −
Xþ∞

l¼1

ðS−Þle−lA−wΦð0jlÞðwÞ:

FIG. 5. Poles of the diagonal Borel-Padé approximant of order
300 associated with Φð0j0Þ in the Borel s-plane. The red dots
indicate values of the multiple instanton actions lA�, l ≥ 1.

7In the diagonal case used here, this ratio is of the same order,
half of the number of coefficients determined for the original
series (see, for example, Ref. [33] for more details).

8Note that for higher sectors there will naturally be additional
singular directions in the Borel plane, associated with different
combinations of the two instanton actions A�, much in the same
way as for the one-parameter transseries the sectors Φn, n ≥ 2 has
discontinuities in both the positive and negative real axis.
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Rewriting these results for the variable x ¼ w−1, making
use of Cauchy’s theorem (29) for the function xΦð0j0ÞðxÞ,
and expanding for small x, we arrive at the large-order
predictions (m ≫ 1)

að0j0Þm ≃ −
X
k≥1

ðSþÞk
2πi

Γðmþ kβþÞ
ðkAþÞmþkβþ

×
X
h≥0

aðkj0Þh
Γðmþ kβþ − hÞ
Γðm − kβþÞ

ðkAþÞh

−
X
k≥1

ðS−Þk
2πi

Γðmþ kβ−Þ
ðkA−Þmþkβ−

×
X
h≥0

að0jkÞh
Γðmþ kβ− − hÞ
Γðm − kβ−Þ

ðkA−Þh: ð51Þ

Given that all the coefficients að0j0Þm are real and that the

pairs β�, A�, and aðkj0Þh , að0jkÞh are complex conjugate, we
can easily see that Sþ

2πi has to be complex conjugate of S−
2πi,

and so the Stokes constants are related by

S− ¼ −S̄þ: ð52Þ

It will be convenient to define A� ¼ jAje�iθA , β� ¼
jβje�iθβ ¼ βR � iβI , S� ¼ �jSje�iθS . The leading behavior
of the large-order relations written above is dictated by the

sectors að1j0Þh and að0j1Þh ,

að0j0Þm ≃−
Sþ
2πi

Γðmþ βþÞ
Amþβþþ

X
h≥0

að1j0Þh

Yh
l¼1

Aþ
ðmþ βþ − lÞ þH:c:

þOð2−mÞ; ð53Þ

where H.c. stands for the Hermitian conjugate. Unlike the
one-parameter case previously studied, in these large-order
relations, there will always be a dependence on the Stokes
constant Sþ. Thus, before proceeding with deeper tests of
these relations, we need to numerically determine the
Stokes constants. This can be done as follows. Defining

Qm¼−
1

2πi
ΓðmþβþÞ
Amþβþþ

X
h≥0

að1j0Þh

Yh
l¼1

Aþ
ðmþβþ−lÞ ; ð54Þ

one has

að0j0Þm ≃ SþQm þ H:c:þOð2−mÞ: ð55Þ

If we can determine a resummed value for the Qm≡
jQmjeiθQðmÞ, for each m, then it will easily follow that

að0j0Þmþ1

að0j0Þm

≃ jQmþ1j
jQmj

cos ðθQðmþ 1Þ þ θSÞ
cos ðθQðmÞ þ θSÞ

: ð56Þ

Note that this relation is still a large-order relation; i.e., it is
valid for large values of m. The argument of the Stokes
constant can then be found by rewriting this large-order
relation Eq. (56),

tan θS ¼
gðmÞ cos θQðmÞ − cos θQðmþ 1Þ
gðmÞ sin θQðmÞ − sin θQðmþ 1Þ ; ð57Þ

where

gðmÞ≡ að0j0Þmþ1

að0j0Þm

jQmj
jQmþ1j

: ð58Þ

To determine the resummed values of Qm, first notice that
the sum present in (54) is asymptotic for large m:

ηðmÞ≡X
h≥0

að1j0Þh

Yh
l¼1

Aþ
ðmþ βþ − lÞ≃

Xþ∞

k¼0

ηk
mk : ð59Þ

The coefficients ηk are fully determined by the value of Aþ,
βþ and the coefficients að1j0Þh . The latter were determined
from the recurrence relations coming from the original
differential equation, up to h ¼ 100. The above sum can be
computed via the Borel-Padé resummation method (see
Ref. [33] for more details)9:

(i) We first determine the Borel transform correspond-
ing to the asymptotic sum ηðmÞ, Eq. (59).

(ii) We approximate this Borel transform by a diagonal
Padé approximant of order N ¼ 50, denoted by
BP50½η�.

(iii) The resummed series SηðmÞ is then determined via
the usual Laplace transform along the positive real
axis as we want m ∈ N,

SηðmÞ ¼
Z þ∞

0

ds e−smBP50½η�ðsÞ: ð60Þ

This was performed for m ¼ 1;…; 100.10

We can finally rewrite the resummed Qm as

SQm ¼ −
1

2πi
Γðmþ βþÞ
Amþβþþ

SηðmÞ: ð61Þ

With this result, we can determine the argument of the
Stokes constant θS ≡ argðSþÞ for each value of m via the
relation (57), by substituting the resummed value SQm for
the Qm. The result is illustrated in Fig. 6: the phase
becomes essentially independent ofm and is given by θS ¼
−1.710276 (the estimated error is of order 10−6).

