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We present a renormalizable theory of scalars in which the low-energy effective theory contains a
pseudo-Goldstone boson with a compact field space of 2πF and an approximate discrete shift symmetry
ZQ with Q ≫ 1, yet the number of fields in the theory goes as logQ. Such a model can serve as a UV
completion to models of relaxions and is a new source of exponential scale separation in field theory. While
the model is local in “theory space,” it appears not to have a continuum generalization (i.e., it cannot be a
deconstructed extra dimension). Our framework shows that super-Planckian field excursions can be
mimicked while sticking to renormalizable four-dimensional quantum field theory. We show that a
supersymmetric extension is straightforwardly obtained, and we illustrate possible UV completions based
on a compact extra dimension, where all global symmetries arise accidentally as a consequence of gauge
invariance and five-dimensional locality.
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I. INTRODUCTION

The simplest field theories describing cosmic inflation—
the near-classical slow-rolling of a single field—which
match current cosmological data require a canonically
normalized field to take on values larger than the Planck
scale [1]. In addition, a recent proposal for a solution to the
electroweak hierarchy problem—the relaxion [2]—requires
field excursions in the early universe much larger than the
ultraviolet cutoff of the theory. While the range of validity
of a low-energy effective field theory is applied to the
energy, momenta, and masses involved in any physical
process, field values are not constrained. Nevertheless,
there is concern that such large field excursions may not be
viably generated in a consistent UV completion, especially
one encompassing quantum gravity (see for instance [3,4]).
Given the implications for inflation and the electroweak
hierarchy problem, it is worth looking for existence proofs
of field theories and string theories that produce effectively
large field ranges in the infrared.
One way to phrase our question is the following.

Consider an ordinary renormalizable quantum field theory
in which all scalar fields acquire expectation values ∼f <
MPl and which contains a pseudo-Goldstone boson with a
compact field space of size 2πF: under what conditions is
it possible to consistently achieve F ≫ f? For instance
how many degrees of freedom, or how much complexity, is
needed given a large F=f? We address this question by
presenting a simple renormalizable field theory with N þ 1

scalars, where a global symmetry is broken at a scale f, and
which produces a large field range F≡ 3Nf for a pseudo-
Goldstone boson in the low-energy theory. The model can
include couplings to fermions charged under strong gauge
groups, and thus produce axionlike potentials with effective

decay constants that range from f to 3Nf. The interactions
in the theory are of nearest-neighbor type and follow a
simple pattern, and thus we hope it helps lead to a more
complete ultraviolet theory (e.g., an embedding in string
theory). We show how to make our construction more
plausible by presenting similar constructions where the
global symmetry is an accidental approximate consequence
of a higher-dimensional gauge symmetry, and we relate it to
multi-axion models already in the literature. We then show
a supersymmetric version can trivially be constructed.

II. MODEL

Our model has N þ 1 complex scalars ϕj; j ¼ 0;…N
and the following renormalizable potential:

VðϕÞ ¼
XN
j¼0

�
−m2ϕ†

jϕj þ
λ

4
jϕ†

jϕjj2
�

þ
XN−1

j¼0

ðϵϕ†
jϕ

3
jþ1 þ H:c:Þ ð1Þ

The first sum of terms respects aUð1ÞNþ1 global symmetry,
whereas the remainder of the potential breaks this sym-
metry explicitly to Uð1Þ. Under the unbroken Uð1Þ, the
fields ϕj, j ¼ 0; 1; 2; 3;…; N, have charges Q ¼ 1;
1
3
; 1
9
;…; 1

3N
. Note, we ignored the Uð1ÞNþ1 preserving cross

terms, ϕ†
jϕjϕ

†
kϕk, and the first sum preserves a permutation

symmetry, but this is only done for simplicity of analysis.
Our conclusions will not rely on these assumptions. Note
finally that our Lagrangian is local in field space, in that it
involves only interactions involving neighbours ϕj and
ϕjþ1, and can thus be associated to a discrete extra
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dimension. Notice, however, as it shall become more clear
below, there is no meaningful continuum limit for such an
extra dimension.
Taking ϵ ≪ λ < 1, we can analyze the effective theory at

low energies by expanding around an expectation values
for the scalars in the limit ϵ → 0, namely hjϕjj2i ¼ f2≡
2m2=λ ∀ j. Below the scale

ffiffiffiffiffiffiffi
λf2

p
, we parametrize the

theory in terms of N þ 1 NGBs:

ϕj → Uj ≡ feiπj=ð
ffiffi
2

p
fÞ: ð2Þ

Turning on ϵ, the Lagrangian for the pseudo-NGBs is

LpNGB ¼ f2
XN
j¼0

∂μU
†
j∂μUj

þ
�
ϵf4

XN−1

j¼0

U†
jU

3
jþ1 þ H:c:

�
þ… ð3Þ

¼ 1

2

XN
j¼0

∂μπj∂μπj þ ϵf4
XN−1

j¼0

eið3πjþ1−πjÞ=ð
ffiffi
2

p
fÞ þ H:c:þ…;

ð4Þ

where the ellipsis stands for terms with higher powers of
derivatives and/or ϵ. The terms of order ϵ generate a
potential for the πj fields, except for one linear combina-
tion, corresponding to the Golstone boson of the residual
exact Uð1Þ. At the quadratic order, it is given by the q ¼ 3
case of the general form

Vð2Þ ¼ 1

2
ϵf2

XN
j¼0

ðqπjþ1 − πjÞ2; ð5Þ

corresponding to a mass matrix

M2
ij ¼ ϵf2

0
BBBBBBBBBBBBBBBBBB@

1 −q 0 0

−q 1þ q2 −q 0 : : :

0 −q 1þ q2 −q
0 0 −q 1þ q2

:

: :

: :

: 1þ q2 −q
−q q2

1
CCCCCCCCCCCCCCCCCCA

: ð6Þ

The eigenmodes are easily found. To get a first idea one
can consider the limit of an infinite matrix, thus ignoring
the first and last entries. Equivalently, this corresponds to
extending the sum in Eq. (5) from j ¼ −∞ to j ¼ þ∞. Our
fields in this case can be viewed as living in a discrete
infinite extra dimension. In this case one recovers an exact
translational symmetry πj → πjþ1, and therefore the ei-
genmodes are simply given by Fourier modes according to

πj ¼
Z

2π

0

dθ
2π

eijθπ̂ðθÞ; ð7Þ

V ¼ 1

2
ϵf2

Z
dθ
2π

ð1þ q2 − 2q cos θÞjπ̂ðθÞj2; ð8Þ

corresponding to a spectrum filling the band

m2
θ ¼ ϵf2ð1þ q2 − 2q cos θÞ; 0 ≤ θ < 2π: ð9Þ

For for q ≠ 1, in particular for q ¼ 3, the band does not
extend to zero mass: the mass gap is Oð ffiffiffi

ϵ
p

fÞ. Notice thatffiffiffi
ϵ

p
f represents the inverse lattice length of our discrete

extra-dimension, so that, for q ≠ 1, the Compton wave-
length of the modes is comparable to the lattice length and
there is no continuum limit. Along with the gapped
spectrum, in the infinite limit there is no normalizable
zero mode. A normalizable massless mode, however,
reappears in our case of finite N, which essentially
corresponds to a discrete extra dimension of finite length.
In that case the mass eigenmodes fajg satisfying

M2
jlal ¼ λaj ð10Þ

consist of a zero mode

að0Þj ¼ N
qj

j ¼ 0;…; N N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
j¼0 1=q

2j
q ð11Þ

plus massive modes of the form

ajðθÞ ¼ sin jθ þ A cos jθ λ ¼ 1þ q2 − 2q cos θ: ð12Þ
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The above ansatz for ajðθÞ and λðθÞ guarantees satisfaction
of the eigenvalue equation for 1 ≤ j ≤ N − 1. Satifaction
at the boundaries j ¼ 0 and j ¼ N gives instead the
constraints

A ¼ −
sin θ

q − cos θ

0 ¼ ð1þ q2Þ sinðN þ 1Þθ − q sinNθ − q sinðN þ 2Þθ:

The second equation admits N discrete solutions 0 < θp <
2π (p ¼ 1;…; N) corresponding to N different eigenvalues
λðθpÞ. Leaving their explicit values aside, these eigenvalues
are all located in the band we found in the infinite matrix
limit: besides the zero mode, all other masses are finite and
of order

ffiffiffi
ϵ

p
f.