9This sum could also be approximated by performing an
optimal truncation for each value of m.

10For this sum, the positive real axis is not a Stokes line, and
there is no ambiguity associated with the resummation.
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One can similarly calculate the modulus of the Stokes
constant. From Eq. (55), it follows that for large m the
modulus of the Stokes constant jSj≡jSþj should converge to

jSj≃ að0j0Þm

2jQmj cos ðθS þ θQðmÞÞ ; ð62Þ

with the Qm replaced by the resummed ones given in
Eq. (61). This convergence can be seen in Fig. 7, implying
the value jSj ¼ 4.728045 (with error of order 10−6).
This concludes the numerical calculation of the Stokes

constant. Using its value, we can now check the resurgence
large-order relations (53).
Let us define a new quantity by

ΩðmÞ≡ 2π

jSj
jAjmþβRe−βIθA

mβRΓðmÞ að0j0Þm : ð63Þ

Making use of the asymptotic expansion (59), as well as the
following large m expansion,11

γðmÞ≡ Γðmþ βþÞ
mβRΓðmÞ ¼

Xþ∞

k¼0

γk
mk ; ð64Þ

we can easily find the large-order behavior for ΩðmÞ,
m ≫ 1:

ΩðmÞ≃ eiΘðmÞXþ∞

k¼0

ck
mk þ H:c:

¼ 2
Xþ∞

k¼0

jckj
mk cos ðΘðmÞ þ θcðkÞÞ: ð65Þ

The coefficients ck ≡ jckjeiθcðkÞ appearing in this expres-
sion are defined by

X
k≥0

ckm−k ≡ γðmÞηðmÞ; ð66Þ

and the angle ΘðmÞ is

ΘðmÞ≡ π

2
þ θS − θAðmþ βRÞ − βI log jAj: ð67Þ

Note that the coefficients ck are known numerically,
because both expansions ηðmÞ, γðmÞ are known.
Analyzing the relation (65), we find that to leading order

in m (since c0 ¼ 1)

ΩðmÞ≃ 2 cos ðΘðmÞÞ þOðm−1Þ: ð68Þ

In Figs. 8 and 9, we can see the convergence of the
numerical results to the predicted behavior for two different
ranges of m: for the range of m < 100, we can see a slow
convergence, getting more accurate for higher values of m;
in the range 500 < m < 600, there is already complete
consistency between the numerical results and predicted
behavior.
We can also study the convergence of the large-order

relations to a general coefficient ck for some specific k by
subtracting the first k − 1 elements of the series and
multiplying the result by mk. For example, we can check
the convergence to the term k ¼ 2 in the relation (65) by
plotting

�
ΩðmÞ − 2

X1
k¼0

jckj
mk cos ðΘðmÞ þ θcðkÞÞ

�
m2

≃ 2jc2j cos ðΘðmÞ þ θcð2ÞÞ þOðm−1Þ: ð69Þ

FIG. 7. Convergence of the large-order relation Eq. (62) to the
modulus of the Stokes constant jSj≡ jSþj.

FIG. 6. Convergence of the phase of the Stokes constant
θS ≡ argðSþÞ. We plot (57) for each m using the resummed Qm.

11As an example, we present the first three terms in
this expansion: γ0 ¼ 1, γ1 ¼ 1

2
βþðβþ − 1Þ, and γ3 ¼

1
24
βþðβþ − 1Þðβþ − 2Þð3βþ − 1Þ.
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This convergence can be seen in Fig. 10: for the range of
large m presented, we find consistency between numerical
and predicted results. It is important to note that the
convergence to higher coefficients ck is highly nontrivial
and is based on the assumption that the transseries is
resurgent and that the value of the Stokes constant has been
correctly determined. If either of these assumptions had
failed, we would not have found convergence of the
numerics to higher orders predicted by resurgence.
It is also of importance to point out the slight deviation of

the numerical data from the predicted values in Fig. 10. The
main reason for this is that we have determined (based on
the same numerical data) the values of the Stokes constants
with an error of 10−6; this error will eventually cause such a

deviation. In order to get more accurate results in the
convergence to higher sectors, one would need to determine
more coefficients of the sectors Φð1j0Þ and Φð0j1Þ and use
them to lower the numerical error of the Stokes constant
calculation.
Now that we have confirmed the resurgent properties of

the perturbative series,12 we turn to the central question:
how to resum our two-parameter transseries (45). We want
to resum our transseries for positive real coupling. Because
the singularities in the Borel plane are away from this
direction, we can perform the integration of the Laplace
transform (22), where now the sectors being resummed are
the ΦðnjmÞ. There is no ambiguity involved in this calcu-
lation, and the resummed transseries (for the positive real
line θ ¼ 0) is given by

S0fðw; σ�Þ ¼
Xþ∞

n;m¼0

σnþσm−e−ðnAþþmA−ÞwS0ΦðnjmÞðwÞ: ð70Þ

We could be tempted to set the transseries parameters
σ� ¼ 0, which would leave us with only the perturbative
series. But the nonperturbative sectors will give us some
real exponentially suppressed contributions that we should
not neglect as they will play a role in the correct final
answer.13 In fact, this was already seen in other problems of
resummation [44,46]. Consequently, we should allow for
nonzero σ�.