Now we see where this is going. In our case, q ¼ 3, the
zero-mode eigenvector is

~aTð0Þ ¼ N
�
1 1

3
1
9

… 1
3N

�
: ð13Þ

This mode has exponentially suppressed overlap, ∼3−N ,
with whatever operator ϕN couples to in the UV, and can
thus produce an effective decay constant which is expo-
nentially larger than f. For example, if ϕN couples to
fermions, ψN , charged under a confining gauge group as
yϕNψ̄NψN , the fermions will pick up a mass yf, while the
zero-mode, a, at low energies will pick up the standard
axion coupling to the gauge bosons:

∼
a

32π2ð3NfÞH
μν ~Hμν ð14Þ

producing an effective decay constant exponentially larger
than f (Hμν is the field strength of the new gauge group).
The classical rolling of this field over large (even super-
duper Planckian) field values would correspond to a
clockwork of phase-rotations of the ϕj fields. With a
handful of ϕj fields, this Goldstone field can be a single
large-field inflaton.
To produce a relaxion-type of potential, we will need to

add a periodic potential with period ∼f. This can be done
by adding a second set of fermions and strong group, and
the coupling y0ϕ0ψ̄0ψ0, generating the operator ∼ π

32π2f G
~G.

Below the confinement scales of the two strong groups, the
Goldstone’s potential becomes:

V ∼ Λ4
N cos π=F þ Λ4

0 cos π=f ð15Þ

where F≡ 3Nf and ΛN and Λ0 are roughly the confine-
ment scales of the two strong groups. Corresponding to the
relaxion potential, the scale ΛN should be at or below the
ultraviolet cutoff of the standard model (the scale at which
loop contributions to the Higgs mass are cut off), while the

second group confines at a scale below the weak scale (and
could even be QCD).

III. ACCIDENTAL GLOBAL SYMMETRY
AND THE UV

The structure of the clockwork axion is preserved by an
(admittedly bizarre) global Uð1ÞPQ symmetry, and one can
ask if such a symmetry should be preserved (by, say,
higher-dimensional operators) in light of the expected
violation of global symmetries by quantum gravity.
Stated otherwise: one could ask if the symmetry at the
basis of our mechanism could arise accidentally in a more
fundamental theory where all symmetries are gauged. One
way to obtain such accidental symmetries is via locality in
extra dimensions.
One example, using extra-dimensional locality [5], as

applied to the axion [6], is structured as follows. The strong
groups live in the bulk of an extra dimension, and our
model’s matter, including the scalars and the chiral fer-
mions they couple to, lives on a brane or hypersurface in an
extra dimension. A chiral partner of the same matter (a copy
theory with opposite PQ charges) lives on a different brane
(or, for example, on the other orbifold fixed point of an
S1=Z2 compactification). Now, because over the entire
space, the PQ symmetry is vectorlike and thus anomaly-
free, the Uð1Þ symmetry can be gauged in the bulk by a
APQ vector. Anomaly cancellation is insured locally in
the five-dimensional theory by including the suitable
Chern-Simons terms in the bulk,

CG

64π2
APQ∧Ga∧Ga þ CH

64π2
APQ∧Hα∧Hα; ð16Þ

with the correct integers, CG and CH, to cancel the
anomalous representations on each orbifold fixed point,
and where G and H represent the field strengths. While the
PQ,G, andH four-dimensional vectors are taken to be even
under the orbifold, the A5 components are taken to be odd
(have Dirichlet boundary conditions), thus projecting out
the zero modes.
Taking the compactification scale to be πR ≫ 1=M�

(where M� is the five-dimensional cutoff), and assuming
the only bulk charged fields are of masses ∼M�, the contact
terms between the two sectors are suppressed by a Yukawa
potential ∼e−πRM� , and produce operators such as

On
Q
~Ol
−Q

Mlþn−4�
e−πRM� ; ð17Þ

where O and ~O are operators from each of the two sectors
with dimensions n and l and PQ charges �Q, respectively.
Thus, effectively, there are two symmetries—one linear
combination which is gauged, and the other which is an
approximate, accidental global symmetry due to locality. A
spontaneous breaking of the PQ symmetry on one brane
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causes the (exact) Goldstone to be eaten by the PQ gauge
field. The spontaneous breaking on the second brane
produces a near-exact Goldstone (up to exponentially
suppressed effects), and thus the global-symmetry is
extremely well preserved.
Another partly UV complete theory and structurally

analogous to ours is obtained by extrapolating the bi-axion
and tri-axion constructions in Ref. [7] to arbitraryN axions.
The setup involves a fifth dimension again compactified
on S1=Z2 of length πR, with a Uð1ÞNþ1 ≡Uð1Þ0 ×
Uð1Þ1… ×Uð1ÞN gauge theory living in the bulk. The
Aj
μ components (j ¼ 0;…; N) of the gauge fields along the

noncompact directions are assumed to satisfy Dirichlet
boundary conditions at the boundaries, so that no massless
extra photon survives compactification. The fifth compo-
nents Aj

5 satisfy von Neumann boundary conditions and
give rise toN þ 1 four-dimensional scalars parametrized by
the gauge invariant Wilson loops around S1:

πj ≡ 1

g5
ffiffiffiffiffiffiffiffiffi
2πR

p
I

dx5Aj
5ðxμ; x5Þ ð18Þ

(where the normalization ensures πj are canonically nor-
malized when taking a −FMNFMN=4g25 five-dimensional
gauge kinetic term). At the classical level, the potential
for the πj’s vanishes exactly. In the presence of five-
dimensional charged matter, a potential will be generated
by the Casimir effect, which will depend on the πj via the
Aharonov-Bohm phase around the circle. Given a bulk
multiplet with charges (q0;…; qN) under Uð1ÞNþ1 the
Aharonov-Bohm phase will be

Φ ¼ 1

f

XN
j¼0

qjπj f ≡ 1

g5
ffiffiffiffiffiffiffiffiffi
2πR

p ; ð19Þ

and the Casimir energy will be a function of eiΦ. Now, our
construction is realized by having N − 1 bulk fields Ψj;jþ1

for j ¼ 0;…; N − 1 each with charges qj ¼ 1, qjþ1 ¼ −q
and qk ¼ 0 for k ≠ j, jþ 1. The quantum numbers of these
fields, either bosons or fermions, or both, form a moose
structure connecting the Uð1Þ’s and representing a discrete
compact dimension. The effective potential will be a
periodic function of the Aharonov-Bohm phases,

Φj;jþ1 ¼
1

f
ðπj − qπjþ1Þ; ð20Þ

which are precisely the same combinations we encountered
in the four-dimensional model of the previous section. For
bulk field massesm ∼ 1=R, the effective potential will have
the form

V ∼
1

16π2
1

R4
FðfeiΦj;jþ1gÞ; ð21Þ

and around its minimum will give a mass of order 1=ðR2fÞ
to N of the scalar, leaving out the same zero mode of
Eq. (11). Notice that, depending on the spin and the mass of
the link fields, some of the Wilson lines may acquire an
expectation value. The details are beyond the scope of this
discussion. However, it is rather clear that such details in
the vacuum dynamics do not affect our main point, which
concerns the survival of a massless mode with eigenvector
given by Eq. (11). Our result for the potential is a direct
consequence of the choice of quantum numbers for the
light bulk fields. In general, one should expect all sorts of
charges under Uð1ÞNþ1 corresponding to all possible
Aharonov-Bohm phases, and thus no residual massless
Goldstone. However, provided the corresponding fields
have a mass M ≫ 1=R, their contribution to the effective
potential will be suppressed by e−2πMR, with some chance
of being negligible.
To make contact with the model of the previous section,

we can further assume that the gauge fields of color SUð3Þ
and of some other non-Abelian gauge groupH propagate in
the bulk. We can now consider coupling Abelian to non-
Abelian gauge fields directly via five-dimensional Chern-
Simons terms. In particular, we can couple Uð1Þ0 to SUð3Þ
and Uð1ÞN to H by explicitly adding