FIG. 10. Consistency of the large-order relation Eq. (69) with
the expected behavior predicted by the coefficient c2ðmÞ≡
2jc2j cos ðΘðmÞ þ θcð2ÞÞ at large m.

FIG. 9. Consistency of the large-order relation (65) with the
expected behavior predicted by the coefficient c0ðmÞ≡
2 cos ðΘðmÞÞ at large m.

FIG. 8. Convergence of the large-order relation (65) to the
expected behavior predicted by the coefficient c0ðmÞ≡
2 cos ðΘðmÞÞ.

12The resurgent properties of higher nonperturbative sectors
can also be checked, once higher sectors are determined via
recursion relations and resummations of the lower sectors are
performed.

13If the actions had a negative real part, then one should in
fact set the parameters to zero when considering the transseries in
the positive real axis, as not to have exponentially enhanced
contributions.
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For real values of w, we expect a real solution, and we
know that sectors ΦðnjmÞ are complex conjugate to ΦðmjmÞ,
with the instanton actions also being complex conjugates.
Therefore, in order to have a real solution, we need to have
σnþσm− be complex conjugate to σmþσn− for any m, n. In
particular, putting m ¼ 0, n ¼ 1, we find

σþ ¼ σ̄− ≡ σ: ð71Þ
Writing the first few terms of the resummed transseries
(70), we have (A� ¼ AR � iAI)

S0fðw;σÞ ¼
Xþ∞

n¼0

e−nARw
Xn
m¼0

σn−mσ̄me−iðn−2mÞAIwS0ΦðnjmÞðwÞ

¼ S0Φð0j0ÞðwÞþ e−ARw2Reðσe−iAIwS0Φð1j0ÞðwÞÞ
þ e−2ARw½2Reðσ2e−2iAIwS0Φð2j0ÞðwÞÞ
þ jσj2S0Φð1j1ÞðwÞ�þOðe−3ARwÞ:

Note that the complex number σ is not determined by the
above analysis. This freedom corresponds exactly to the
two integration constants expected for a solution of a
second-order ordinary differential equation and can be
fixed by imposing suitable initial conditions.

VII. SUMMARY AND CONCLUSIONS

The equations of hydrodynamics constitute a physically
well-motivated coarse grained description of a wide range
of phenomena. It has recently become clear that they
provide a new area of application for resurgence ideas.
We have tried to describe a mature version of these ideas in
the context of MIS theory, which provides the simplest
example of an infinite hydrodynamic series. This series is
divergent in a way which encodes information about the
nonhydrodynamic mode present in MIS theory.
The main point of this paper was to apply these methods

to a hydrodynamic model which aims to describe a richer
spectrum of nonhydrodynamic modes, inspired by what is
seen inN ¼ 4SYM.We have shown in some detail that also
in this theory the hydrodynamic solution is the leading term
in a transseries expansion. These results confirm general
expectations concerning the nature of gradient expansions
[69]. They also provide an interesting example of resurgent

transseries, where the nonperturbative sectors not only have
the expected exponentially suppressed behavior at late times
(w ≫ 1) but also an oscillatory one. This oscillatory behav-
ior will becomemore pronounced in early times, when these
sectors are no longer suppressed—even though there are no
ambiguities in this problem, the full transseries is still
needed to account for this behavior. From the point of view
of resurgence theory, this oscillatory behavior also brought
novel features. Because the large-order relations cannot be
disentangled from the Stokes constants, and one cannot use
normal convergence acceleration methods due to the oscil-
lations, we needed to introduce a Borel-Padé resummation
of the first nonperturbative sectors to accurately determine
both modulus and argument of the Stokes constant. This
then allowed us to check the large-order relations with high
accuracy.
From a physical perspective, one would like to under-

stand cases where the series expansion is generated directly
from some underlying microscopic quantum theory, such
as strongly coupled N ¼ 4 SYM. In this case, there is an
infinite sequence of nonhydrodynamic modes correspond-
ing to the black brane quasinormal modes [68,70]. To
include more than a single pair of complex conjugate
quasinormal modes would involve multiparameter transs-
eries, with each quasinormal mode defining (in principle) a
separate Stokes line.
In practice, one would first aim at understanding the

effects of the leading modes—those with the longest
relaxation times. In the case of boost-invariant flow in
N ¼ 4 SYM, the hydrodynamic series has already been
computed to high order, and the calculation of at least a few
terms of the 1-instanton sector series is feasible. In con-
junction with the methods developed in the study presented
here, this opens up the possibility of at least checking
consistency with resurgence in this very important case.
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