C0

64π2
A0∧Ga∧Ga þ CN

64π2
AN∧Hα∧Hα; ð22Þ

with C0, CN integers. Notice that, in this case, the orbifold
boundary conditions are reversed for the Uð1Þs, and their
gauge transformations are Z2 odd, while G and H are even;
thus, the above CS terms are not associated to anomaly
inflow at the boundary: they imply a coupling to the
corresponding Wilson line scalars π0 and πN in the low-
energy effective theory. Focusing just on the surviving
axion zero mode a, we have

a
f

N
64π2

�
C0Ga

μν
~Ga
μν þ

CN

qN
Hα

μν
~Hα
μν

�
; ð23Þ

so that nonperturbative effects in the two gauge groups give
rise to an axion potential modulated over two hierarchically
separated periods f and qNf.
One could employ a more elaborate version of this

construction to produce an explicit model of the relaxion.
For instance, the Higgs boson could be a composite of the
confining dynamics of the gauge group factor H. Then all
Higgs-related parameters would be modulated by the
relaxion a but with the slow variation q−N=f. We leave
such detailed constructions for future work.
One final issue in both UV completions above: one could

worry about the possible relevance of the contribution to
the potential of heavy bulk modes of arbitrary charge. As
we said, these effects are controlled by e−2πRM. It is not
realistic to make these effects arbitrarily small by taking
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MR arbitrarily large. The largest we can hopeM to be is the
cutoff of the five-dimensional theory M�. In turn, M� is
bounded from above by the scale at which the bulk non-
Abelian gauge interactions,G andH become strong. It is an
interesting fact1 that one finds

2πRM� ∼
16π2

g2
; ð24Þ

where g is the four-dimensional gauge coupling at the
compactification scale 1=R. Therefore, the unwanted cor-
rections to the potential from heavy modes are formally
similar to the nonperturbative four-dimensional effects,
such as those associated with confinement. However, given
these effects all appear in exponents, there exists a wide
range of possibilities. Overall, it does not seem implausible
that the IR four-dimensional effects dominate, but it is not
guaranteed. There is, however, no way to ascertain this in
the absence of a full UV completion at the five-dimensional
cutoff.

IV. SUPERSYMMETRIC CLOCKWORK

One can do a supersymmetric version of the clockwork
relatively easily. Starting with the following superpotential
with 3ðN þ 1Þ chiral superfields,

W¼
XN
j¼0

λSjðϕjϕ̄j−f2Þþ ϵ
XN−1

j¼0

ðϕ̄jϕ
2
jþ1þϕjϕ̄

2
jþ1Þ; ð25Þ

and taking ϵ small, one can see that the first terms will
cause a spontaneous breaking of the approximate
Uð1ÞNþ1 global symmetries (preserving the approximate
R symmetry), and that the Sj fields marry a combination
of ϕj and ϕ̄j fields to produce 2ðN þ 1Þ massive chiral
superfields and N þ 1 massless ones. We parametrize
the theory below the mass scale, λf, by replacing
ϕj → feΠj=f, ϕ̄j → fe−Πj=f, where Πj are the

(Goldstone) chiral superfields. The low-energy super-
potential becomes

→ 2ϵf3
XN−1

j¼0

ðcosh ðΠj − 2Πjþ1Þ=fÞ; ð26Þ

which produces supersymmetric masses for all but one of
the chiral superfields with a mass (not mass-squared)
matrix of the form (6) with q ¼ 2. Thus, an effective
decay constant of F≡ 2Nf can be produced in the low-
energy theory.

V. COMMENTS

We have shown that a renormalizable field theory with a
modest number of fields can produce an effective field
range which is exponentially large compared with the input
scales in the theory. While our construction is ad hoc, it
suggests a specific pattern which may be indicative of an
even simpler or more complete theory. We also suggested
UV completions to render all global symmetries accidental,
and it would be interesting to see if similar structures can be
made manifest in string constructions and what, if any, the
relation is to existing constructions such as axion mono-
dromy [9–12]. The elements we employ are not totally new
and are already present in one form or another in the
existing literature [7,13–19]. However, we have added a
twist, and we believe the combination of all those elements
and the simplicity of our construction is a novel feature
which could open new pathways in model building.
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